It is made available under a CC-BY-ND 4.0 International license .

Systematic Review of Prevalence of Sleep Problems in India: A Wake- up Call for Promotion of Sleep Health

Karuna Datta¹, Anna Bhutambare², Hruda Nanda Mallick³

¹Professor and Head, Department of Sports Medicine, AFMC Pune, Maharashtra, India

karunadatta@gmail.com

ORCID-

(https://orcid.org/0000-0003-0269-6737)

² JRF 1, DST SATYAM, Human Sleep Research Lab, c/o Dept of Sports Medicine, AFMC Pune, Maharashtra, India

³ Professor and Faculty Medical Sciences, SGT University, Gurugram, Haryana

Conflict of Interest

The authors have no conflict of interest

Acknowledgements

The project was not funded but the meta-analysis was helped by JRF -1 who was appointed under DST SATYAM project scheme.

Funding- Nil

Data Availability

The data is available in the manuscript and supplementary files.

It is made available under a CC-BY-ND 4.0 International license .

Systematic Review of Prevalence of Sleep Problems in India: A Wake- up Call for Promotion of Sleep Health

Abstract:

An ever-increasing burden of non-communicable diseases, especially in the post pandemic times and an association of sleep problems with them highlighted a felt need to estimate the sleep problem in India. A meta-analysis of the studies conducted on Indian data was planned adhering to PRISMA guidelines. An electronic search of available literature was performed on databases including PubMed, Google Scholar, PsycNet, and Epistemonikos. 100 eligible articles were analysed. To assess the methodological quality 10-points Joanna Briggs Institute (JBI) checklist for prevalence studies was used. The pooled estimates for prevalence of Insomnia found were 25.7%, OSA 37.4%, and RLS 10.6%. An increased prevalence was seen in patients of diabetes, heart disease patients and in otherwise healthy population. Subgroup analysis showed a higher prevalence in patient population and in the otherwise healthy population too,; e.g. Insomnia 32.3% (95% CI: 18.6% to 49.9%, I²=99.4%) and 15.1% (95% CI: 8.0% to 26.6%, I²=99.1%); OSA 48.1% (95% CI: 36.1% to 60.3%, I²=97.4%) and 14.6% (95% CI: 9.2% to 22.5%, I²=97.4%) and RLS 13.1% (95% CI: 8.7% to 19.3%, I²=91.9%) and 6.6% (95% CI: 2.4% to 16.4%, I²=99.1%) respectively. Excessive daytime sleepiness remained prevalent (19.6%) (95 % CI: 8.4% to 39.1%, I^2 =99.8%) in the healthy, which was alarming. A multipronged approach for sleep management, evaluation and research is the need of the hour for managing non communicable disorders and for promoting sleep health in the healthy population.

1. Introduction

Understanding the burden of sleep problems on a community is the first step to ensure that the system gears up to take control. Sleep problems and disorders are widely prevalent and continue to emerge especially in the post pandemic world¹. Establishing prevalence of a problem in the country can help and devise strategies to counter them. A need to develop strategies to combat sleep problems and reduce the burden of these disorders is vital². There was a felt need to analyse the prevalence of sleep problems in India from the available published literature. Moreover, there is an increasing burden of non-communicable diseases. Sleep plays an important role in the pathophysiology of these diseases. Sleep disorders add an allostatic load and hamper the progression of these diseases.

2. Material and Methods:

'Meta-analysis of epidemiological studies on prevalence of sleep disorders in Indian population' Trial was registered with Prospero (ID- CRD42022368993).

2.1 Search Strategy:

The Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) protocol 2021 guidelines were followed for this systematic review ³. An electronic search of available literature was performed on databases including PubMed, Google Scholar, PsycNet, and Epistemonikos. The search keywords consist of various sleep diseases with Boolean Operator (OR) and Boolean Operator (AND) India to combine studies only from India was used. We applied no language restriction and no publication time restriction. Detailed search strategy is provided in **supplementary material (S1)**.

It is made available under a CC-BY-ND 4.0 International license .

2.2 Eligibility Criteria and Study Selection:

All the studies conducted on humans in the region of India reporting prevalence of any sleep disorder was included. We included all kinds of studies conducted on various participants (any age group, patients, or general population.). Exposure to any kind of sleep related disorders like-Insomnia, hypersomnia, parasomnia, sleep apnea, sleep paralysis, restless leg Syndrome (RLS), narcolepsy, snoring, chronic fatigue syndrome, seasonal affective disorder, REM sleep behaviour disorder, non-REM sleep behaviour disorder, excessive daytime sleepiness (EDS), periodic limb movement, sleep talking, sleep terror, sleep related breathing disorder, circadian rhythm sleep disorder was considered. Titles and abstracts of the available studies were assessed by two reviewers independently to check if they met the inclusion criteria.

2.3 Data Collection:

The systematic review was done for the available literature to study the prevalence of sleep disorders in India. The initial literature search resulted in 1802 relevant articles. Of the 1802 articles, 152 articles were initially found eligible. Articles without full text and those in duplicate were removed. PubMed search provided 1200 articles, after screening only 90 articles which reported relevant data were included. PsycNet search provided 202 articles. None of these articles were eligible after screening. Google scholar search provided 250 articles, out of these 37 reported relevant data but 30 articles were repeated thus only 7 articles were included. Epistemonikos search provided 150 articles, only 3 were relevant and finally included. Thus, a total of 100 relevant articles were used for final analysis. The study selection process is shown in **Figure1**.

2.4 Data Extraction:

After removing duplicate studies, full text articles were reviewed and following data was extracted -Author name, year of publication, study title, study design, type of study participants, number of participants, age group, disease addressed in the study, number of events or proportion of cases, scale used for disease assessment. If relevant data was not available or full text article was not freely available, then corresponding authors were contacted by email and were requested to provide full text article or relevant data. The relevant data was manually checked by one author and was rechecked by the other author independently. Final table prepared showing detailed characteristics of the included studies is placed in **Table 1**.

2.5 Quality assessment of included study

The quality assessment of the included studies for prevalence was done using Joanna Briggs Institute (JBI) checklist ⁴. It consists of ten questions/checklist points with response to each as either 'yes', 'no', 'unclear' or not applicable'. For each 'yes', the study is rewarded 1 point otherwise zero and hence a cumulative score 0-10 is allotted. Quality assessment was done independently by two reviewers (AB and KD) and in case of any discrepancy third reviewer was asked. Based on JBI appraisal tool total scores were calculated and articles were assigned quality points.

2.6 Data Analysis:

A random-effect model was used with inverse variance method for estimating the pooled prevalence or the overall prevalence of some common sleep disorders. We used transformed proportion using logit transformation instead of raw proportion values. The between-study heterogeneity variance was estimated using τ^2 (tau-squared) and I^2 statistic with restricted maximum-likelihood estimator method.

Also, the prediction interval for future studies was computed to give the expected range of true prevalence in a new study, using the data. To evaluate between study heterogeneity Cochran's Q-test was done. Subgroup analysis was also done based on participants' type (Healthy or Patient) and, again based on age group for studies based on healthy participants.

All statistical analysis was conducted in statistical R-software (Version 4.1.2) using the packages 'meta' and 'metafor'.

3. Results:

100 studies included in the final analysis showed major sleep disorders like insomnia, obstructive sleep apnea (OSA), restless leg syndrome (RLS) on a sample of 67844 individuals. Meta- analysis for each disorder was done. Excessive daytime sleepiness (EDS) remained a symptom which was found in many studies and analysis for EDS was done. Studies reporting insomnia or insomnia like features⁵⁻²⁹, OSA^{13,22,26,27,29-75}, RLS^{10,15,19,25,28,76-90} and excessive daytime sleepiness^{11,17,40,59,60,67,72,80,88,91-104} were analysed. The details of which are tabulated in Table 1.

The studies in relation to insomnia, OSA, RLS and EDS have been tabulated and provided in **Table 1**. **Table 1** also shows the quality assessment score. The quality score based on JBI appraisal tool for prevalence studies showed a median score was 7 (range: 4-10) points. There were 4 studies with lowest JBI score of 4 and 7 with the highest JBI score of 10.

Table1: Detailed Characteristics of the Studies Included in the Systematic Review

Sr No.	Author	Study Design	Participants Group	Sample Size(n)	Age(Mean <u>+</u> SD) /Age Group	Assessment Tool	Sleep Disorder Addressed	JBI Score (0-10)
1	H.K.Aggarwaletal. 2017	Cross sectional study	CKD stage III to V patients	200	50.11 <u>+</u> 13.99	PSQI	Insomnia	7
2	S. Ahm ad et al., 2013	Cross sectional study	Adults with CKD	104	54.17 <u>+</u> 12.96	ISI, STOP-BANG	Insomnia	9
3	Jain et al., 2017	Cross sectional study	Type-2 diabetes patients	50	48.25 <u>+</u> 19.05	ISI	Insomnia	7
4	Dahale et al., 2020	Multicentre cross sectional survey	Elderly patients attending PHCs	1574	68.6 <u>±</u> 6.3	ISI	Insomnia	8
5	Uvais et al., 2021	Cross sectional study	Nurse and other staff	347	29.12 <u>+</u> 6.85	ISI	Insomnia	7
6	Panda et al., 2012	Observational cross sectional study	Healthy subjects accompanying patients	1050	35.1 <u>±</u> 8.7	ESS, PSQI	RLS, Insomnia	9
7	Shivashankar et al., 2017	Cross sectional study	Healthy participants	16287	42.03±12.43	Sleep Habbits questionnaire, ESS	Insomnia, EDS	6
8	Katyayan et al., 2019	Cross sectional study	Healthy subjects	850	44.68±10.44	ESS, BQ, STOP BANG	Insomnia	8
9	Dewan et al., 2022	Questionn aire-based survey study	Dental students	1115	21 <u>±</u> 1.8	SLEEP-50 questionnaire (that had 50 questions)	O SA, Insomnia	6
10	Jain et al., 2020	Cross sectional study	Students University of Rajasthan and affiliated colleges	954	23.81 <u>+</u> 3.72	ISI	Insomnia	7
11	N. Kumar et al., 2022	Cross-sectional study	General People	1596	39.76 <u>+</u> 13.1	Standard questionnaire	RLS, Insomnia	4
12	Khan et al., 2018	Epidemiological study	Adult population of a district	1700	39.4 <u>+</u> 13.9	ISI, door to door survey	Insomnia	9
13	Sreedharan et al., 2016	Cohort study	PSG proven OSA patients	152	53.81 <u>+</u> 12.01	PSG	Insomnia, EDS	7
14	Jaisoorya et al., 2018	Cross sectional study	General patients at OPD(PHCs)	7017	41.4 <u>±</u> 11.1	ISI	Insomnia	8
15	Panda et al., 2018	Observational study	Patients with definite and probable ALS	40	56.6 <u>+</u> 9.4	ESS, PSQI	RLS, Insomnia	6
16	Mon dal et al., 2018	Observational cross sectional study	Psychiatric outpatients	500	42.2±15.3	ISI	Insomnia	7
17	Jain et al., 2014	Prospective study	Traumatic brain injury patients	204	33.34 <u>+</u> 12.9	ISI	Insomnia	6

			more than 3 months.				Insomnia	
19	Naik et al., 2021	Prospective observational study	Patients aged >18 years with laboratory- confirmed COVID-19	1234	41.6 <u>+</u> 14.2	Interviews conducted by trained residents	Insomnia	7
20	Tomar et al., 2018	Cross sectional	Post-traumatic brain injury patients	100	35.07 <u>+</u> 12.88	ISI, PHQ-9	Insomnia	9
21	A. Kum ar et al., 2021	Cross-sectional study	Patients with chronic liver disease	131	48.7 <u>+</u> 12.31	PHQ-9, PSQI	RLS, Insomnia	8
22	Devarajetal., 2013	Cross sectional	Patients with a recent Myocardial Infarction	44	57.5 <u>+</u> 10.44	PSG, ESS, BQ	O SA, Insomnia	8
23	Ramakrishnan et al., 2012	Descriptive study	General patients visited sleep centre	1765	All age patients	PSG	O SA, Insomnia	6
24	N. Kumar et al., 2021	Cross-sectional study	Parkinson's disease	832	66.9±18.39	Online survey with validated questionnaire	RLS, Insomnia	6
25	Jasti et al., 2018	Cross-sectional study	Parkinsonism patients	168	65.3±12.8	PSQI, ESS, PDSS- 2	OSA, EDS, Insomnia	7
26	Kishan et al., 2021	Cross Sectional observational	Chronic heart failure patients	103	62.65±11.8	ESS, STOP-BANG, BQ	O SA	7
27	Shanmugam et al., 2015	Cross-sectional prospective observational study	CKD patients	302	All age patients	BQ	O SA	7
28	A. Singh et al., 2021	Cross sectional study	Type 2 diabetes patients	149	63.42 <u>+</u> 12.31	STOP-BANG	O SA	9
29	Viswanathan et al., 2017	Cross sectional study	Type 2 diabetes patients	203	54 <u>+</u> 8	AHI	O SA	6
30	Malik et al., 2017	Cross sectional study	Type 2 diabetes patients	62	60.82±11.34	PSG	O SA	8
31	Goyal et al., 2018	School-based cross- section al	School students	1346	6.81 <u>±</u> 2.18	SRBD scale	O SA	9
32	S. K. Sharma & Sreenivas, 2010	Cross sectional study	Middle aged urban Indians in South Delhi	351	43±13.2	PSG	O SA	8
33	S. K. Sharma et al., 2010	Cross sectional study	Individuals of either gender aged 30-65 years	365	47.5±13.8	Validated questionnaire, PSG	O SA	7
34	Shailly Saxena, 2006	Observational cross sectional study	Individuals above 18 years of age	1188	44.27 <u>+</u> 10.79	Sleep questionnaires	O SA	7
35	Joseph et al., 2020	Cross sectional study	Pregnant women	214	27.2 <u>±</u> 4.7	STOP-BANG, ESS	O SA	5
36	Choudhury et al., 2019	Cross sectional study	Rural community of Odisha	200	50±16.3	BQ	OSA, EDS	6
37	Pinto et al., 2018	Observational cross sectional study	Adult population	321	39.43 <u>+</u> 15.6	ESS, Modified BQ	O SA	8
38	K. Aggarwal et al., 2021	Cross-sectional and observational study	Undergraduate college students	493	20.3±1.53	PSQI	O SA	7
39	Agrawaletal, 2011	Cross sectional study	Patients with and without OSA	272	45.29 <u>+</u> 8.96	PSG	O SA	8
40	Surya Kant, 2019	Prospective observational study	Patients of Pulmonology Outpatient Department	48	All age patients	PSG	O SA	6
41	An and et al., 2021	Cross sectional prospective study	Children with Down syndrome	53	7.4 <u>+</u> 3.47	PSG	O SA	4
42	Nanaware et al., 2006	Retrospective study	Suspected sleep disordered breathing children under 18 years	56	11.5 <u>±</u> 5.13	PSG	O SA	4
43	Kaswan et al., 2021	Prospective cross section	Diabetes mellitus patient	362	55.7±10	STOP-BANG, ESS	O SA	9
44	Devarajet al., 2017	Prospective cohort	Patients un derwent non-cardiac surgery	182	48.9 <u>+</u> 14.41	PSG, STOP-BANG	O SA	9
45	Lorenzoni et al., 2019	Observational cross sectional study	Obese children	45	10.5±0.75	PSG	O SA	6
46	Dixit et al., 2018	Cross sectional study	Adult patients of bronchial asthma	50	48.16 <u>+</u> 14.9	PSG	O SA	6
47	Tripathiet al., 2019	Cross sectional study	Elderly completely edentulous patients	183	62.5 <u>±</u> 1.97	PSG, ESS	O SA	9
48	Reddy et al., 2009	Cross sectional, community based study	Middle-aged urban of South Delhi	2505	47.5±13.8	PSG	O SA	9
49	S.K.Mahajan et al., 2021	Cross sectional study	Patients with acute coronary syndrome	66	57.7 <u>±</u> 11.1	PSG	O SA	8
50	Prasad et al., 2017	Comparative study	Subjects who underwent polysomnography at	210	46.5±13.7	PSG	O SA	8

	1	1			1	1	1	1
			sleep lab					
51	Kamgo et al., 2022	Prospective observational study	Interstitial Lung Disease patients	41	55.5 <u>±</u> 10	PSG	O SA	6
52	R. Kumar et al., 2013	Cross Sectional observational	Patients with asthma and COPD	400	35.8 <u>+</u> 7.9	ESS, BQ	O SA	8
53	Sehgal et al., 2016	Cross sectional study	Patients with metabolic syndrome	50	47.1 <u>+</u> 6.6	PSG, ESS	O SA	6
54	Nairetal., 2022	Cross sectional study	Patients with sleep disordered breathing	142	49.7±14.6	Level 1 PSG	O SA	10
55	Priyadarshin i et al., 2017	Observational cross sectional study	Obese patients seeking bariatric surgery	27	42.4±10.5	PSG, ESS, BQ	OSA, EDS	7
56	Nattusami et al., 2021	Cross sectional study	Patients with stable COPD	301	59.6 <u>±</u> 10	PSG, ESS	OSA, EDS	10
57	Shoib et al., 2017	Cross-sectional study	Patients suffering from depression	182	54.89±12.93	PSG	O SA	10
58	Utpat et al., 2020	Prospective observational study	Interstitial lung disease patients	100	56.44 <u>+</u> 20.52	PSG	O SA	9
59	Bhaisare et al., 2022	Prospective observational study	Diagnosed lung cancer patients	30	55±8	PSG, ESS	O SA	8
60	Agrawaletal, 2013	Cross sectional study	Patients of ASA I-III scheduled for elective surgical procedures under anesthesia	204	42.7±15.08	STOP-BANG	O SA	7
61	Kaul et al., 2001	Cross Sectional observational study	Primary sleep disturbances patients	60	46.36 <u>+</u> 7.89	PSG	O SA	7
62	Jain & Sahni, 2002	Prospective observational study	Children adenoidectomy and/or tonsillectomy	40	8 <u>+</u> 3.15	PSG	OSA	6
63	Ghosh et al., 2020	Cross sectional study	Population study	1000	47±13	BQ	OSA, EDS	7
64	Tripathi et al., 2018	observational study	Non-obese male subjects	120	45 <u>+</u> 7.8	PSG	O SA	5
65	P. Singh et al., 2022	Prospective study	Coronary artery disease patients	100	35.14 <u>+</u> 4.35	PSG	O SA	7
66	Dubey et al., 2018	Cross sectional study	Male Driving License recipients	542	31.8 <u>±</u> 13.2	STOP-BANG	O SA	9
67	Mathiyalagen et al., 2019	Cross sectional study	Patients attending a non-communicable disease clinic	473	51 <u>+</u> 11.34	Pre-tested semi- structured questionnaire	O SA	10
68	M. Kumaretal., 2021	prospective cross- sectional study	Patients with cirrhosis	1098	48.3±10.5	PSQI, ESS	OSA, EDS	10
69	Rohatgi et al., 2018	Preliminary study	Patients suffering from schizophrenia spectrum disorder	43	32.2±10.1	Berlin Questionnaire	O SA	8
70	L. Ahmad et al., 2020	Prospective, cross- sectional hospital- based study	Adolescent patients who reported to Orthodontic OPD	213	16±3.4	STOP-BANG	O SA	9
71	Selvaraj & Keshavamurthy, 2016	Cross sectional study	Parkinson's Disease patients	50	57.16 <u>+</u> 6.6	PDSS, ESS	O SA	6
72	Bhagawati et al., 2019	Cross-sectional study	Patients with CKD who were >18 years of age	300	47.58 <u>±</u> 15.04	IRLSSG rating scale	RLS	10
73	Pinheiro et al., 2020	Cross sectional study	Type-2 diabetes	210	56±13.5	IRLSSG rating scale	RLS	6
74	R. Gupta et al., 2017	Population based door to door study	Subjects 18 and 84 years in Himalayan and Sub-Himalayan region	1689	35.2±10.9	Cambridge-Hopkins RLS diagnostic questionnaire	RLS	9
75	Rangarajan et al., 2007	Cross-sectional, questionnaire-based study	Adult residents of Bangalore	1266	49.4 <u>+</u> 24.4	Face-to-face interview, IRLSSG scale	RLS	7
76	Bellur et al., 2022	Cross-sectional observational study	College students	4211	18±1.48	PSQI, ESS	RLS	7
77	Joseph et al., 2022	Cross-sectional study	General population of Mangalore	202	29 <u>+</u> 13	PSQI	RLS	6
78	R. Gupta et al., 2012	Cross sectional study	Patients who presented with insomnia or leg pain	653	39.86±12.8	IRLS Hindi version	RLS	7
79	Halkurike- Jayadevappa et al., 2019	Prospective observational study	Adult patients with cirrhosis	356	48 <u>±</u> 25.6	IRLS scoring system	RLS	9
80	Bhowmik et al., 2003	Comperative study	He modialysis patients	121	34.5±11.1	Predesigned questionnaire	RLS	5
81	R. Gupta et al., 2018	Cross sectional	Patients with opioid use disorder	19	30.2±10.4	Predesigned	RLS	6

It is made available under a CC-BY-ND 4.0 International license .

		observational study				questionnaire		
82	Bathla et al., 2016	Cross sectional study	Patients un dergoing hemodialysis	194	54.5±15	Face-to-face interview, IRLS questionnaire	RLS	7
83	A. Gupta et al., 2017	Prospective study	Stroke patients	346	54.87 ± 12.03	Pre-structured sleep questionnaire	RLS	9
84	Velu et al., 2022	Cross sectional study	Patients with End-stage kidney disease	148	44 <u>+</u> 14.5	ESS, PSQI	RLS, EDS	10
85	R. Gupta et al., 2013	Cross sectional observational study	Subjects presenting to psychiatry OPD with complaints of depressive illness	54	35.58±33.22	MINI-Plus Interview, IRLSSG criteria	RLS	9
86	Raj & Ramesh, 2021	Cross sectional study	Patients diagnosed with Tuberculosis	206	41 <u>+</u> 16.2	PSQI, ESS	RLS, EDS	6
87	Raj et al., 2019	Cross-sectional study	Type 2 diabetes patients	102	56.88 <u>+</u> 10.98	ESS	RLS, EDS	7
88	Kaur & Singh, 2017	Cross-sectional study	College students	12 15	19.5 <u>+</u> 4.7	ESS	EDS	4
89	A. Singh et al., 2017	Prospective cross section al study	Subjects with age groups ≥ 25 years	1512	42.6±11.2	ESS, face to face interview	EDS	5
90	Roopa et al., 2010	Cross sectional study	Random subjects aged 20-76 from Chennai Urban Rural	358	43.7±12.7	Standard validated questionnaire	EDS	8
91	Krishnaswamy et al., 2016	Prospective study	Bus drivers working in Karnataka State Road Transportation Corporation	180	41.4 <u>+</u> 9.3	ESS	EDS	6
92	Ghante et al., 2021	Cross-sectional study	Postn atal women	225	25 16 <u>+</u> 3 98	ESS, PSQI	EDS	7
93	Deyet al., 2020	Cross-sectional study	Doctors from all the clinical department	100	35.32 <u>+</u> 6.21	PSQI, ESS	EDS	8
94	Venkatnarayan et al., 2022	Cross sectional observational study	OSA patients	100	49.5 <u>+</u> 13.3	PSG	EDS	5
95	Shoib et al., 2022	Cross-sectional study	OSA patients	182	54 89 <u>+</u> 12 89	PSG, ESS	EDS	6
96	Samanta et al., 2013	Cross sectional observational study	Patients of cirrhosis	100	49.1±11.4	PSQI, ESS	EDS	5
97	P. Sharma et al., 2016	Cross-sectional study	Patients with schizophrenia	100	30.63 <u>+</u> 8.7	PSQI, ESS	EDS	7
98	Sreedh <i>a</i> ran et al., 2021	Prospective study	Patients getting admitted for coronary artery bypass surgery	120	60±11.5	STOP-BANG	EDS	7
99	S. Mahajan et al., 2012	Cross sectional observational study	Patients on maintenance hemodialysis for >3 months	47	37.1 <u>±</u> 13.1	ESS	EDS	5
100	Kadam Y, Patil S, Waghachavare V, Gore A, 2016	Cross sectional study	College students from an urban are a	900	19.3±1.5	Pre tested self- administered questionnaire	EDS	6

Note: CKD: Chronic Kidney Disease, OSA: Obstructive sleep apnea, RLS: Restless Legs Syndrome, EDS: Excessive daytime sleepiness PSQI: Pittsburgh Sleep Quality Index, PHC: Primary Health Centre, ESS: Epworth Sleepiness Scale, ISI: Insomnia Severity Index, PSG: Polysomnograpgy, PHQ-9: Patients Health Questionnaire, BDI: Beck Depression Inventory, BSA: Berlin Sleep Apnea, BQ: Berlin Questionnaire, PDSS-2: Parkinson Disease Sleep Score-2, AHI: Apnea Hypopnea Index, SRBD: Sleep Related Breathing Disorder, COPD: Chronic Obstructive Pulmonary Disease, PDSS-III: Parkinson Disease Sleep Score Part-III, IRLSSG: International Restless Legs Syndrome Study Group, IRLS: International Restless Legs Syndrome severity scoring, MINI-Plus: Mini International Neuropsychiatric Interview Plus, JBI: Jo anna Briggs Institute

A preliminary prevalence of pooled data for insomnia, OSA, and RLS was carried out. The studies showed both healthy and patient population data. Meta-analysis forest plots are shown in **Supplementary Figures 1-4**. Studies were analysed disease wise for general population and patient population and subgroup analysis done for Insomnia, OSA and RLS as shown in **Table 2(A)**. Subgroup analysis was conducted in healthy population for prevalence of Insomnia, OSA, and RLS as shown in **Table 2(B)**. Meta-analysis for EDS was also conducted with subgroup analysis based on participant types (healthy and patients) and further based on population group (College students and Adult General Population) in studies with healthy participants as shown in **Table 3**. Forest plots are shown in **Figures 2, 3 and 4** respectively. Some studies showed the prevalence of multiple sleep disorders whereas some only focussed on one of the sleep disorders, so they are included in the disorder or disorders as applicable.

Table 2: Prevalence of Insomnia, OSA and RLS among Healthy and Patient Population Groups

It is made available under a CC-BY-ND 4.0 International license .

'k' is number of studies included in analysis.

Table 3: Prevalence of EDS among Patient population and Healthy Population

Subgroup Analysis	Prevalence (95% CI, I^2)
A. Participants' Group	
Healthy population (k=11)	19.6% (95 % CI: 8.4% to 39.1%, $I^2=99.8\%$)
Patient population (k=14)	31.5% (95% CI: 20.8% to 44.6%, $I^2=96.5\%$)
Overall	25.9% (95% CI: 17.1% to 37.1%, I ² =99.6%
B. Healthy Population Groups	
College students (k=3)	55.1% (95% CI: 30.8% to 77.2%, $I^2 = 99.5\%$)
General people (k=8)	11.6% (95% CI: 4.6% to 26.2%, $I^2=99.4\%$)

'k' is number of studies included in analysis.

4. Discussion:

The studies analysed showed that the patient data was being collected from outpatient department, so the patient had a morbidity for which they had reported. Some were done on caregivers and attendants^{9,10,97} of patients while they were in hospital or attending on a patient while in outpatient department. Few studies worked on general population using representative samples of college students^{13,14,35,42,80,92,104} and some targeted the population in general ^{12,16,37,38,40,67,78,79,81,93,94}.

A pooled data of both healthy and patient population together hints that the prevalence of sleep disorders is very high namely for insomnia being 25.7% (95% CI: 16.3% to 38.0%, I^2 =99.4%), OSA 37.4% (95% CI: 27.8% to 48.2%, I^2 =98.3%) and for RLS 10.6% (95% CI: 7% to 15.9%, I^2 =97.3%). It was found that the methodology implemented in the study also varied widely from surveys, face to face interviews and only few with subjective and objective parameters both. Keeping the large variance in the target population studied and the methodology adopted, the range of prevalence of sleep disorders thus had an increased range. Further subgroup analysis of general population was done to understand the prevalence in an otherwise healthy population.

It is made available under a CC-BY-ND 4.0 International license .

We had done an analysis of prevalence of insomnia reported by various articles and our results showed an overall of 25.7 % with a high heterogeneity (I²=99.4%). The high heterogeneity might have arisen both because of the methods used and the target population studied. The relative high prevalence of insomnia in patients of diabetes is glaring. This requires insomnia treatment guidelines incorporated in the comprehensive approach of dealing with such disorders. Considering the economic burden of non-communicable diseases like diabetes and hypertension in India, a holistic approach to better sleep in such disorders is warranted^{105,106}. To ensure that the primary care physician can help in early diagnosis, management, and treatment of insomnia, it is imperative to teach basics of sleep management in MBBS curriculum. A glaring need exists for the primary care physician to be acquainted with the standard treatment guidelines¹⁰⁷.

Further analysis on healthy participants for insomnia showed a prevalence of 34.7% (95% CI: 17.6% to 56.9%, I²=99.0%) in college students and 11.1% (95% CI: 5.9% to 19.8%, I²=97.1%) in general population. A relatively high prevalence in college students raises an alarm. This needs to be reformed to ensure a healthier future population. College going students should learn ill effects of sleep deprivation and importance of addressing their sleep issues earlier to avoid the resurgence of somatic complaints and psychiatric symptoms in later life. Education and self-motivation remain the cornerstone of this strategy. In fact, this education should start at a very young age. A systematic review on the effects of the pandemic on sleep in children and adolescents highlights the growing problem ^{108,109}. There is a need to develop sleep hygiene principles, like dental hygiene, right from preschool and nursery days. Study on urban school children mentioned the role parents play in setting bedtimes. The study brought out that the high school children felt that parental control was much less and that it diminished from middle school onwards ¹¹⁰. Parental awareness to improve control over sleep times during both weekdays and weekends is vital. OSA has been studied in various diseases like diabetes, chronic heart failure, Parkinson's disease, psychiatric disorders, cirrhosis, etc. Data also exists about its prevalence in general population. Methods employed ranged questionnaires^{5,6,8–10,12–14,16,18–21,24,25,29–32,34,38–40,42,44,47,48,51,52,55,56,59,60,63,64,67,70–75,80,82,84,87,88,90–97,99–} from

¹⁰⁴, home testing to overnight sleep studies^{34,49,51,52,55,58-66,68,69,98,99}. In some studies, screening using questionnaires was done followed by polysomnography^{10,26,48,51,52,59,64,99}. Our analysis of 51studies available on India data showed a prevalence of 37.4% (95% CI: 27.8% to 48.2%, I²=98.3%). There were a high heterogeneity of the study results due to different age groups, health status level i.e., healthy, and patient groups, different study designs, methodology and even outcome parameters. The prevalence varied from 9.2% to 22.5% in general population. A similar result of prevalence of 11% was reported in healthy Indian population by TM Suri et al¹¹¹ in a systematic review conducted by them. A relatively higher prevalence of 48.1% was seen in specific patient groups in our study. Considering a sample of 17706 of a heterogeneous group, the least prevalence was in a study done using baseline questionnaires on a healthy population which was also 3%! In a questionnaire based study in Morocco, 13.9% had witnessed apnea¹¹². OSA prevalence studies worldwide showed a wide variability in the type of outcome and instrument used. Studies also utilised screening questionnaires followed by sleep studies^{52,113,114}. Questionnaire based studies in Thailand reported 58.5% snoring and 4.8% prevalence of snoring and OSA respectively¹¹⁴. In some studies, an increased association with BMI and Adjusted neck circumference was found.

Needless to say, that the disease burden exists at all age groups and hence a comprehensive strategy will benefit not only in overcoming the specific problem but will also help avert the onset of co morbidities like cardiovascular disorder, stroke, metabolic syndrome, etc. which are often associated with OSA. A study done in 2016 showed that the older population who were having witnessed apnea had more severe OSA¹⁰². Here is the need to prevent the build-up of the disease for more productive and disease-free life later. Strategies aiming on prevention, regular screening, and treatment of the affected population even in its milder forms might reduce this burden. An analysis of prevalence of snoring itself is alarming by its presence in 6-12-year-olds, medical undergraduates and in population-based studies. At the first place why one should be snoring as a child or young adult? Possible reason might be a relative lack of awareness amongst the parents and young adults. Also at

It is made available under a CC-BY-ND 4.0 International license .

the primary care level, even if the patient does complain about snoring, there is lack of availability of what to do in the form of guidelines at the National level. Hence awareness campaigns at schools and colleges and empowering our primary care with standard guidelines is the need of the day.

After the COVID pandemic, sleep management probably does not remain the domain of a sleep expert alone but contribution from every healthcare professional is required. Enhancing sleep education in healthcare curriculum and ensuring that the referral systems are developed for professional handling of the disorder is required.

Excessive daytime sleepiness (EDS) also remained an important symptom to be analysed because of the repercussions of the symptom of safety issues at work, health and economy of the society and hence was also taken separately for subgroup analysis. EDS was found to be associated with OSA, in insomniacs and in RLS patients. Various instruments like surveys, face to face interviews were used to study prevalence. RLS with insomnia was also reported by Kumar et al in Parkinson's disease patients²⁸ and RLS with OSA was reported in pulmonary tuberculosis⁹⁰. Using questionnaires, Amyotrophic Lateral Sclerosis patients were found to have insomnia in 65%, snoring in 45% and 5% had a risk of RLS¹⁹. This makes it an important matter of concern because of the impact of excessive daytime sleepiness on the productivity of the individual, and on safety and health. The presenteeism of an employee can have disastrous consequences. Secondly another point which drives home is the very instruments which help in the calculation of excessive daytime sleepiness; how is it labelled excessive, what are the factors associated with EDS and Is there any role in having a task force to dwell on this concept further since it has repercussions on both health and economy of the society? At a national level, there is a felt need to develop frameworks to promote sleep health by promotive, preventive, curative, and rehabilitative mechanisms. National societies have been doing education programs in sleep for medical colleges, doctors, and technicians. There have been efforts also to raise awareness amongst school children by holding symposiums for school children and for school counsellors. Overall health enhancement using comprehensive public health programs aiming

at good sleep promotion may be required.

Though our study has been an extensive review of all the studies relevant to the objective but there are certain limitations. Exact prevalence in the population is still not clear due to a high heterogeneity of the data. Hence, a task force to develop prevalence studies may be deployed for insomnia and OSA. Awareness material developed by sleep experts may be put up on national portals for free access to population.

To conclude, India has a health burden of sleep disorders, and a need to develop strategies to manage them early is imminent. The need to develop standardised protocols to study prevalence of various sleep disorders on a national level remains pivotal.

Legends of Figures

Figure 1: Flow chart of studies screened and included Figure 2: Forest plot of subgroup analysis- Insomnia Figure 3: Forest plot of subgroup analysis- Obstructive Sleep Apnea Figure 4: Forest plot of subgroup analysis- Restless Leg Syndrome Supplementary material S1: Detailed search strategy Supplementary Figures 1: Forest Plots of pooled insomnia data Supplementary Figures 2: Forest Plots of pooled obstructive sleep apnea data Supplementary Figures 3: Forest Plots of pooled Restless Leg Syndrome data Supplementary Figures 4: Forest Plots of pooled data of Excessive Daytime Sleepiness

References

1. Datta K, Tripathi M. Sleep and Covid-19. *Neurology India* 2021; 69: 26.

2. Forrester N. How better sleep can improve productivity. *Nature* 2023; 619: 659–661.

- 3. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021; n71.
- 4. Munn Z, Moola S, Riitano D, et al. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. *Int J Health Policy Manag* 2014; 3: 123–128.
- 5. Aggarwal HK, Jain D, Dabas G, et al. Prevalence of Depression, Anxiety and Insomnia in Chronic Kidney Disease Patients and their Co-Relation with the Demographic Variables. *Pril* (*Makedon Akad Nauk Umet Odd Med Nauki*) 2017; 38: 35–44.
- 6. Ahmad S, Gupta M, Gupta R, et al. Prevalence and correlates of insomnia and obstructive sleep apnea in chronic kidney disease. *N Am J Med Sci* 2013; 5: 641–646.
- 7. Jain A, Sharmab R, Yadavc N, et al. Quality of life and its association with insomnia and clinical variables in type 2 diabetes. *J Egypt Public Health Assoc* 2017; 92: 52–59.
- 8. Dahale AB, Jaisoorya TS, Manoj L, et al. Insomnia Among Elderly Primary Care Patients in India. *Prim Care Companion CNS Disord* 2020; 22: 19m02581.
- 9. Uvais NA, Nalakath MJ, Jose K. Facing COVID-19: Psychological Impacts on Hospital Staff in a Tertiary Care Private Hospital in India. *Prim Care Companion CNS Disord* 2021; 23: 20m02843.
- 10. Panda S, Taly AB, Sinha S, et al. Sleep-related disorders among a healthy population in South India. *Neurol India* 2012; 60: 68–74.
- 11. Shivashankar R, Kondal D, Ali MK, et al. Associations of Sleep Duration and Disturbances With Hypertension in Metropolitan Cities of Delhi, Chennai, and Karachi in South Asia: Cross-Sectional Analysis of the CARRS Study. *Sleep* 2017; 40: zsx119.
- 12. Katyayan A, Yadav V, Mishra P, et al. Computer Algorithms in Assessment of Obstructive Sleep Apnoea Syndrome and Its Application in Estimating Prevalence of Sleep Related Disorders in Population. *Indian J Otolaryngol Head Neck Surg* 2019; 71: 352–359.
- 13. Dewan H, Abdul NS, Mandal NB, et al. Sleep Disorders among Dental Students: An Original Research. *J Pharm Bioallied Sci* 2022; 14: S275–S276.
- 14. Jain A, Sharma R, Gaur KL, et al. Study of internet addiction and its association with depression and insomnia in university students. *J Family Med Prim Care* 2020; 9: 1700–1706.
- 15. Kumar N, Goyal A, Hussain A, et al. SARS-CoV-2 infection is associated with increased odds of insomnia, RLS and dream enactment behavior. *Indian J Psychiatry* 2022; 64: 354–363.
- 16. Khan IW, Juyal R, Shikha D, et al. Generalized Anxiety disorder but not depression is associated with insomnia: a population based study. *Sleep Sci* 2018; 11: 166–173.
- 17. Sreedharan SE, Agrawal P, Rajith RS, et al. Clinical and polysomnographic predictors of severe obstructive sleep apnea in the South Indian population. *Ann Indian Acad Neurol* 2016; 19: 216–220.
- 18. Jaisoorya TS, Dahale AB, Sunil KG, et al. Insomnia in primary care-a study from India. *Sleep Health* 2018; 4: 63–67.
- 19. Panda S, Gourie-Devi M, Sharma A. Sleep disorders in amyotrophic lateral sclerosis: A questionnaire-based study from India. *Neurol India* 2018; 66: 700–708.
- 20. Mondal G, Bajaj V, Goyal BL, et al. Prevalence of sleep disorders and severity of insomnia in psychiatric outpatients attending a tertiary level mental health care facility in Punjab, India. *Asian J Psychiatr* 2018; 32: 8–13.
- 21. Jain A, Mittal RS, Sharma A, et al. Study of insomnia and associated factors in traumatic brain injury. *Asian J Psychiatr* 2014; 8: 99–103.
- 22. Rai M, Rustagi T, Rustagi S, et al. Depression, insomnia and sleep apnea in patients on maintenance hemodialysis. *Indian J Nephrol* 2011; 21: 223–229.
- 23. Naik S, Haldar SN, Soneja M, et al. Post COVID-19 sequelae: A prospective observational study from Northern India. *Drug Discov Ther* 2021; 15: 254–260.
- 24. Tomar S, Sharma A, Jain A, et al. Study of Fatigue and Associated Factors in Traumatic Brain Injury and Its Correlation with Insomnia and Depression. *Asian J Neurosurg* 2018; 13: 1061– 1065.

- 25. Kumar A, Gupta R, Gupta R. Prevalence and correlates of poor sleep quality in chronic liver disease patients. *Sleep Sci* 2021; 14: 266–272.
- 26. Devaraj U, Ramachandran P, D[®]souza G. Obstructive Sleep Apnea in Patients with Myocardial Infarction: Experience from a Tertiary Care Hospital in South India. *Heart India* 2013; 1: 12.
- 27. Ramakrishnan N, Ranganathan L, Isabel M, et al. Sleep Medicine in India: Are Patients Better Informed Than Referral Physicians? *Chest* 2012; 142: 1069A.
- 28. Kumar N, Gupta R, Kumar H, et al. Impact of home confinement during COVID-19 pandemic on sleep parameters in Parkinson's disease. *Sleep Med* 2021; 77: 15–22.
- 29. Jasti DB, Mallipeddi S, Apparao A, et al. Quality of Sleep and Sleep Disorders in Patients with Parkinsonism: A Polysomnography Based Study from Rural South India. *J Neurosci Rural Pract* 2018; 9: 92–99.
- 30. Kishan S, Rao MS, Ramachandran P, et al. Prevalence and Patterns of Sleep-Disordered Breathing in Indian Heart Failure Population. *Pulm Med* 2021; 2021: 9978906.
- 31. Shanmugam GV, Abraham G, Mathew M, et al. Obstructive sleep apnea in non-dialysis chronic kidney disease patients. *Ren Fail* 2015; 37: 214–218.
- 32. Singh A, Chaudhary SC, Gupta KK, et al. Prevalence of obstructive sleep apnea in diabetic patients. *Ann Afr Med* 2021; 20: 206–211.
- 33. Viswanathan V, Ramalingam IP, Ramakrishnan N. High Prevalence of Obstructive Sleep Apnea among People with Type 2 Diabetes Mellitus in a Tertiary Care Center. *J Assoc Physicians India* 2017; 65: 38–42.
- 34. Malik JA, Masoodi SR, Shoib S. Obstructive sleep apnea in Type 2 diabetes and impact of continuous positive airway pressure therapy on glycemic control. *Indian J Endocrinol Metab* 2017; 21: 106–112.
- 35. Goyal A, Pakhare AP, Bhatt GC, et al. Association of pediatric obstructive sleep apnea with poor academic performance: A school-based study from India. *Lung India* 2018; 35: 132–136.
- 36. Sharma SK, Sreenivas V. Are metabolic syndrome, obstructive sleep apnoea & syndrome Z sequential?--a hypothesis. *Indian J Med Res* 2010; 131: 455–458.
- 37. Sharma SK, Reddy EV, Sharma A, et al. Prevalence and risk factors of syndrome Z in urban Indians. *Sleep Med* 2010; 11: 562–568.
- 38. Shailly Saxena DG JM Joshi. Prevalence of symptoms and risk of sleep disordered breathing in Mumbai (India). *Indian Journal of Sleep Medicine (IJSM)* 2006; Vol. 1, No. 1, 2006: 5.
- 39. Joseph N, Shreeshaina null, Loliem SSB, et al. An assessment of risks associated with obstructive sleep apnea and its relationship with adverse health outcomes among pregnant women. A multi-hospital based study. *Adv Respir Med* 2020; 88: 327–334.
- 40. Choudhury A, Routray D, Swain S, et al. Prevalence and risk factors of people at-risk of obstructive sleep apnea in a rural community of Odisha, India: a community based cross-sectional study. *Sleep Med* 2019; 58: 42–47.
- 41. Pinto A, Devaraj U, Ramachandran P, et al. Obstructive Sleep Apnea in a rural population in South India: Feasibility of health care workers to administer level III sleep study. *Lung India* 2018; 35: 301.
- 42. Aggarwal K, Akhtar N, Mallick H. Sleep quality mediates the relationship between risk of obstructive sleep apnea and acute stress in young adults. *J Physiol Pharmacol*; 72. Epub ahead of print February 2021. DOI: 10.26402/jpp.2021.1.11.
- Agrawal S, Sharma SK, Sreenivas V, et al. Prevalence of metabolic syndrome in a north Indian hospital-based population with obstructive sleep apnoea. *Indian J Med Res* 2011; 134: 639– 644.
- 44. Surya Kant Neha Kapoor, Ajay Kumar Verma, SK Verma, RAS Kushwaha, Santosh Kumar, Rajiv Garg, Ved Prakash, Anuj Kumar Pandey. Psychiatric Manifestations in the Patients of Obstructive Sleep Apnea at Tertiary Care Center of Northern India. *Indian Journal of Respiratory Care* 2019; Volume 8: 3.

- 45. Anand V, Shukla G, Gupta N, et al. Association of Sleep Apnea With Development and Behavior in Down Syndrome: A Prospective Clinical and Polysomnographic Study. *Pediatr Neurol* 2021; 116: 7–13.
- 46. Nanaware SKV, Gothi D, Joshi JM. Sleep apnea. Indian J Pediatr 2006; 73: 597–601.
- 47. Kaswan R, Bansal R, Katoch D, et al. Screening for obstructive sleep apnea in a diabetic retinopathy clinic in a tertiary care center. *Indian J Ophthalmol* 2021; 69: 3349–3357.
- Devaraj U, Rajagopala S, Kumar A, et al. Undiagnosed Obstructive Sleep Apnea and Postoperative Outcomes: A Prospective Observational Study. *Respiration* 2017; 94: 18–25.
- 49. Lorenzoni G, Azzolina D, Sethi G, et al. Identifying Pathways Mediating Obstructive Sleep Apnea and Obesity in Indian Children. *Indian J Pediatr* 2019; 86: 15–19.
- 50. Dixit R, Verma S, Gupta N, et al. Obstructive Sleep Apnea in Bronchial Asthma Patients: Assessment of Prevalence and Risk Factors. *J Assoc Physicians India* 2018; 66: 45–48.
- 51. Tripathi A, Bagchi S, Singh J, et al. Incidence of Obstructive Sleep Apnea in Elderly Edentulous Patients and the Possible Correlation of Serum Serotonin and Apnea-Hypopnea Index. *J Prosthodont* 2019; 28: e843–e848.
- 52. Reddy EV, Kadhiravan T, Mishra HK, et al. Prevalence and risk factors of obstructive sleep apnea among middle-aged urban Indians: a community-based study. *Sleep Med* 2009; 10: 913–918.
- 53. Mahajan SK, Verma BS, Sharma S, et al. Prevalence of obstructive sleep apnoea among patients admitted with acute coronary syndrome in a hill state of northern India. *Natl Med J India* 2021; 34: 337–340.
- 54. Prasad KT, Sehgal IS, Agarwal R, et al. Assessing the likelihood of obstructive sleep apnea: a comparison of nine screening questionnaires. *Sleep Breath* 2017; 21: 909–917.
- 55. Kamgo T, Spalgais S, Kumar R. Prevalence and Profile of Obstructive Sleep Apnea in Patients with Interstitial Lung Diseases of North India. *J Assoc Physicians India* 2022; 70: 11–12.
- 56. Kumar R, Nagar D, Mallick A, et al. Obstructive sleep apnoea and atopy among middle aged chronic obstructive pulmonary disease and bronchial asthma patients. *J Assoc Physicians India* 2013; 61: 615–618.
- 57. Sehgal IS, Dhooria S, Virdi S, et al. A Study to Evaluate the Effect of Body Mass Index on the Prevalence of Sleep-Disordered Breathing in Adult Patients with Metabolic Syndrome. *Indian J Chest Dis Allied Sci* 2016; 58: 177–181.
- 58. Nair SC, Arjun P, Azeez AK, et al. Proportion of rapid eye movement sleep related obstructive sleep apnea (REM related OSA) in patients with sleep disordered breathing: A cross sectional study. *Lung India* 2022; 39: 38–43.
- 59. Priyadarshini P, Singh VP, Aggarwal S, et al. Impact of bariatric surgery on obstructive sleep apnoea-hypopnea syndrome in morbidly obese patients. *J Minim Access Surg* 2017; 13: 291–295.
- 60. Nattusami L, Hadda V, Khilnani GC, et al. Co-existing obstructive sleep apnea among patients with chronic obstructive pulmonary disease. *Lung India* 2021; 38: 12–17.
- 61. Shoib S, Malik JA, Masoodi S. Depression as a Manifestation of Obstructive Sleep Apnea. J Neurosci Rural Pract 2017; 8: 346–351.
- 62. Utpat K, Gupta A, Desai U, et al. Prevalence and profile of sleep-disordered breathing and obstructive sleep apnea in patients with interstitial lung disease at the pulmonary medicine department of a tertiary care hospital in Mumbai. *Lung India* 2020; 37: 415–420.
- 63. Bhaisare S, Gupta R, Saini J, et al. Sleep-Disordered Breathing in Newly Diagnosed Patients of Lung Cancer. *Cureus* 2022; 14: e25230.
- 64. Agrawal S, Gupta R, Lahan V, et al. Prevalence of obstructive sleep apnea in surgical patients presenting to a tertiary care teaching hospital in India: A preliminary study. *Saudi J Anaesth* 2013; 7: 155–159.
- 65. Kaul S, Meena AK, Murthy JM. Sleep apnoea syndromes^D: clinical and polysomnographic study. *Neurol India* 2001; 49: 47–50.

- 66. Jain A, Sahni JK. Polysomnographic studies in children undergoing adenoidectomy and/or tonsillectomy. *J Laryngol Otol* 2002; 116: 711–715.
- 67. Ghosh P, Sapna Varma NK, Ajith VV, et al. Epidemiological study on prevalent risk factors and craniofacial skeletal patterns in obstructive sleep apnea among South Indian population. *Indian J Dent Res* 2020; 31: 784–790.
- 68. Tripathi A, Bagchi S, Singh J, et al. Lifestyle and Occupational Stress: A Potential Risk Factor for Obstructive Sleep Apnea in Nonobese Male Subjects. *J Prosthodont* 2018; 27: 716–721.
- 69. Singh P, Chopra M, Vardhan V. Detection of obstructive sleep apnea in young patients suffering from coronary artery disease by performing portable polysomnography studies. *Med J Armed Forces India* 2022; 78: 394–399.
- 70. Dubey A, Bajaj DK, Mishra A, et al. Obstructive sleep apnea risk for driving license applicants in India A community based study. *Int J Occup Med Environ Health* 2018; 31: 25–36.
- 71. Mathiyalagen P, Govindasamy V, Rajagopal A, et al. Magnitude and Determinants of Patients at Risk of Developing Obstructive Sleep Apnea in a Non-Communicable Disease Clinic. *Medicina (Kaunas)* 2019; 55: 391.
- 72. Kumar M, Kainth S, Kumar S, et al. Prevalence of and Factors Associated with Sleep-Wake Abnormalities in Patients with Cirrhosis. *J Clin Exp Hepatol* 2021; 11: 453–465.
- 73. Rohatgi R, Gupta R, Ray R, et al. Is obstructive sleep apnea the missing link between metabolic syndrome and second-generation antipsychotics: Preliminary study. *Indian J Psychiatry* 2018; 60: 478–484.
- 74. Ahmad L, Kapoor P, Bhaskar S, et al. Screening of obstructive sleep apnea (OSA) risk in adolescent population and study of association with craniofacial and upper airway morphology. *J Oral Biol Craniofac Res* 2020; 10: 807–813.
- 75. Selvaraj VK, Keshavamurthy B. Sleep Dysfunction in Parkinson's Disease. *J Clin Diagn Res* 2016; 10: OC09-12.
- 76. Bhagawati J, Kumar S, Agrawal AK, et al. Impact of different stages of chronic kidney disease on the severity of Willis-Ekbom disease. *J Family Med Prim Care* 2019; 8: 432–436.
- 77. Pinheiro T, Thomas T, Devaraj U, et al. Prevalence of restless legs syndrome and quality of sleep in type 2 diabetics. *J Diabetes Complications* 2020; 34: 107727.
- 78. Gupta R, Ulfberg J, Allen RP, et al. High prevalence of restless legs syndrome/Willis Ekbom Disease (RLS/WED) among people living at high altitude in the Indian Himalaya. *Sleep Med* 2017; 35: 7–11.
- 79. Rangarajan S, Rangarajan S, D'Souza GA. Restless legs syndrome in an Indian urban population. *Sleep Med* 2007; 9: 88–93.
- 80. Bellur S, Thota SS, Raj JP, et al. Prevalence and Predictors of Restless Leg Syndrome in Adolescents and Young Adults of Bengaluru City, India: A Cross-Sectional Study. *Neuroepidemiology* 2022; 56: 298–305.
- 81. Joseph N, Suresh S, Prasad S, et al. Study on restless leg syndrome and its relationship with quality of sleep among the general population of India. 2022; 244412 Bytes.
- 82. Gupta R, Lahan V, Goel D. Restless Legs Syndrome: a common disorder, but rarely diagnosed and barely treated--an Indian experience. *Sleep Med* 2012; 13: 838–841.
- 83. Halkurike-Jayadevappa VK, Goel A, Paliwal VK, et al. Liver disease severity is poorly related to the presence of restless leg syndrome in patients with cirrhosis. *Neurol India* 2019; 67: 732–737.
- 84. Bhowmik D, Bhatia M, Gupta S, et al. Restless legs syndrome in hemodialysis patients in India: a case controlled study. *Sleep Med* 2003; 4: 143–146.
- 85. Gupta R, Ali R, Ray R. Willis-Ekbom disease/restless legs syndrome in patients with opioid withdrawal. *Sleep Med* 2018; 45: 39–43.
- 86. Bathla N, Ahmad S, Gupta R, et al. Prevalence and correlates of Willis-Ekbom's disease/restless legs syndrome in patients undergoing hemodialysis. *Saudi J Kidney Dis Transpl* 2016; 27: 685–691.

- 87. Gupta A, Shukla G, Mohammed A, et al. Restless legs syndrome, a predictor of subcortical stroke: a prospective study in 346 stroke patients. *Sleep Med* 2017; 29: 61–67.
- 88. Velu S, Rajagopalan A, Arunachalam J, et al. Subjective Assessment of Sleep Quality and Excessive Daytime Sleepiness in Conventional Hemodialysis Population: A Single-Center Experience. *Int J Nephrol Renovasc Dis* 2022; 15: 103–114.
- 89. Gupta R, Lahan V, Goel D. Prevalence of restless leg syndrome in subjects with depressive disorder. *Indian J Psychiatry* 2013; 55: 70–73.
- 90. Raj JP, Ramesh N. Quality of sleep among patients diagnosed with tuberculosis-a crosssectional study. *Sleep Breath* 2021; 25: 1369–1377.
- 91. Raj JP, Hansdak SG, Naik D, et al. SLEep among diabetic patients and their GlycaEmic control (SLEDGE): A pilot observational study. *J Diabetes* 2019; 11: 122–128.
- 92. Kaur G, Singh A. Excessive daytime sleepiness and its pattern among Indian college students. *Sleep Med* 2017; 29: 23–28.
- Singh A, Prasad R, Garg R, et al. A study to estimate prevalence and risk factors of Obstructive Sleep Apnoea Syndrome in a semi-urban Indian population. *Monaldi Arch Chest Dis* 2017; 87: 773.
- 94. Roopa M, Deepa M, Indulekha K, et al. Prevalence of sleep abnormalities and their association with metabolic syndrome among Asian Indians: Chennai Urban Rural Epidemiology Study (CURES-67). *J Diabetes Sci Technol* 2010; 4: 1524–1531.
- Krishnaswamy UM, Chhabria MS, Rao A. Excessive sleepiness, sleep hygiene, and coping strategies among night bus drivers: A cross-sectional study. *Indian J Occup Environ Med* 2016; 20: 84–87.
- 96. Ghante A, Raj JP, Krishna B, et al. Prevalence and predictors of sleep deprivation and poor sleep quality and their associated perinatal outcomes during the third trimester of pregnancy. J Taibah Univ Med Sci 2021; 16: 359–364.
- 97. Dey R, Dutta S, Bhandari SS. Sleep Quality and Daytime Sleepiness among the Clinicians Working in a Tertiary Care Center in Sikkim, India. *Indian J Psychol Med* 2020; 42: 141–146.
- 98. Venkatnarayan K, Krishnaswamy UM, Rajamuri NKR, et al. Identifying phenotypes of obstructive sleep apnea using cluster analysis. *Sleep Breath*. Epub ahead of print 15 July 2022. DOI: 10.1007/s11325-022-02683-2.
- Shoib S, Ullah I, Nagendrappa S, et al. Prevalence of mental illness in patients with obstructive sleep apnea A cross-sectional study from Kashmir, India. Ann Med Surg (Lond) 2022; 80: 104056.
- 100. Samanta J, Dhiman RK, Khatri A, et al. Correlation between degree and quality of sleep disturbance and the level of neuropsychiatric impairment in patients with liver cirrhosis. *Metab Brain Dis* 2013; 28: 249–259.
- 101. Sharma P, Dikshit R, Shah N, et al. Excessive Daytime Sleepiness in Schizophrenia: A Naturalistic Clinical Study. *J Clin Diagn Res* 2016; 10: VC06–VC08.
- 102. Sreedharan SE, Mitta N, Unnikrishnan KP, et al. Preoperative screening for obstructive sleep apnea in cardiovascular patients How useful is STOP-BANG questionnaire in the Indian context? *Ann Card Anaesth* 2021; 24: 308–312.
- 103. Mahajan S, Joshwa B, Khakha D. Fatigue and depression and sleep problems among hemodialysis patients in a tertiary care center. *Saudi J Kidney Dis Transpl* 2012; 23: 729.
- 104. Kadam Y, Patil S, Waghachavare V, Gore A. Influence of Various Lifestyle and Psychosocial Factors on Sleep Disturbances among the College Students: A Cross-Sectional Study from an Urban Area of India. Journal of Krishna Institute of Medical Sciences University 2016; 5: 51–60.
- 105. Das H, Moran AE, Pathni AK, et al. Cost-Effectiveness of Improved Hypertension Management in India through Increased Treatment Coverage and Adherence: A Mathematical Modeling Study. *gh* 2021; 16: 37.
- 106. Bansode B, Jungari DS. Economic burden of diabetic patients in India: A review. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2019; 13: 2469–2472.

It is made available under a CC-BY-ND 4.0 International license .

- 107. Datta K, Shrivastava D (eds). *Making Sense of Sleep Medicine: a hands-on guide*. First edition. Boca Raton: CRC Press, 2023.
- Richter SA, Ferraz-Rodrigues C, Schilling LB, et al. Effects of the COVID-19 pandemic on sleep quality in children and adolescents: A systematic review and meta-analysis. J Sleep Res 2023; 32: e13720.
- 109. Sharma M, Aggarwal S, Madaan P, et al. Impact of COVID-19 pandemic on sleep in children and adolescents: a systematic review and meta-analysis. *Sleep Med* 2021; 84: 259–267.
- 110. Arora M, Datta K, Singh SP, et al. Sleep Loss in School Children: Fact or Myth. *Indian J Physiol Pharmacol* 2019; 63: 105–112.
- 111. Suri TM, Ghosh T, Mittal S, et al. Systematic review and meta-analysis of the prevalence of obstructive sleep apnea in Indian adults. *Sleep Medicine Reviews* 2023; 71: 101829.
- 112. Jniene A, El Ftouh M, Elfassy Fihry MT. Study of the prevalence of sleep apnea syndrome's symptoms in a Moroccan population. *Tuberk Toraks* 2012; 108–113.
- 113. Sharma SK, Kumpawat S, Banga A, et al. Prevalence and Risk Factors of Obstructive Sleep Apnea Syndrome in a Population of Delhi, India. *Chest* 2006; 130: 149–156.
- 114. Pilakasiri A, Mahakit P. Prospective study of the prevalence and co-morbidities of

obstructive sleep apnea in active-duty army personnel in the three southernmost provinces of Thailand using questionnaire screening. *Military Med Res* 2018; 5: 39.

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perp

Author	Events	Total		Proportion	95%-CI	Weight
Subarous = Dotionto			:			
H K Aggarwal et al. 2017	173	200		0.86	[0 81. 0 01]	1 0%
S Abread et al. 2013	37	200		0.00	[0.01, 0.91]	4.0%
lain et al. 2017	31	50		0.50	[0.20, 0.40]	3.0%
Dahale et al. 2020	186	1574		0.02	[0.47, 0.73]	1 1%
Sreedbaran et al 2016	18	157		0.12	[0.10, 0.14]	4.1%
laisoorva et al. 2018	330	7017		0.12	[0.07, 0.10]	4.0%
Panda et al 2018	26	40	—	0.00	[0.48: 0.79]	3.9%
Mondal et al 2018	391	500		0.00	[0.74:0.82]	4.0%
Jain et al 2014	82	204		0.40	[0.33: 0.47]	4 0%
Rai et al., 2011	42	69		0.61	[0.48: 0.72]	4.0%
Naik et al. 2021	17	1234	•	0.01	[0.01: 0.02]	4.0%
Tomar et al., 2018	49	100		0.49	[0.39; 0.59]	4.0%
A. Kumar et al., 2021	26	131		0.20	[0.13; 0.28]	4.0%
Devaraj et al., 2013	14	44		0.32	[0.19; 0.48]	3.9%
Ramakrishnan et al., 2012	794	1765		0.45	[0.43; 0.47]	4.1%
N. Kumar et al., 2021	152	832		0.18	[0.16; 0.21]	4.1%
Jasti et al., 2018	46	168	- -	0.27	[0.21; 0.35]	4.0%
Random effects model		14184		0.32	[0.19; 0.50]	67.8%
Heterogeneity: $I^2 = 99\%$, $\tau^2 =$	2.3559, p	0 = 0				
Subgroup = Healthy						
Uvais et al., 2021	7	347	+	0.02	[0.01; 0.04]	3.8%
Panda et al., 2012	195	1050	F	0.19	[0.16; 0.21]	4.1%
Shivashankar et al., 2017	2215	16287	+	0.14	[0.13; 0.14]	4.1%
Katyayan et al., 2019	87	850		0.10	[0.08; 0.12]	4.0%
Dewan et al., 2022	279	1115		0.25	[0.23; 0.28]	4.1%
Jain et al., 2020	437	954		0.46	[0.43; 0.49]	4.1%
N. Kumar et al., 2022	361	1596	+	0.23	[0.21; 0.25]	4.1%
Khan et al., 2018	175	1700	+	0.10	[0.09; 0.12]	4.1%
Random effects model		23899		0.15	[0.08; 0.27]	32.2%
Heterogeneity: $I^2 = 99\%$, $\tau^2 =$	1.0314, p	0 < 0.01				
Random effects model		38083		0.26	[0.16: 0.38]	100.0%
Prediction interval		_		-	[0.02; 0.88]	
Heterogeneity: $I^2 = 99\%$, $\tau^2 =$	2.0995, p	0 = 0			- / -	
Test for subgroup differences	$\chi_1^2 = 3.56$	8, df = 1	(p = 0.002) 0.4 0.6 0.8			

Subgroup = Healthy Dewan et al., 2018 129 1115 0 0.26 [0.23, 0.29] 2 Solution of the second secon	Author	Events	Total	Proportion	95%-CI	Weight
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Subgroup = Healthy					
Goyal et al., 2018 129 1346 0.10 100	Dewan et al., 2022	290	1115	+ 0.26	[0.23: 0.29]	2.0%
S. K. Sharma & Sreenvas, 2010 24 351 0.07 0.04 0.05 S. K. Sharma et al., 2010 97 365 0.27 0.22 0.03 0.02 0.05 0.27 0.22 0.03 0.02 0.05 0.27 0.22 0.03 0.02 0.05 0.22 0.03 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.07 0.06 0.06 0.05 0.07 0.06 0.06 0.05 0.07 0.06 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.06 0.08 0.06 0.08 0.08	Goval et al., 2018	129	1346	+ 0.10	[0.08: 0.11]	2.0%
S. K. Sharma et al., 2010 97 365 0.22 0.22 0.31 Shally Saxena, 2006 41 1188 0.03 0.022 0.31 Joseph et al., 2020 21 14 0.03 0.022 0.31 Choudhury et al., 2019 50 200 0.25 0.19 0.22 0.615 Choudhury et al., 2019 50 200 0.25 0.15 0.22 0.15 0.22 0.15 0.22 0.15 0.22 0.15 0.22 0.21 0.24 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0.20 0.22 0.21 0.24 0.25 0.15 0.20 0.71 0.06 0.09 20.09 0.22 0.21 0.24 0.25 0.15 0.23 0.24 0.25 0.15 0.23 0.27 0.15 0.31 1.24 0.27 0.15 0.31 1.24 0.27 0.15 0.31 1.24 0.27 0.15 0.31 1.24 0.27 0.15 0.31 1.24 0.27 0.1	S K Sharma & Sreenivas 2010	24	351	0.07	[0.04; 0.10]	2.0%
Shaily Saxena 2006 41 1188 0.03 0.022 0.051 Joseph et al., 2020 21 214 0.10 0.066 0.015 Choudhury et al., 2019 50 200 0.15 0.066 0.15 K. Aggarwal et al., 2021 7.3 493 0.09 0.066 0.12 Microsoft et al., 2018 23 244 0.09 0.066 0.12 Microsoft et al., 2020 The mode matter wall been much been trans. 0.046 0.066 0.09 20.21 Microsoft et al., 2010 The mode matter wall been trans. 0.071 0.066 0.09 20.22 0.025 20.22 0.027 23 Random effects model 9665 9665 0.011 0.090 0.023 22 0.071 0.066 0.09 22 2.21 0.15 0.031 2 Participation et al., 2011 17 69 0.25 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.15 0.061 2.21 0.16 0.061 <	S K Sharma et al 2010	97	365		[0.22, 0.31]	2.0%
Joseph et al., 2020 21 214 210 010 0068 0.15 2 Choudhury et al., 2019 50 200 0.25 0.15 0.26 0.15 0.25 0.16 0.06 0.12 2 Pinto et al., 2018 23 234 93 0.25 0.15 0.26 0.16 0.06 0.12 2 0.16 0.07 0.06 0.07 </td <td>Shailly Saxena 2006</td> <td>41</td> <td>1188</td> <td>+ 0.03</td> <td>[0.22, 0.01]</td> <td>2.0%</td>	Shailly Saxena 2006	41	1188	+ 0.03	[0.22, 0.01]	2.0%
Chouchury et al., 2019 Chouchury et al., 2018 Chouchury et al., 2019 Chouchury et al., 2011 Chouchury et al., 2015 Chouchury et al., 2017 Chouchury et al., 2017 Chouch	losenh et al 2020	21	214		[0.02, 0.00]	2.0%
Derivatively (1, 2016) Color (1, 2017) Color (1, 2017) Color (1, 2017) Difference (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Difference (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017) Color (1, 2017)	Choudbury et al. 2019	50	200		[0.00, 0.10] [0.10· 0.32]	2.0%
K. Aggarwalet al., 2021 73 493 0.15 [0.12, 0.18] 2.15 0.15 [0.12, 0.18] 2.15 0.15 [0.12, 0.18] 2.15 0.15 [0.12, 0.18] 2.15 0.15 [0.13, 0.16] 2.15 0.15 [0.13, 0.16] 2.15 0.15 [0.13, 0.16] 2.15 0.15 [0.13, 0.16] 2.15 0.15 [0.13, 0.27] 2.25 0.15 [0.02, 0.16] 2.15 0.15 [0.02, 0.16] 2.15 0.15 [0.02, 0.16] 2.15 0.15 [0.02, 0.16] 2.15 0.15 [0.02, 0.16] 2.15 0.15 [0.02, 0.16] 2.15 0.15 [0.02, 0.27] 2.15 0.15 [0.02, 0.27] 2.15 0.15 [0.02, 0.27] 2.15 0.15 [0.02, 0.27] 2.15 0.15 [0.02, 0.27] 2.15 0.15 [0.02, 0.27] 2.15 0.15 [0.02, 0.26] 0.15 [0.47, 0.45] 0.47 [0.45, 0.49] 2.15 0.15 [0.47, 0.45] 0.15 [0.47, 0.45] 0.15 [0.47, 0.45] 2.15 0.15 [0.47, 0.45] 2.15 0.15 [0.47, 0.45] 2.15 0.15 [0.43, 0.27] <	Pinto et al. 2018	28	200			2.0%
$ \begin{array}{c} 1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	K Aggarwal et al. 2021	20 73	103	0.03	[0.00, 0.12]	2.0 /0
media approximate and approximate and approximate December 30.0000 the meetabolic approximate frame approxima	K. Ayyarwaret al., 2021	20	493	0.13	[0.12, 0.10]	2.0/0
Bin Reguly grading and solution in the stand grading and solution the stand grading and solution in the stand g	medRxiv preprint doi: https://doi.org/10.1101/2023.	2.29.2330062	4; this vers	ion posted December 30, 2025. The copyright holder for this 0.04	[0.49, 0.70]	2.0%
Ghösh et al., 2018 125 542 0.23 10.20, 27 2 Random effects model 9655 9 0.15 0.037 2 Subgroups P atteints 8 9 0.25 0.15 0.037 2 Subgroups P atteints 8 0.25 0.25 0.15 0.36 2 State at J., 2013 12 44 0.27 10.20 0.25 0.15 0.36 2 Jasti et al., 2013 12 44 0.25 0.25 0.47 0.48 0.47 10.45 0.47 10.45 0.47 10.45 0.47 10.45 0.47 10.45 0.47 10.45 0.49 0.47 10.45 0.47 10.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.45 0.47 0.47 0.45 0.47 0.47 0.45 0.46 0.47 0.47	Charles at al. 2020					2.0%
Dubey et al., 2018 tetrageneity: $l^2 = 97\%$, $\tau^2 = 0.9117$, $p < 0.01$ Subgroup = Patients Rai et al., 2011 1769 Devraig et al., 2013 12 44 Ramakrishnan et al., 2012 830 1765 Shanmugam et al., 2012 82 149 A Singh et al., 2013 82 149 A Singh et al., 2014 82 149 A Singh et al., 2017 48 203 Malk et al., 2017 48 203 Malk et al., 2011 187 272 Surya Kanl, 2019 44 48 Anand et al., 2021 18 362 Dixit et al., 2017 70 182 Dixit et al., 2017 70 182 Dixit et al., 2013 42 44 Ramaware et al., 2017 71 59 S K. Mahajan et al., 2017 70 182 Dixit et al., 2017 71 59 S K. Mahajan et al., 2017 71 70 182 Dixit et al., 2018 72 350 S K. Mahajan et al., 2021 83 350 S K. Mahajan et al., 2021 84 40 S K. Mahajan et al., 2021 84 40 S K. Mahajan et al., 2021 85 40 S K. Mahajan et al., 2021 84 40 S K. Mahajan et al., 2021 84 40 S K. Mahajan et al., 2021 84 40 S K. Mahajan et al., 2021 85 60 S K. Mahajan et al., 2021 85 60 S K. Mahajan et al., 2021 84 100 S K. Mahajan et al., 2021 84 100 S K. Mahajan et al., 2021 85 60 S K. Mahajan et al., 2021 84 100 S K. Mahajan et al., 2021 84 100 Matikyalagen et al., 2018 75 80 Agrawal et al., 2017 157 80 C 20 (0.83, 0.71] 22 Priyadarshini et al., 2017 164 210 C 20 (0.83, 0.71] 22 Priyadarshini et al., 2017 165 70 S C 20 (0.72, 0.83] 20 C 27 (0.73, 0.75] 70 S C 27 (0.74, 0.87) 22 S C 20 (0.72, 0.83] 70 S C 20 (0.22, 0.27) 70	GNOSN Et al., 2020 It is made availa	able undefr ອີ(. Children ternational license . 0.07	[0.06; 0.09]	2.0%
Random effects model 9885 0.15 [0.09; 0.23] 24 Heterogeneity: $1^2 = 97\%, \tau^2 = 0.9117, p < 0.01$ 17 69 027 0.15 [0.09; 0.23] 24 Rai et al., 2011 17 69 027 0.15 [0.09; 0.23] 24 Ramakrishnan et al., 2012 830 1765 0.47 0.45; 0.49] 0.47 0.45; 0.49] 0.45; 0.49] 0.45; 0.49] 0.45; 0.49] 0.45; 0.49] 0.45; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49] 0.46; 0.49; 0.49] 0.46; 0.49] 0.46; 0.49; 0.49] 0.46; 0.49; 0.49] 0.46; 0.42; 0.48; 0.31] 0.46; 0.42; 0.48; 0.31] 0.46; 0.52; 0.47; 0.43] 0.46; 0.52; 0.47; 0.43] 0.46; 0.52; 0.47; 0.43] 0.46; 0.52; 0.49] 0.46; 0.52; 0.49] 0.46; 0.52; 0.49] 0.46; 0.52; 0.49] 0.46; 0.52; 0.49] 0.46; 0.52; 0.49] 0.46; 0.52; 0.49] 0.46; 0.52; 0.49] 0.46; 0.52; 0.48] 0.46; 0.52; 0.61] 0.55; 0.03; 0.05] 0.55; 0.03; 0.05] 0.55; 0.03; 0.05] 0.55; 0.03; 0.05] 0.55; 0.03; 0.05] 0.55; 0.03; 0.16; 0.55; 0.56; 0.56; 0	Dubey et al., 2018	125	542	0.23	[0.20; 0.27]	2.0%
Heterogeneity: $l^* = 97\%$, $r^* = 0.9117$, $p < 0.01$ Subgroup = Patients Rai et al., 2011 1 17 69 Devaraj et al., 2012 830 1765 Jasti et al., 2018 40 168 Shannugam et al., 2012 87 302 A. Singh et al., 2021 82 149 Output the subscript of the subscript	Random effects model		9685	< ○ 0.15	[0.09; 0.23]	26.1%
Subgroup = Patients Rai et al., 2011 17 69 0.25 0.15 ; 036 2 Devaraj et al., 2013 12 44 0.27 0.15 ; 043 1 Jasti et al., 2018 40 168 0.47 0.47 ; 0.45 ; 0.49 2 Jasti et al., 2018 40 168 0.47 0.47 ; 0.45 ; 0.63 2 A Singh et al., 2021 82 149 0.55 0.47 ; 0.63 ; 2 0.24 0.18 ; 0.31 ; 2 A Singh et al., 2021 82 149 0.55 0.47 ; 0.63 ; 2 0.24 0.48 ; 0.30 ; 2 Malik et al., 2017 59 62 0.95 0.47 ; 0.63 ; 2 0.95 0.47 ; 0.63 ; 2 0.24 0.18 ; 0.30 ; 2 Surya Kant, 2019 44 48 0.92 0.80 ; 0.80 ; 0.99 ; 1 0.95 ; 0.67 ; 0.99 ; 1 0.95 ; 0.03 ; 0.08 ; 0.30 ; 0.81 ; 0.56 ; 0.67 ; 0.99 ; 1 0.56 ; 0.03 ; 0.08 ; 0.68 ; 0.05 ; 0.05 ; 0.01 ; 0.15 ; 1 0.56 ; 0.03 ; 0.08 ; 0.68 ; 0.68 ; 1.001 0.56 ; 0.03 ; 0.08 ; 0.68 ; 0.68 ; 1.001 0.56 ; 0.68 ; 0.68 ; 0.68 ; 1.001 0.56 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.68 ; 0.76 ; 0.68	Heterogeneity: $I^2 = 97\%$, $\tau^2 = 0.911$	7, p < 0.0 ²				
Rai et al., 2011 17 69 0.25 (0.15; 0.36) 22 Devaraj et al., 2012 830 1765 0.47 (0.45; 0.43) 1 Jasti et al., 2012 830 1765 0.47 (0.45; 0.44) 0.24 (0.18; 0.31) Kishan et al., 2021 61 103 0.44 0.59 0.24 (0.18; 0.31) Yiswanathan et al., 2017 82 149 0.24 (0.18; 0.31) 0.29 (0.24; 0.34) 0.24 (0.18; 0.30) 2 Malik et al., 2017 59 62 0.55 (0.47; 0.63) 0.25 (0.77; 0.63) 2 0.29 (0.24; 0.34) 0.24 (0.18; 0.30) 2 0.05 (0.37; 0.99) 1 0.44 0.92 (0.80; 0.74) 2 0.05 (0.37; 0.74) 2 0.66 (0.63; 0.74) 2 0.05 (0.37; 0.76) 1	Subgroup = Patients					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rai et al., 2011	17	69	0.25	[0.15; 0.36]	2.0%
Ramakrishnan et al., 2012 830 1765 0.47 0.45; 0.49] 2 Jasti et al., 2018 40 168 0.24 0.16; 0.31] 2 0.29 0.24; 0.34] 2 Shanmugam et al., 2017 82 149 0.55 0.47; 0.63] 2 0.29 0.24; 0.34] 2 Viswanathan et al., 2017 59 62 0.95 0.87; 0.99] 1 0.55 0.47; 0.63] 2 0.24 0.18; 0.30] 2 Maik et al., 2017 59 62 0.95 0.87; 0.99] 1 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.74] 2 0.96 0.83; 0.81; 0.63; 0.60] 1 0.76 0.82; 0.61] 1 0.76	Devaraj et al., 2013	12	44	0.27	[0.15; 0.43]	1.9%
Jasti et al., 2018 40 168	Ramakrishnan et al., 2012	830	1765		[0.45; 0.49]	2.0%
Kishan et al., 2021 61 103 \bullet 0.59 0.49: 0.69 2 Shanmugam et al., 2015 87 302 \bullet 0.29 0.24: 0.34 2 Viswanathan et al., 2017 48 203 \bullet 0.24: 0.34 2 0.29: 0.24: 0.34 2 Malik et al., 2017 59 62 \bullet 0.24: 0.18: 0.30 2 0.85: 0.87: 0.99 1 Agrawal et al., 2011 187 272 \bullet 0.69: 0.83: 0.74 2 0.95: 0.87: 0.99 1 Anand et al., 2021 51 53 \bullet 0.69: 0.87: 1.00 1 Nanaware et al., 2021 18 36 \bullet 0.05: 0.01; 0.15 1 Nanaware et al., 2021 18 36 \bullet 0.05: 0.01; 0.16 1 10.46: 0.83 0.36: 0.07; 0.90 2 0.38: 0.31: 0.46: 0.22: 0.61 2 0.38: 0.31: 0.46: 0.22: 0.61 2 0.46: 0.32: 0.61 2 0.46: 0.32: 0.61 2 0.46: 0.32: 0.61: 2 2 0.46: 0.32: 0.61: 2 2 0.46: 0.32: 0.61: 2 2 0.46: 0.82: 0.61: 2 2 0.46: 0.80: 0.16: 2 2 0.46: 0.80: 0.16: 2 2	Jasti et al., 2018	40	168	0.24	[0.18; 0.31]	2.0%
Shanmugam et al., 2015 87 302 0.29 0.24; 0.34] 2 A. Singh et al., 2021 82 149 0.55 (0.47; 0.63) 2 Viswanathan et al., 2017 48 203 0.24 (0.18; 0.30) 2.25 (0.19; 0.36)	Kishan et al., 2021	61	103	0.59	[0.49; 0.69]	2.0%
A. Singh et al., 2021 Viswanathan et al., 2017 Maik et al., 2017 Agrawal et al., 2011 Nanaware et al., 2011 Nanaware et al., 2021 Nanaware et al., 2017 Nanaware et al., 2017 Nanaware et al., 2017 Nanaware et al., 2021 Nanaware et al., 2022 Nare et al., 2013 Nare et al., 2022 Nair et al., 2024 Nair et al., 2027 Nair et	Shanmuqam et al., 2015	87	302	0.29	[0.24: 0.34]	2.0%
Viswanathan et al., 2017 48 203 0.24 0.18 0.30 2 Maik et al., 2017 59 62 0.95 0.87 0.99 1 Agrawal et al., 2011 187 272 0.95 0.87 0.99 1 Surya Kant, 2019 44 48 0.92 0.80 0.99 1 Nanaware et al., 2021 18 362 0.95 0.05 0.015 1.015 Kaswan et al., 2021 18 362 0.96 0.96 0.87 1.001 1 Dixit et al., 2017 70 182 0.35 0.46 0.05 10.03 0.08 10.79 0.96 0.87 0.001 10.88 0.31 0.46 0.32 0.61 2.015 0.05 10.03 0.08 10.79 0.07 0.05 0.03 0.06 0.05 10.03 0.06 10.79 0.67 0.88 0.31 0.46 0.22 0.61 2.05 0.65 0.67 0.65 0.67 0.68 0.67 0.65 0.67 0.66 0.60 0.76 <t< td=""><td>A. Singh et al., 2021</td><td>82</td><td>149</td><td></td><td>[0.47: 0.63]</td><td>2.0%</td></t<>	A. Singh et al., 2021	82	149		[0.47: 0.63]	2.0%
Malik et al., 2017 59 62 0.95 0.87; 0.99 1 Agrawal et al., 2011 187 272	Viswanathan et al 2017	48	203		$[0 \ 18^{\circ} \ 0 \ 30]$	2.0%
Agrawal et al., 2011 187 272 0.66 0.63 0.74 2 Surya Kant, 2019 44 48	Malik et al. 2017	59	62		[0.87:0.99]	1.8%
Nginda Cat, 2019 44 48 0.92 0.80 0.98 1 Anand et al., 2021 51 53 0.96 0.87 1.00 1 Kaswan et al., 2021 18 36 0.95 0.98	Agrawal et al 2011	187	272		[0.63: 0.74]	2.0%
Chanad et al., 2017 51 53 0.32 0.03, 0.03 0.05 0.001; 0.15 0.05 0.001; 0.15 0.05 0.003; 0.08 2 Devaraj et al., 2017 70 182 0.35 0.46 0.05 0.01; 0.46 2 0.38 0.31; 0.46 2 0.38 0.31; 0.46 2 0.38 0.31; 0.46 2 0.38 0.31; 0.46 2 0.38 0.31; 0.46 2 0.38 0.31; 0.46 2 0.38 0.31; 0.46 2 0.38 0.31; 0.46 2 0.35 0.79; 0.90] 2 2 0.46 0.32; 0.61 2 0.46 0.32; 0.61 2 0.79 0.90] 0.79 0.90] 0.76 0.62; 0.83 2 0.78 0.72; 0.83 2 0.85 0.79; 0.90] 2 0.78 0.62; 0.87 1 0.76 0.62; 0.87 1 0.76 0.62; 0.87 1 0.76 0.62; 0.87 1 0.74; 0.87 2 0.81 0.74; 0.87 2 0.86 0.80; 0.91 2 0.81 0.74; 0.87 2 0.86 0.80; 0.91 2 0.86	Surva Kant 2019	107	/8			1.8%
Nanaware et al., 2021 31 35 6 0.56 [0.37, 1.06] Kaswan et al., 2021 18 362 0.55 [0.01; 0.15] 1 Dixit et al., 2017 70 182 0.65 [0.37, 0.46] 2 Dixit et al., 2018 23 50 0.46 [0.32; 0.61] 2 Tripathi et al., 2017 164 210 0.46 [0.32; 0.61] 2 Yrasad et al., 2021 52 66 0.79 [0.67; 0.88] 2 Yrasad et al., 2017 164 210 0.78 [0.72; 0.83] 2 Kampo et al., 2022 32 41 0.78 [0.62; 0.89] 1 Naitware tal., 2013 45 400 0.11 [0.08; 0.15] 2 Shejal et al., 2017 26 27 0.96 [0.81; 1.00] 1 Natusami et al., 2017 26 27 0.96 [0.81; 1.00] 1 Natusami et al., 2017 157 182 0.86 0.80; 0.91] 2 Utpat et al., 2012 17 30 0.25 0.26 0.25 0.210; 0.38	Anond et al. 2021	51	-+0 53		[0.00, 0.90]	1.0 /0
Nativality and et al., 2000 1 18 362 0.05 10.07, 0.13 0.05 10.03, 0.08 2 Devaraj et al., 2017 70 182 0.38 0.31; 0.46 2 Dixit et al., 2018 23 50 0.48 0.38 0.31; 0.46 2 Prize at al., 2019 156 183 0.85 0.79; 0.67; 0.88 2 0.78 0.72; 0.83 2 Prasad et al., 2017 164 210 0.78 0.72; 0.83 2 0.78 0.72; 0.83 2 Sengal et al., 2016 38 50 0.76 0.62; 0.89 1 0.11 10.08; 0.15 2 Shoib et al., 2017 165 182 0.85 0.76 0.62; 0.87 1 Nair et al., 2022 115 142 0.81 0.74; 0.87 2 Priyadarshini et al., 2017 157 182 0.86 0.80; 0.91 2 2 0.86 0.80; 0.91 2 2 0.57 0.31; 0.75 1 0.11 0.08; 0.03; 0.81 2 0.57 0.31; 0.75 1 0.25 0.18; 0.57	Napaware et al. 2006	3	56	0.00	[0.07, 1.00]	1.7 /0
Naiver et al., 2017 10 302 0.03 10.03, 0.03 2 Dixit et al., 2017 70 182 0.38 0.31; 0.46 2 Dixit et al., 2018 23 50 0.46 0.32; 0.61 2 Tripathi et al., 2017 164 210 0.46 0.32; 0.61 2 Yamage et al., 2017 164 210 0.79 0.67; 0.88 2 Kamgo et al., 2017 164 210 0.78 0.72; 0.83 2 Kamgo et al., 2013 45 400 0.78 0.72; 0.83 2 Sehgal et al., 2016 38 50 0.76 0.62; 0.87 1 Nair et al., 2022 115 142 0.86 0.81 0.74; 0.87 2 Priyadarshini et al., 2021 33 301 0.11 0.08 0.03 2 0.25 0.86 0.80; 0.91 2 Shoib et al., 2017 157 182 0.86 0.80; 0.91 2 0.25 0.25 0.38 0.11 0.11 0.08 0.03; 0.18 1 0.11 0.08 0.03; 0.18 <td>Konward et al., 2000</td> <td>10</td> <td>260</td> <td>0.05</td> <td></td> <td></td>	Konward et al., 2000	10	260	0.05		
Deviate et al., 2017 70 162 0.36 $[0.31, 0.46]$ Dixit et al., 2018 23 50 0.46 $[0.32, 0.61]$ 2 Tripathi et al., 2019 156 183 0.46 $[0.32, 0.61]$ 2 Prasad et al., 2017 164 210 0.79 $[0.67; 0.88]$ 2 Kamgo et al., 2013 45 400 0.78 $[0.72; 0.83]$ 2 Sehgal et al., 2016 38 50 0.76 $[0.62; 0.89]$ 1 Nair et al., 2022 115 142 0.76 $[0.62; 0.87]$ 1 Priyadarshini et al., 2021 33 301 0.11 $[0.86; 0.51]$ 2 Shoib et al., 2017 157 182 0.86 $[0.80; 0.91]$ 2 Upat et al., 2020 28 100 0.25 $[0.39; 0.31]$ 2 Kaul et al., 2013 50 204 0.57 $[0.37; 0.75]$ 1 Agrawal et al., 2022 17 30 $[0.25; 0.38]$ $[0.25; 0.38]$ $[0.71; 0.87]$ Jain & Sahni, 2002 22 40 $[0.55; [0.38; 0.71]$ $[$	Raswall et al., 2021	10	302			2.0%
Disk fer al., 2018 23 50 0.46 $[0.32; 0.61]$ Tripathi et al., 2019 156 183 0.85 $[0.79; 0.90]$ 2 Prasad et al., 2021 52 66 0.79 $[0.67; 0.88]$ 2 Prasad et al., 2017 164 210 0.78 $[0.72; 0.83]$ 2 Kamgo et al., 2022 32 41 0.78 $[0.62; 0.87]$ 0.78 $[0.62; 0.87]$ 1 Nair et al., 2013 45 400 0.76 $[0.62; 0.87]$ 0.76 $[0.62; 0.87]$ 1 Nair et al., 2022 115 142 0.81 $[0.74; 0.87]$ 2 0.86 $[0.80; 0.91]$ 2 0.81 $[0.74; 0.87]$ 2 0.88 $[0.74; 0.87]$ 2 0.88 $[0.74; 0.87]$ 2 0.88 $[0.74; 0.87]$ 2 0.88 $[0.80; 0.91]$ 2 0.81 $[0.74; 0.87]$ 2 0.81 $[0.74; 0.87]$ 2 0.88 $[0.80; 0.91]$ 2 0.88 $[0.80; 0.91]$ 2 0.88 $[0.80; 0.91]$ 2 0.88 $[0.30; 0.15]$ 2 0.80 $[0.32; 0.48]$	Devaraj et al., 2017	70	182	0.38	[0.31; 0.46]	2.0%
Inpath et al., 2019156183 0.85 0.79 0.90 2 S. K. Mahajan et al., 20215266 0.79 0.79 0.67 ; 0.88 2 Prasad et al., 2017164210 0.78 0.72 0.83 2 Kamgo et al., 20223241 0.78 0.72 0.82 0.85 0.79 0.67 ; 0.83 2 Sehgal et al., 201345400 0.76 0.62 ; 0.87 0.76 0.62 ; 0.81 1.00 0.76 0.68 0.86 0.80 ; 0.91 2 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.67 0.57 0.67 0.57 0.25 0.25 0.22 ; 0.27 0.26 0.22 ; 0.23 0.25 0.22 ; 0.23 0.25 0.22 ; 0.22 ; 0.37 0.25 0.26 0.22 ; 0.22 ; 0.37	Dixit et al., 2018	23	50	0.46	[0.32; 0.61]	2.0%
S. K. Mahajan et al., 2021 Prasad et al., 2017 R. Kumar et al., 2013 R. Kumar et al., 2013 Sehgal et al., 2016 Nair et al., 2016 Nair et al., 2022 Priyadarshini et al., 2017 Nattusami et al., 2021 Nattusami et al., 2021 Utpat et al., 2020 Bhaisare et al., 2022 Tripathi et al., 2013 Solution Agrawal et al., 2014 Tripathi et al., 2012 P. Singh et al., 2012 P. Singh et al., 2012 P. Singh et al., 2012 P. Singh et al., 2014 Tripathi et al., 2022 Rohatgi et al., 2018 Rohatgi et al., 2020 Rohatgi et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ Prediction interval Privadarshini et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ P. Singh et al., 2020 Random effects model Random effects model	Tripathi et al., 2019	156	183		[0.79; 0.90]	2.0%
Presad et al., 2017 164 210 0.78 [0.72; 0.83] 2 Kamgo et al., 2022 32 41 0.78 [0.62; 0.89] 1 R. Kumar et al., 2013 45 400 0.11 [0.08; 0.15] 2 Sehgal et al., 2016 38 50 0.76 [0.62; 0.87] 1 Nair et al., 2022 115 142 0.81 [0.74; 0.87] 2 Priyadarshini et al., 2017 26 27 0.96 [0.81; 1.00] 1 Nattusami et al., 2020 28 100 0.11 [0.08; 0.15] 2 Shoib et al., 2017 157 182 0.86 0.80; 0.91] 2 Utpat et al., 2020 28 100 0.28 [0.19; 0.38] 2 Bhaisare et al., 2021 7 30 0.57 [0.37; 0.75] 1 Agrawal et al., 2013 50 204 0.55 [0.38; 0.57] 2 P. Singh et al., 2022 80 100 0.55 [0.38; 0.57] 2 M. Kumar et al., 2021 272 1098 0.25 0.22; 0.22; 0.27] 0.26	S. K. Mahajan et al., 2021	52	66	0.79	[0.67; 0.88]	2.0%
Kamgo et al., 2022 32 41 0.78 [0.62; 0.89] 1 R. Kumar et al., 2013 45 400 0.11 [0.08; 0.15] 2 Sehgal et al., 2016 38 50 0.76 [0.62; 0.87] 1 Nair et al., 2022 115 142 0.81 [0.74; 0.87] 2 Priyadarshini et al., 2017 26 27 0.96 [0.81; 1.00] 1 Nattusami et al., 2021 33 301 0.11 [0.08; 0.15] 2 Shoib et al., 2017 157 182 0.86 [0.80; 0.91] 2 Utpat et al., 2020 28 100 0.25 [0.19; 0.33] 2 Bhaisare et al., 2013 50 204 0.57 [0.37; 0.75] 1 Agrawal et al., 2013 50 204 0.55 [0.38; 0.57] 2 Yamar et al., 2022 17 30 0.66 0.08 [0.03; 0.18] 1 Jain & Sahni, 2002 22 40 0.55 [0.38; 0.57] 2 0.25 [0.38; 0.57] 2 P. Singh et al., 2021 272	Prasad et al., 2017	164	210	0.78	[0.72; 0.83]	2.0%
R. Kumar et al., 2013 45 400 ••• 0.11 $[0.08; 0.15]$ 2 Sehgal et al., 2016 38 50 0.76 $[0.62; 0.87]$ 1 Nair et al., 2022 115 142 •• 0.81 $[0.74; 0.87]$ 2 Priyadarshini et al., 2021 33 301 • 0.81 $[0.74; 0.87]$ 2 Shoib et al., 2017 157 182 • 0.86 $[0.80; 0.91]$ 2 Utpat et al., 2020 28 100 • 0.86 $[0.80; 0.91]$ 2 Bhaisare et al., 2022 17 30 0.57 $[0.37; 0.75]$ 1 0.28 $[0.9; 0.31]$ 2 Jain & Sahni, 2002 22 40 • 0.55 $[0.38; 0.57]$ 2 P. Singh et al., 2018 57 120 • 0.47 $[0.38; 0.57]$ 2 Mathiyalagen et al., 2021 272 1098 • 0.25 $[0.22; 0.30]$ 2 0.25 $[0.22; 0.27]$ 2 M. Kumar et al., 2020 30 213 • 0.42 $[0.28; 0.57]$ 2	Kamgo et al., 2022	32	41	0.78	[0.62; 0.89]	1.9%
Sehgal et al., 2016 38 50 0.76 $[0.62; 0.87]$ 1 Nair et al., 2022 115 142 0.81 $[0.74; 0.87]$ 2 Priyadarshini et al., 2017 26 27 0.96 $[0.81; 1.00]$ 0.11 $[0.08; 0.15]$ 2 Shoib et al., 2017 157 182 0.86 $[0.80; 0.91]$ 2 0.86 $[0.80; 0.91]$ 2 Utpat et al., 2020 28 100 0.28 $[0.9; 0.38]$ 2 0.57 $[0.37; 0.75]$ 1 Agrawal et al., 2013 50 204 0.55 $[0.38; 0.71]$ 2 2 0.55 $[0.38; 0.71]$ 2 Kaul et al., 2001 5 60 0.08 $[0.3; 0.18]$ 1 0.25 $[0.38; 0.57]$ 2 Tripathi et al., 2018 57 120 0.47 $0.38; 0.57]$ 2 0.25 $0.22; 0.30]$ 2 0.47 $0.38; 0.57]$ 2 Mathiyalagen et al., 2019 122 473 0.47 0.25 $0.22; 0.27]$ 2 0.25 $0.22; 0.27]$ 2 0.42 $0.28; 0.57]$	R. Kumar et al., 2013	45	400		[0.08; 0.15]	2.0%
Nair et al., 2022 115 142 0.81 $[0.74; 0.87]$ 2 Priyadarshini et al., 2017 26 27 0.96 $[0.81; 1.00]$ 1 Nattusami et al., 2021 33 301 0.11 $[0.08; 0.15]$ 2 Shoib et al., 2017 157 182 0.86 $[0.80; 0.91]$ 2 Utpat et al., 2020 28 100 0.28 $[0.19; 0.38]$ 2 Agrawal et al., 2013 50 204 0.25 $[0.19; 0.38]$ 2 Kaul et al., 2001 5 60 0.25 $[0.38; 0.57]$ 2 Jain & Sahni, 2002 22 40 0.55 $[0.38; 0.57]$ 2 P. Singh et al., 2018 57 120 0.47 $[0.38; 0.57]$ 2 Mathiyalagen et al., 2021 272 1098 0.25 $[0.22; 0.27]$ 2 M. Kumar et al., 2020 30 213 0.44 $[0.36; 0.60]$ 73 Selvaraj & Keshavamuthy, 2016 21 50 0.42 $[0.28; 0.48]$ 0.42 $[0.28; 0.48]$ 0.42 $[0.28; 0.48]$ 100	Sehgal et al., 2016	38	50	0.76	[0.62; 0.87]	1.9%
Priyadarshini et al., 20172627 \bullet 0.96[0.81; 1.00]1Nattusami et al., 202133301 \bullet 0.11[0.08; 0.15]2Shoib et al., 2017157182 \bullet 0.86[0.80; 0.91]2Utpat et al., 2020281000.28[0.19; 0.38]2Bhaisare et al., 202217300.57[0.37; 0.75]1Agrawal et al., 2013502040.25[0.19; 0.31]2Kaul et al., 20015600.08[0.30; 0.18]1Jain & Sahni, 200222400.55[0.38; 0.57]2P. Singh et al., 2018571200.47[0.38; 0.57]2P. Singh et al., 202127210980.25[0.22; 0.27]2M. Kumar et al., 202127210980.21[0.10; 0.16]0.25Selvaraj & Keshavamurthy, 201621500.42[0.28; 0.57]2Random effects model802180210.48[0.36; 0.60]73Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 177060.37[0.28; 0.48]100	Nair et al., 2022	115	142	0.81	[0.74; 0.87]	2.0%
Nattusami et al., 202133301Shoib et al., 2017157182Utpat et al., 202028100Bhaisare et al., 20221730Agrawal et al., 201350204Kaul et al., 2001560Jain & Sahni, 20022240Tripathi et al., 201857120P. Singh et al., 202280100Mathiyalagen et al., 2019122M. Kumar et al., 2011272Notatig et al., 201230Selvaraj & Keshavamurthy, 201621Selvaraj & Keshavamurthy, 201621Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ Random effects model17706Prediction interval0.37I. Ahmad et al., 20192Random effects model17706Prediction interval0.37I. Alta for the second se	Priyadarshini et al., 2017	26	27		[0.81; 1.00]	1.4%
Shoib et al., 2017157182 \bullet 0.86[0.80; 0.91]2Utpat et al., 202028100 \bullet 0.28[0.19; 0.38]2Bhaisare et al., 20221730 \bullet 0.57[0.37; 0.75]1Agrawal et al., 201350204 \bullet 0.57[0.37; 0.75]1Kaul et al., 2001560 \bullet 0.86[0.03; 0.18]1Jain & Sahni, 20022240 \bullet 0.55[0.38; 0.57]2P. Singh et al., 201857120 \bullet 0.47[0.38; 0.57]2P. Singh et al., 202127210980.26[0.22; 0.30]2Rohatgi et al., 2018943 \bullet 0.25[0.22; 0.27]2L. Ahmad et al., 202030213 \bullet 0.48[0.36; 0.60]73Random effects model8021 \bullet 0.37[0.28; 0.48]100Prediction interval17706 \bullet 0.37[0.28; 0.48]100Interval17706 \bullet \bullet 0.37[0.28; 0.48]100Interval17706 \bullet \bullet 0.37[0.28; 0.48]100Interval17706 \bullet \bullet \bullet 0.37[0.28; 0.48]100Interval17706IntervalIntervalIntervalIntervalInterval	Nattusami et al., 2021	33	301		[0.08; 0.15]	2.0%
Utpat et al., 202028100Bhaisare et al., 20221730Agrawal et al., 201350204Kaul et al., 201350204Jain & Sahni, 20022240Tripathi et al., 201857120P. Singh et al., 202280100Mathiyalagen et al., 2019122473M. Kumar et al., 20212721098Rohatgi et al., 202030213Selvaraj & Keshavamurthy, 201621Solvaraj & Keshavamurthy, 201621Heterogeneity: $I^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ Random effects model Prediction interval17706Prediction interval17706Utpat et al., 20200.01	Shoib et al., 2017	157	182		[0.80; 0.91]	2.0%
Bhaisare et al., 20221730Agrawal et al., 201350204Kaul et al., 2011560Jain & Sahni, 20022240Tripathi et al., 201857120P. Singh et al., 202280100Mathiyalagen et al., 2019122473M. Kumar et al., 20212721098Rohatgi et al., 2018943L. Ahmad et al., 202030213Selvaraj & Keshavamurthy, 20162150Random effects model8021Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$	Utpat et al., 2020	28	100	0.28	[0.19; 0.38]	2.0%
Agrawal et al., 201350204 \bullet 0.25[0.19; 0.31]2Kaul et al., 2001560 \bullet 0.80[0.03; 0.18]1Jain & Sahni, 200222400.55[0.38; 0.57]2Tripathi et al., 2018571200.47[0.38; 0.57]2P. Singh et al., 2022801000.80[0.71; 0.87]2Mathiyalagen et al., 20191224730.26[0.22; 0.30]2M. Kumar et al., 202127210980.25[0.22; 0.27]2Rohatgi et al., 20189430.210.25[0.22; 0.27]2Selvaraj & Keshavamurthy, 201621500.42[0.28; 0.57]2Random effects model80210.480.36; 0.60]73Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.37[0.28; 0.48]100	Bhaisare et al., 2022	17	30	0.57	0.37: 0.75	1.9%
Kgi at al., 2015600.08 $[0.03; 0.18]$ Jain & Sahni, 200222400.55 $[0.38; 0.71]$ 2Tripathi et al., 2018571200.47 $[0.38; 0.57]$ 2P. Singh et al., 2022801000.80 $[0.71; 0.87]$ 2Mathiyalagen et al., 20191224730.26 $[0.22; 0.30]$ 2M. Kumar et al., 202127210980.25 $[0.22; 0.27]$ 2Rohatgi et al., 20189430.210.14 $[0.10; 0.36]$ 1L. Ahmad et al., 2020302130.140.10; 0.19]2Selvaraj & Keshavamurthy, 201621500.480.36; 0.60]73Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.37 $[0.28; 0.48]$ 100Prediction interval177060.37 $[0.28; 0.48]$ 100Prediction interval177060.37 $[0.28; 0.48]$ 100	Agrawal et al 2013	50	204		[0 19 0 31]	2 0%
Jain & Sahni, 200122400.55 $[0.38; 0.71]$ 2Jain & Sahni, 200222400.55 $[0.38; 0.71]$ 2Tripathi et al., 2018571200.47 $[0.38; 0.57]$ 2P. Singh et al., 2022801000.80 $[0.71; 0.87]$ 2Mathiyalagen et al., 20191224730.26 $[0.22; 0.30]$ 2M. Kumar et al., 202127210980.25 $[0.22; 0.27]$ 2Rohatgi et al., 20189430.21 $[0.10; 0.36]$ 1L. Ahmad et al., 2020302130.14 $[0.10; 0.19]$ 2Selvaraj & Keshavamurthy, 201621500.42 $[0.28; 0.57]$ 2Random effects model80210.48 $[0.36; 0.60]$ 73Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.37 $[0.28; 0.48]$ 100Prediction interval177060.37 $[0.28; 0.48]$ 100	Kaul et al 2001	5	60		[0 03: 0 18]	1.9%
Stant & Stann, 2001 22 40 0.001 [0.00, 0.71] 22 Tripathi et al., 201857120 0.47 [0.38; 0.57] 2 P. Singh et al., 202280100 0.80 [0.71; 0.87] 2 Mathiyalagen et al., 2019122473 0.26 [0.22; 0.30] 2 M. Kumar et al., 20212721098 0.25 [0.22; 0.27] 2 Rohatgi et al., 2018943 0.21 [0.10; 0.36] 0.25 [0.22; 0.27] 2 L. Ahmad et al., 202030213 0.44 [0.10; 0.19] 2 Selvaraj & Keshavamurthy, 20162150 0.42 [0.28; 0.57] 2 Random effects model8021 0.48 [0.36; 0.60] 0.37 [0.28; 0.48] 100 Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.37 [0.28; 0.48] 100	Jain & Sahni 2002	22	<u>4</u> 0	— <u> </u>	[0.38 0.71]	2 0%
Implain of dia, 2010Or1200.11120P. Singh et al., 202280100Mathiyalagen et al., 2019122473M. Kumar et al., 20212721098Rohatgi et al., 2018943L. Ahmad et al., 202030213Selvaraj & Keshavamurthy, 20162150Random effects model8021Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.37Random effects model17706Prediction interval17706O.37[0.28; 0.48]Interval100 <td>Tripathi et al 2018</td> <td>57</td> <td>120</td> <td></td> <td>[0.38 0.57]</td> <td>2.0%</td>	Tripathi et al 2018	57	120		[0.38 0.57]	2.0%
Mathiyalagen et al., 2012 122 473 M. Kumar et al., 2021 272 1098 Rohatgi et al., 2018 9 43 L. Ahmad et al., 2020 30 213 Selvaraj & Keshavamurthy, 2016 21 50 Random effects model 8021 Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.37 0.37 [0.28; 0.48] 100 0.37 [0.22; 0.94]	P Singh et al. 2010	27 20	100		[0.00, 0.07]	2.0 /0
Mathryatagerret al., 2010 $122 + 470$ $0.20 [0.22, 0.30] 22$ M. Kumar et al., 2021 $272 + 1098$ $0.25 [0.22; 0.27] 22$ Rohatgi et al., 2018 $9 + 43$ $0.21 [0.10; 0.36] 14$ L. Ahmad et al., 2020 $30 + 213$ $0.14 [0.10; 0.19] 22$ Selvaraj & Keshavamurthy, 2016 $21 + 50$ $0.42 [0.28; 0.57] 22$ Random effects model 8021 $0.48 [0.36; 0.60] 73$ Heterogeneity: $l^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ $0.37 [0.28; 0.48] 100$ Prediction interval 17706 $0.37 [0.28; 0.48] 100$	Mathivalagen et al. 2010	122	172		[0 22 · 0 20]	2.0/0
Rohatgi et al., 2021 272×1096 $0.25 \times [0.22; 0.27]$ 222×0.27 Rohatgi et al., 2018 9 43 $0.21 \times [0.10; 0.36]$ $0.42 \times [0.28; 0.57]$ 222×0.27 L. Ahmad et al., 2020 30 213 1000×1000 $0.42 \times [0.28; 0.57]$ 2200×1000 Selvaraj & Keshavamurthy, 2016 21 50 $0.42 \times [0.28; 0.57]$ 2200×1000 Random effects model 8021 $0.48 \times [0.36; 0.60]$ $0.37 \times [0.28; 0.48]$ 10000 Prediction interval 17706 $0.37 \times [0.28; 0.48]$ 100000	M Kumar at al. 2021	122 070	413 1000		[0.22, 0.30]	2.0%
Konagi et al., 2010943L. Ahmad et al., 202030213Selvaraj & Keshavamurthy, 20162150Random effects model8021Heterogeneity: $I^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.42Random effects model17706Prediction interval0.370.37[0.28; 0.48]1000.021<	101 rund et al., 2021	212	1090		[0.22, 0.27]	Z.U%
L. Annuad et al., 2020 30 213 0.14 $[0.10; 0.19]$ 2 Selvaraj & Keshavamurthy, 2016 21 50 0.42 $[0.28; 0.57]$ 2 Random effects model 8021 0.48 $[0.36; 0.60]$ 73 Heterogeneity: $I^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.37 $[0.28; 0.48]$ 100 Prediction interval 17706 0.37 $[0.02; 0.94]$	Runalyi et al., 2018	9	43	0.21		1.9%
Servaraj & Kesnavamurthy, 2010 21 50 $0.42 \ [0.28; 0.57]$ 2 Random effects model 8021 $0.48 \ [0.36; 0.60]$ 73 Heterogeneity: $I^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ $0.37 \ [0.28; 0.48]$ $0.37 \ [0.28; 0.48]$ Random effects model 17706 $0.37 \ [0.28; 0.48]$ $100 \ [0.02; 0.94]$	L. AIIIIdu el al., 2020 Solveroi & Koshavaravita 2010	30	213		[0.10; 0.19]	2.0%
Random effects model 8021 0.48 [0.36; 0.60] 73 Heterogeneity: $I^2 = 97\%$, $\tau^2 = 2.3351$, $p < 0.01$ 0.48 [0.36; 0.60] 73 Random effects model 17706 0.37 [0.28; 0.48] 100 [0.02; 0.94] Prediction interval 100 [0.02; 0.94] 100 [0.02; 0.94]	Servaraj & Kesnavamurtny, 2016	21	50	0.42	[U.28; U.57]	2.0%
Random effects model 17706 0.37 [0.28; 0.48] 100 Prediction interval [0.02; 0.94]	Kandom effects model Heterogeneity: $I^2 = 97\%$. $\tau^2 = 2.335$	1, p < 0.01	8021	0.48	[0.36; 0.60]	73.9%
Random effects model 17706 0.37 [0.28; 0.48] 100 Prediction interval [0.02; 0.94] [0.02; 0.94]		, , , , , , , , , , , , , , , , , , , ,	 -			
Prediction interval [0.02; 0.94]	Random effects model		17706	0.37	[0.28; 0.48]	100.0%
	Prediction interval				[0.02; 0.94]	
Heterogeneity: $I^2 = 98\%$, $\tau^2 = 2.4914$, $p = 0$ Test for subgroup differences: $\chi^2 = 20.86$ df = 1 ($p < 0.01$) 0.2 0.4 0.6 0.8	Heterogeneity: $I^2 = 98\%$, $\tau^2 = 2.491$ Test for subgroup differences: $x^2 = 1$	4, p = 0 20,86, df -	1 (n < 1			

Author	Events	Total		Proportion	95%-CI	Weight
Subgroup = Healthy						
Panda et al., 2012	11	1050		0.01	[0.01; 0.02]	4.9%
N. Kumar et al., 2022	436	1596	-	0.27	[0.25; 0.30]	5.3%
R. Gupta et al., 2017	159	1689		0.09	[0.08; 0.11]	5.3%
Rangarajan et al., 2007	27	1266	+	0.02	[0.01; 0.03]	5.2%
Bellur et al., 2022	352	4211		0.08	[0.08: 0.09]	5.3%
Joseph et al., 2022	24	202		0.12	0.08: 0.17	5.1%
Random effects model		10014		0.07	[0.02; 0.16]	31.1%
Heterogeneity: $I^2 = 99\%$, $\tau^2 = 1.6181$, μ	0 < 0.01					
Subgroup = Patients						
Panda et al., 2018	2	40		0.05	[0.01; 0.17]	3.6%
A. Kumar et al., 2021	25	131	- -	0.19	[0.13; 0.27]	5.1%
N. Kumar et al., 2021	73	832		0.09	[0.07; 0.11]	5.3%
Bhagawati et al., 2019	60	300	- <mark></mark> -	0.20	[0.16; 0.25]	5.2%
Pinheiro et al., 2020	17	210	—	0.08	[0.05; 0.13]	5.0%
R. Gupta et al., 2012	100	653		0.15	[0.13; 0.18]	5.3%
Halkurike-Jayadevappa et al., 2019	36	356		0.10	[0.07; 0.14]	5.2%
Bhowmik et al., 2003	8	121		0.07	[0.03; 0.13]	4.7%
R. Gupta et al., 2018	10	19	<mark>+</mark>	- 0.53	[0.29; 0.76]	4.4%
Bathla et al., 2016	10	194	-	0.05	[0.02; 0.09]	4.9%
A. Gupta et al., 2017	24	346		0.07	[0.04; 0.10]	5.1%
Velu et al., 2022	10	148	- 	0.07	[0.03; 0.12]	4.8%
R. Gupta et al., 2013	17	54		0.31	[0.20; 0.46]	4.9%
Raj & Ramesh, 2021	66	206	- <mark></mark>	0.32	[0.26; 0.39]	5.2%
Random effects model		3610		0.13	[0.09; 0.19]	68.9%
Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0.6814$, μ	0 < 0.01					
Random effects model		13624	\diamond	0.11	[0.07; 0.16]	100.0%
Prediction interval					[0.01; 0.52]	
Heterogeneity: $I^2 = 97\%$, $\tau^2 = 1.0435$, μ	o < 0.01				_	
Test for subgroup differences: $\chi_1^2 = 1.78$	8, df = 1 (/	o = 0.18)	0.1 0.2 0.3 0.4 0.5 0.6 0.7			