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Abstract  

 

Cell-free DNA (cfDNA) mediated early cancer detection is based on detecting 

alterations in the cfDNA components. However, the underlying pathology can usually 

not be readily identified. We built a reference atlas based on the methylome of 

multiple cancer and blood-cell types and developed MetDecode, an epigenetic 

signature-based deconvolution algorithm. MetDecode accurately estimates the 

tumour proportion in in-silico mixtures and identifies the tissue of origin in 81.25% 

cfDNA samples from cancer patients. This method will complement cancer screening 

programs and guide clinical follow-up. 
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Background 

Cell-free DNA (cfDNA) is present as DNA fragments floating in the blood. The 

fragments, mainly derived from dying cells, contain the genomic and epigenetic 

signatures of the cells of origin [1]. When cancer is present, a fraction of the cfDNA 

can be derived from tumour cells, defined as circulating-tumour DNA (ctDNA) [2]. 

ctDNA is now being widely explored as a non-invasive biomarker for cancer 

screening and diagnosis [3]. A major focus is on the detection of cancer-specific 

single nucleotide mutations and copy number alterations (CNAs). Whereas somatic 

mutations are usually identified by targeted sequencing, the detection of CNAs is 

done by genome-wide sequencing of the cfDNA [4,5]. Though somatic mutations can 

be tumour-specific, their application for cancer detection and screening is hampered 

by the low variant allele frequency at the early stages of the disease [5,6]. 

Alternatively, genome-wide detection of tumour-associated CNAs in cfDNA has been 

shown to allow cancer detection, also in population screening settings with low-pass 

sequencing [7–10]. 
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CfDNA-based screening for cancers can often detect the presence of abnormal 

signals indicative of a cancer, but not its origin or cancer type. Especially for 

metastatic disease of unknown primary, profiles do not readily allow the identification 

of the tissue of origin (TOO) albeit this would be of clinical value [11]. When 

performing non-invasive prenatal screening for foetal chromosomal aneuploidies, 

incidental occult maternal malignancies can be detected without insights into the 

origin [10,12,13]. If the TOO or cancer type could be deduced from cfDNA analysis, 

this would tremendously speed up the diagnosis and start of treatment, hence 

streamlining subsequent clinical follow-up, reducing costs and minimising the need 

for extensive radiologic imaging [14]. For patients, this might reduce the anxiety 

associated with a positive screening test outcome. 

Methods to deduce the origin of cfDNA fragments have been based on epigenetic 

markers such as nucleosome positioning, fragmentation and methylation profiles 

[15–17]. These profiles are tissue and cell-type-specific [18], offering the possibility 

to identify the different components of the cfDNA pool, alongside an estimation of the 

relative proportion of each of them. Tumour-associated methylation changes have 

been described during cancer initiation and progression. Hence, they are promising 

markers for early cancer TOO identification [19]. 

Recently, several algorithms have been developed to deconvolute the plasma cfDNA 

composition based on methylation profiles. Typically, reference atlases consisting of 

either normal tissues or cell-type-specific methylation markers are used to identify 

tissue-specific methylation signals [14,19–26]. Although each method has its specific 

merits, it also has its limitations. For instance, none of the methods deconvolutes 

multiple cancer tissues. Also, most methods do not consider missing variables due to 

the incompleteness of the atlas [22,28] or operate in a reference-free fashion [26]. 

However, cfDNA mixtures are more complex and could carry fragments from tissues 

not represented in the atlas. 

To address these limitations, we developed an alternative reference-based 

deconvolution method, named MetDecode. The method builds on gradient-based 

optimization and extends existing methods by simultaneously modelling the 

presence of noise and the lack of comprehensiveness of the reference atlas in a 

deterministic and lowly-parametrized fashion. We used in-house sequenced or 
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publicly available tumour ssamples to build a reference atlas of tissue-specific 

methylation markers for four different cancer tissues, namely breast, ovarian, 

cervical and colorectal cancer and combined it with white blood cell (WBC)-derived 

entities. The reference atlas is subsequently exploited by MetDecode to estimate the 

contribution of each atlas entity. Additionally, the reference atlas is extended with 

unknown methylation patterns learnt on-the-fly from cfDNA methylation profiles to 

account for missing data. This method could complement cancer screening 

programs to direct clinical follow-up to the right cancer type and will expedite 

treatment. 

Methods 

Plasma cfDNA and genomic DNA collection and extraction 

Peripheral blood was collected in Roche cell-free DNA blood collection tubes® 

(Roche, Switzerland) or a Streck Cell-Free BCT® (Streck, USA) and extracted as 

described previously [7]. Archived [7] and prospectively collected plasma cfDNA 

samples of healthy individuals were included as control samples (18-90 years old). 

We included only individuals without cancer and no known autoimmune condition to 

exclude the introduction of confounding factors to the analysis, as both pathological 

conditions can influence the shedding and the composition of cfDNA [2,29]. Archived 

plasma cfDNA was also obtained from patients with a known diagnosis of breast, 

colorectal or ovarian cancer (mean age: 61.88 years old). Treatment-naïve formalin-

fixed paraffin-embedded (FFPE) tumour biopsies were collected. Genomic DNA 

(gDNA) was extracted from the FFPE tumour biopsies as well as from WBC from 

healthy subjects or patients with a diagnosis of breast, colorectal, cervical or ovarian 

cancer using the QIAamp DNA FFPE Tissue Kit or the DNeasy Blood & Tissue Kits 

(Qiagen, Hilden, Germany), respectively. The extracted gDNA was fragmented using 

Covaris M220 before library preparation (Covaris Inc., Woburn, MA, USA). The study 

was approved by the ethical committee of the University Hospitals Leuven (study 

protocols S62285, S62795, S63983, S66450, S59207 and S51375). 

Complete blood count 

Advia 2120 hemacytometer was used to perform the complete blood count (CBC) 

analysis on whole blood following manufacturer’s instructions. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 29, 2023. ; https://doi.org/10.1101/2023.12.29.23300371doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.29.23300371


 

 

5 

 

Whole-genome methylation sequencing and data analysis  

cfDNA and gDNA extracted from FFPE tumour biopsies or WBC was subjected to 

whole-genome DNA methylation sequencing using the NEBNext Enzymatic Methyl-

seq kit (New England Biolabs, Ipswich, MA, USA) following manufacturer’s 

instructions. Enzymatic conversion was preferred over bisulfite conversion for 

methylation analysis, avoiding fragmentation and loss of DNA in the process [28,30]. 

In addition, for gDNA from cervical and ovarian FFPE tumour biopsies that were 

used to build the reference atlas, bisulfite conversion was performed, to be 

consistent with the method used for the remaining samples in the atlas. Libraries 

were prepared with the same kit, thereby replacing the enzymatic conversion 

reactions with the bisulfite treatment using EZ-96 DNA Methylation-Direct MagPrep 

(Zymo Research, Irvine, CA, USA). The conversion efficiency was evaluated by 

spiking unmethylated Lambda DNA in one sample per batch, irrespective of the 

conversion method used. Libraries were quantified using Qubit dsDNA high-

sensitivity assay kit and Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham, 

MA, USA). Libraries were sequenced on NovaSeq 6000 S4 flowcell (Illumina, San 

Diego, CA, USA) generating PE150bp reads at an average depth of 15X. The data 

after demultiplexing was quality checked and trimmed using fastp (v0.20) and then 

aligned to human genome hg38 using bwa-meth (v0.2.2). Deduplication was done 

using Picard (v2.20.3) and methylation calling via MethylDackel (v0.5.1). The tumour 

fraction in the cfDNA samples was calculated using ichorCNA [31] 

Generation of a DNA methylation marker atlas for multiple blood cell types and 

tumour tissues 

A DNA methylation marker atlas, covering markers for 6 tumour tissues and 7 blood 

cell types was generated solely using whole-genome bisulfite sequencing (WGBS) 

data. From public repositories, we downloaded genome-wide CpG site methylation 

ratios for B cells, CD4+ T cells, CD8+ T cells, natural killer cells, monocytes, 

neutrophils and erythroblasts (BLUEPRINT [32], GSE186458), and for breast 

invasive carcinoma, colon adenocarcinoma and rectal adenocarcinoma tissues (The 

Cancer Genome Atlas [33] (Supplementary Table 1, Additional File 2). WGBS data 

for high-grade serous ovarian carcinoma, cervical adenocarcinoma and cervical 

squamocellular carcinoma were generated in-house from FFPE samples. Available 
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samples (n=2-7) per tissue/cell type were merged after removing highly variant CpG 

site which resulted in a combined atlas entity for every tissue as explained in the 

Additional File 1. Using these combined atlas entities, the sites which were uniquely 

methylated in one tissue type, with at least 30% difference between the absolute 

methylation value in that tissue versus the rest, were extracted using R scripts and 

extended to cover a region with a minimum of 4 CpGs (if the sites were within 500 

bp). Once the start and end coordinates of the marker regions were obtained, the 

total number of reads and the number of methylated reads in these regions for every 

tissue/cell-type in the atlas, namely ��������  and ��������, were obtained using custom 

scripts. The same was also extracted for the samples to be deconvoluted (����	
�� , 

����	
��) and then used as input for the deconvolution algorithm. 

Deconvolution algorithm 

We created a methylation-based reference atlas, composed of two matrices �������� 

and ��������, where ���
������� is the total CpG count for atlas entity �  and marker region 

� , and ���
������� the corresponding methylated CpG count. Because each CpG site 

can be spanned by multiple reads, it may contribute multiple times to the same 

count. Therefore, these values must not be confused with read counts. We also 

provided the algorithm with two other input matrices, ����	
�� and ����	
��, 

representing the cfDNA mixtures. Our algorithm has been designed to infer a matrix 

�  of cell type contributions, where �
�  is the estimated proportion of cell type �  to 

cfDNA profile � . �  was found by minimizing a weighted mean squared error between 

the methylation ratios of cfDNA samples and the ratios of convoluted atlas entities. 

Marker region �  in sample �  was re-weighted by 
����

������	�



∑ ∑ ��
��
������	�


�
�
�

�
�
�

 to better reflect the 

confidence in the estimation of the methylation ratio�
�
���	
��. 	  is a hyper-parameter 

(default=1) controlling the importance given by the end user to the coverage. To 

account for the presence of unknown cell types missing from the reference atlas, we 

extended the atlas with estimates of missing cell types. When the number of cfDNA 

samples is largely greater than the atlas size, the methylation patterns of these 

unknown contributors can be learned from the data directly. The assumed number of 

unknown cell types was defined as a hyper-parameter (default = 1). We accounted 

for the unknown contributors in the cfDNA mixture by appending extra rows to the 
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����	
�� and ����	
�� matrices. Methylation ratio matrices ����	
�� and �������� were 

computed from the corresponding read count matrices.  

�
������� was next deconvoluted using non-negative least squares (NNLS) algorithm 

and reference matrix �
���	�
�, the residuals were used to define the missing 

contributor and extend �
���	�
�, �

���	�
� and �
���	�
�

 by one row each. This 

procedure was repeated � times. A more technical description of the algorithm is 

provided in Additional File 1. 

Evaluation metric 

Pearson Correlation Coefficient and mean squared error (MSE) were used to 

evaluate the reliability of MetDecode estimations. We evaluated the accuracy of 

multiclass cancer TOO prediction as #��������������
�
�	���������
#��������������� . P-values were 

considered significant when <0.001. 

Results 

Creation of a reference atlas and tissue-specific epigenetic marker selection  

To enable the deconvolution of a methylome into its potential contributors by 

assigning the relative proportion to a specific tissue type, a methylation reference 

atlas with 13 entities was created. We included methylome data from seven cells of 

hematopoietic origin which are the most represented in plasma cfDNA [22,34] as 

well as methylome data from six different tumours. The tumour tissues included 

breast cancer, ovarian cancer, colon adenocarcinoma, rectum adenocarcinoma, 

cervical adenocarcinoma and cervical squamous cell carcinoma. These cancers 

were selected to serve as a proof-of-concept. The seven cell types from the 

haematopoietic lineage included neutrophils, monocytes, erythroblasts, natural killer, 

B cells, CD4+ T cells and CD8+ T cells. Tumour methylome data was downloaded 

from TCGA for five breast invasive carcinomas from different subtypes (n=1 luminal 

A, n=1 luminal B, n=1 basal-like; n=2 HER2), two rectum adenocarcinoma and two 

colon adenocarcinoma (Supplementary Table 1, Additional File 2). Since publicly 

available data was lacking for cervical and ovarian tumours, we generated genome-

wide methylome data for three high-grade serous ovarian carcinomas (HGSOC), two 

cervical adenocarcinomas and three cervical squamocellular carcinoma in-house 

and included it in the atlas. For interpretation purposes, we combined deconvoluted 
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percentages for the two cervical cancer subtypes and from the colon and the rectal 

adenocarcinoma to identify the TOO. 

Differentially methylated sites were selected by comparing the CpG site methylation 

ratio of one tissue against the rest of the entities in the reference (one-versus-all 

strategy) and then extended to regions. To ensure that the methylation marker 

regions were unique, a methylated or unmethylated region should have a distinct 

methylation pattern in one tissue versus the other entities in the reference atlas 

(Figure 1A). We identified 17874 differentially methylated regions across the genome 

for the 13 reference entities. The number of marker regions per reference entity 

ranged from 23 to 7058 with a median count of 5 CpGs and median length of 512bp 

(Figure 1B). 

  

Figure 1 (A) Heatmap displaying the methylation ratio of the selected marker regions across the atlas 
entities. The methylation ratio is represented on the colour scale with red indicating a value close to 
one, meaning hypermethylation, and blue to zero, meaning hypomethylation. The individual samples 
per tissue/cell-type and the combined entity (named Combined, as described Materials and Methods) 
considered for the marker selection are shown on the X-axis. (B) Number of marker regions per atlas 
entity. BRCA, breast carcinoma; CEAD, cervical adenocarcinoma; CESC, cervical squamocellular 
carcinoma, COAD, colorectal adenocarcinoma; OVCA, ovarian carcinoma; READ, rectal 
adenocarcinoma.  

MetDecode is robust against noise and the presence of unknown contributors 

Along with cancerous cells, cfDNA samples from cancer patients also contain other 

cell types, such as immune cells. A reference atlas of tumours and immune cells will 

often be incomplete and hence the analysis methods run the risk of being blinded for 
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unknown contributions. While the primary goal of our method is to predict the type of 

cancer, standard supervised classifiers will fall short because (i) the number of 

training samples per class is too low (2 to 7 per class in this study) for standard 

classifiers, (ii) samples contain a variable proportion from cells from some classes, 

and (iii) samples might also contain cells of unknown types/profiles. Instead, we 

develop an algorithm to estimate the proportions from a mixture of reference 

samples also accounting for unknown cell-types. The method then assigns the 

sample to a particular tissue type by considering the atlas entity with the highest 

proportion falling outside the established normal range. 

Contrary to methylation arrays or targeted sequencing which focus on specific loci, 

whole-genome methylation sequencing produces generally lower coverage due to 

the reads being spread over the entire genome. Therefore, the coverage of each 

CpG site is reduced and noise is exacerbated [23]. Not only does the genome 

coverage vary from sample to sample due to differences in sequencing depth, but it 

also varies along the genome itself (e.g., due to differences in mappability). 

Accordingly, we devised MetDecode to account for the reliability of the methylation 

ratio estimates (e.g., variability at methylation loci both in the atlas and cfDNA 

samples [35]) in the presence of noise. Since higher coverage of a marker region 

enables a more accurate estimate of its methylation ratio (under the assumption of 

the absence of biases, which we implicitly assumed), we re-weighted our objective 

function (see Methods) to lower the contribution of lower-coverage marker regions to 

the objective function. 

The importance attached to the coverage is controlled by a hyper-parameter β, 

which determines the rate at which the weight of a marker region increases with its 

coverage. To assess the relevance of this new feature, we compared our method in 

default settings (	 
 1)  to our method without considering the coverage (	 
 0). For 

this purpose, we designed simulations based on real data (see Supplementary 

Figure 1, Additional File 1), with random noise injection based on binomial 

distributions and deconvoluted these random mixtures. In Figure 2A, we reported the 

distribution of Pearson correlation coefficients between estimated and expected cell 

type proportions across 30 runs. When averaging the correlation coefficients across 

cell types (bottom right violin plot in Figure 2A), Pearson coefficient appears to be 

significantly higher in the 	 
 1  setting (p<0.001; T-test; one-sided), highlighting the 
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gain in deconvolution performance obtained when increasing the attention of our 

deconvolution algorithms on high-coverage regions, both in the atlas and cfDNA 

samples. 

To create the atlas, only a limited number of cell and tissue types were selected. 

However, the cfDNA is made up of DNA derived from many different cell and tissue 

types, albeit usually in lower amounts. To account for this incompleteness of the 

atlas, we included the possibility to model unknown cell types. We opted for a data-

driven approach that infers the unknowns using the cfDNA samples as well as the 

(incomplete) atlas, based on the residuals obtained after deconvolution (difference 

between the original and reconstructed/convoluted cfDNA samples). To demonstrate 

the relevance of this novel feature, we performed experiments analogous to those 

described above to quantify the performance characteristics of MetDecode when 

modelling one unknown cell type (unk=1), compared to the situation where the atlas 

is assumed to be complete (unk=0). In our simulations, cfDNA mixtures were defined 

as random linear combinations of the atlas entities (with proportions sampled from a 

Dirichlet distribution, see Additional File 1), plus an unknown entity with random 

binary methylation pattern. We observed a significant improvement of Pearson 

correlation coefficients across 30 runs (p<0.001; T-test; one-sided Figure 2B) for 5 

out of the 6 cancer tissues included in our atlas. Overall, unknown modelling 

enhanced deconvolution accuracy for 9 out of the 13 cell types, and decreased 

performance for the 4 remaining cell types. When averaging the Pearson correlation 

coefficients across all the cell types (bottom right violin plot in Figure 2B), we 

observed a p-value of 0.001. These results highlight the relevance of unknown 

modelling when unknown cell types in the sample of interest have their methylation 

patterns uncorrelated with the atlas entities. 
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Figure 2. (A) Pearson correlation coefficients of MetDecode without (  ) and with (  ) 
consideration to the coverage across 30 simulation runs. For each cell type, a one-sided T-test has 
been performed to assess the difference in the distributions of Pearson coefficients, and the 
corresponding p-value reported between brackets. (B) Pearson correlation coefficients without 
(unk=0) and with exactly one (unk=1) unknown modelled by MetDecode. BRCA, breast carcinoma; 
CEAD, cervical adenocarcinoma; CESC, cervical squamocellular carcinoma, COAD, colorectal 
adenocarcinoma; OVCA, ovarian carcinoma; READ, rectal adenocarcinoma. 
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MetDecode identifies the correct TOO in genomic DNA from leukocytes and 

tumour tissue 

To evaluate the accuracy of MetDecode for deconvoluting and assigning the correct 

tissue type, we applied the method on 12 WBC-derived gDNA methylomes from 

healthy controls (mean age: 48.08 years; range: 22-77; M/F:5/7) and 20 gDNA 

methylomes from tumour tissue biopsy of breast (n=5), colorectal (n=6), cervical 

(n=6) and ovarian (n=3) cancer (Figure 3).  

When deconvoluting, the methylomes are distributed amongst different atlas entities.  

When the major contributor amongst all the atlas entities was the expected tissue, 

the assignment was considered correct. The healthy controls were considered as 

correctly assigned when neutrophils were deconvoluted as the main contributor [36]. 

MetDecode assigned the correct tissue in 29 out of 32 samples (Overall Accuracy: 

90.63%). All WBC-derived samples showed neutrophils as the main contributor. All 5 

breast tumour samples and 6 colorectal samples were assigned to their respective 

cancer. In addition, 5/6 and 1/3 cervical and ovarian tumours were classified 

correctly. One of the 6 cervical samples was classified as an ovarian tumour. In 

addition, two out of 3 ovarian tumour samples (n=2 clear cell carcinoma) were 

misclassified as colorectal cancers. 

To assess the accuracy of mixture deconvolution, we compared the results of the 

WBC deconvolution to Complete Blood Counting (CBC) using matched blood 

samples. We observed a high correlation for the neutrophils fraction (r=0.879, p-

value<0.001, Figure 3B), when comparing CBC and MetDecode deconvolution 

estimates. Lower correlation was found for lymphocytes and monocytes (r=0.60; 

r=0.48, respectively). However, this is similar to other reports [34,37]. In conclusion, 

these results demonstrate that MetDecode can identify major contributors in samples 

containing mixture of cell-types.  
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Figure 3. Deconvolution of genomic DNA methylation profiles using MetDecode. (A) Deconvolution of 
gDNA derived from WBC and tumour FFPE biopsies. For each sample group, the deconvoluted 
contribution from every atlas entity is shown. The box represents the interquartile range, the extremity 
represents the minimum and the maximum value. The median is marked with a horizontal bar inside 
the box. WBC, white blood cells; BRCA, breast carcinoma; CERCA, cervical carcinoma; COLCA, 
colorectal carcinoma; OVCA, ovarian carcinoma. (B) Pearson correlation between deconvoluted 
contributions measured via complete blood count (CBC) and MetDecode for neutrophils, monocytes 
and lymphocytes. (C) Relative contribution measured via CBC (X-axis) vs the deconvoluted proportion 
estimated using MetDecode (Y-axis) for the neutrophils, lymphocytes and monocytes in the gDNA 
derived from WBC. The diagonal line represents the identity line.  

Metdecode allows accurate deconvolution of in-silico mixes 

We next evaluated the limit of detection and assessed the concordance in the 

relative contribution estimation of MetDecode using in-silico mixtures of tumour DNA. 

Breast, colorectal, cervical and ovarian cancer data was combined with cfDNA from 

healthy donors at ratios varying from 50-0.1% to reflect an average depth of 6X (see 

Additional File 1). Deconvolution of the in-silico mixes showed that MetDecode 

detects tumour DNA proportions down to 4.3%. The mean correlation between the 

expected and the deconvoluted percentage was r=0.8603 (p<0.001). The highest 
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correlation was obtained for the breast cancer in-silico mixes, followed by ovarian, 

cervical and colorectal (0.998, p<0.001; 0.982, p<0.001; 0.976, p<0.001 and, 0.866 

p<0.001, respectively, Figure 4). The expected and estimated percentages of the 

spiked-in component show a strong correlation, indicating that MetDecode's relative 

proportion estimations are indeed reliable. 

 

Figure 4. Correlation plots between deconvoluted and expected contribution in percentage of the 
tumour tissue spiked-in in the in-silico mixes. Random reads were combined from a healthy control 
BAM file and a tumour gDNA BAM file to create an in-silico mix and repeated 10 times to obtain 
replicates (A), (B), (C), (D) represent the in-silico mixes for breast, ovarian, colorectal and cervical 
cancer, respectively. Each dot represents the value for a replicate with a deconvoluted % (y-axis) vs 
expected % (x-axis) of tumour tissue DNA.  
 

MetDecode correctly identified the tumour origin in cfDNA from cancer 

patients 

MetDecode was subsequently applied to whole-genome cfDNA methylation 

sequencing data from healthy controls (n=93; mean age: 66.8 years; range:18-90) 

and treatment-naive patients with a confirmed cancer diagnosis (n=16; n=5 breast, 

n=4 colorectal, and n=7 ovarian cancers; Table 1). We selected samples with a 

minimum tumour fraction (TF) of 3% (measurement based on ichorCNA [31]).  
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Table 1. Clinical information of the cancer cohort and deconvolution outcome  

Sample   Sex  Age   Cancer 
type   

Cancer 
subtype  Stage   TOO 

assigned 
MetDecode  

(%)* 
TF (%)  

Case 1   F  80-89  
Breast 
cancer   

Triple 
Negative  IIIA   BRCA   3.398 3.96   

Case 2   F  50-59  
Breast 
cancer   Luminal B  IIIA   BRCA   5.02 5.86   

Case 3   F  40-49 
Breast 
cancer   

Triple 
Negative  IA   NA   NA 4.44   

Case 4   F  50-59 
Breast 
cancer   

Her2 
positive   IV   BRCA   14.014 6.27   

Case 5   F  50-59 
Breast 
cancer   

Triple 
Negative  IV   COLCA   12.439 13.66   

Case 6   F  80-89  
Colorectal 

cancer    Unknown IIIC   COLCA   33.909 10.89   

Case 7   M  70-79  
Colorectal 

cancer    Unknown IVA   COLCA   40.852 15.14   

Case 8   M  80-89 
Colorectal 

cancer    MSS  II   COLCA   13.693 3.36   

Case 9   M  60-69 
Colorectal 

cancer    MSS  IV   COLCA   21.473  11.38   

Case 10  F  50-59 
Ovarian 
cancer   

Mucinous 
carcinoma IVB   CERCA   5.793 12.25   

Case 11  F  70-79 
Ovarian 
cancer   LGSOC   IIIC   OVCA   20.682 19.07   

Case 12  F  60-69 
Ovarian 
cancer   

Endometri
oid 

carcinoma 
IA   OVCA   13.388 7.91   

Case 13  F  40-49  
Ovarian 
cancer   LGSOC   IIIC   OVCA   11.039 5.50  

Case 14  F  60-69 
Ovarian 
cancer   HGSOC  IIIC   OVCA   22.998 11.14   

Case 15  F  60-69 
Ovarian 
cancer   HGSOC  IIIA   OVCA   9.439 4.47  

Case 16  F  50-59 
Ovarian 
cancer   HGSOC  IV   OVCA   49.481  27.12  

* The number reported refers to the deconvoluted percentage of the putative TOO.  
In bold are indicated the misassigned TOO. 
TF, Tumour Fraction; TOO, Tissue Of Origin; MSS, Microsatellite Stable; LGSOC, Low-Grade 
Serous Carcinoma; HGSOC, High-Grade Serous Carcinoma, BRCA, breast carcinoma; CERCA, 
cervical carcinoma; COLCA, colorectal carcinoma; OVCA, ovarian carcinoma; NA, not assigned.  
 

cfDNA data from the healthy individuals was used as control to establish the 

reference range of each atlas entity (Supplementary Table 2, Additional File 2). As 
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expected, [22,34,38] neutrophils were the major contributors to plasma cfDNA 

(37.51%±9.418), followed by erythroblasts (19.34%±4.625), and monocytes 

(18.16%±3.908) (Supplementary Figure 3, Additional File 1).  

 

We then investigated the deconvoluted composition of the cancer patient-derived 

plasma cfDNA and compared it to the normal ranges in healthy controls. Overall, the 

tissue in which the primary tumour resides was increased in all three cancer types. 

The colorectal cancers showed an average 35.67-fold increase in COLCA 

contribution compared to the healthy controls, ovarian cancers an average 8.06-fold 

increase in OVCA contribution and breast cancers an average 7.8-fold increase in 

BRCA contribution (Figure 5A). This shows that tissue-specific signals are well 

classified.  

We next assessed the ability of MetDecode to assign the correct TOO in these 

cfDNA samples from cancer patients. Among the deconvoluted values falling outside 

the normal range established, the highest contributor across the cancer components 

of the reference atlas was regarded as the putative TOO of the malignancy. Overall, 

MetDecode assigned the correct TOO in 13 out of 16 cancer cases (accuracy 

81.25%). 100% of the colorectal and 85.71% of the ovarian cancer cfDNA samples 

were correctly classified. One mucinous ovarian carcinoma (stage IV) was predicted 

to have cervical cancer tissue as a major cancer contributor. For breast cancer, 60% 

of the samples were assigned to the correct tissue. One triple-negative breast cancer 

sample (case 5, stage IV) was misclassified as colorectal. For this sample, the 

deconvoluted contribution from several atlas entities, namely breast, ovary and the 

unknown component were also higher than normal (Supplementary Table 3, 

Additional File 2). This result might be caused by metastasis in multiple organs, such 

as liver, lung and lymph nodes. Additionally, one triple-negative breast cancer cfDNA 

sample (case 3, stage I) did not show any alteration compared to the controls. 
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Figure 5. Deconvolution of the cfDNA derived from patients with a confirmed cancer diagnosis. (A) 
Fold enrichment of the deconvoluted percentages in the cfDNA from each cancer cohort was 
determined using healthy controls as the baseline. For each group of the cohort, namely breast, ovary 
and colorectal, the deconvoluted contribution of each atlas entity is represented in the box plot. The 
box represents the interquartile range, the extremity represents the minimum and the maximum value. 
The median is marked by a horizontal bar inside the box. (B) Distribution of the deconvoluted 
percentage in the 16 cfDNA samples from cancer patients. The contribution from the different blood 
cell types is summed up and shown in blue. Expected range for each atlas entity was established 
using mean±2SD of the contribution detected in healthy controls. An atlas entity is referred to as the 
tissue of origin (TOO), when the relative contribution in that specific tissue is higher than this expected 
range. If multiple entities fall outside the range, the highest is considered the putative TOO. BRCA, 
breast carcinoma; CERCA, cervical carcinoma; COLCA, colorectal carcinoma; OVCA, ovarian 
carcinoma 

Discussion  

While there are huge efforts to enable cfDNA-based early multi-cancer detection, the 

utility of such tests is being explored [39]. Here, we present a novel method for 

methylation-based cfDNA deconvolution to aid the identification of cancer types. 

MetDecode combines a methylome reference with a novel algorithm which can 
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model for unknown contributors absent in the reference and is mindful of the 

coverage of each marker in the reference. In addition to accurately estimating the 

tumour proportion in in-silico mixtures (r=0.8603, p<0.001), the method also 

assigned the correct TOO in 81.25% of the cfDNA samples from cancer patients. 

Other deconvolution methods using epigenetic markers have been developed. 

MethAtlas [22] and cfNOMe [28], built on non-negative least squares and 

constrained programming respectively, modelled cfDNA mixtures as perfect linear 

combinations of the reference cell types. cfNOMe performed a multimodal analysis 

by complementing methylation with nucleosome occupancy profiles. To account for 

incomplete reference atlases, CelFiE [23] extended previous approaches by inferring 

the methylation patterns of unknown cell types from the data directly using a 

probabilistic model. MethylCIBERSORT [40] built on support vector regression 

(SVR) to perform robust deconvolution and discard the effect of markers with low 

reconstruction error whereas ARIC [24], also based on SVR, introduced a feature 

selection step to remove redundant markers, using condition numbers as a measure 

of collinearity. MethylResolver [25], on the other hand, alleviated the effect of outliers 

by using a least trimmed squares approach. CancerLocator [20] used a probabilistic 

model to estimate the tumour burden and identify the correct cancer type. 

CancerDetector [21] achieved higher sensitivity than CancerLocator by performing 

cancer classification at the level of individual sequencing reads. However, neither of 

these two methods allows full deconvolution of white blood cells but rather estimates 

the cancer proportions alone, therefore limiting the interpretability of the results. 

Finally, MeDeCom [26] is a reference-free approach based on regularized matrix 

factorization.  

Among all these methods, CelFiE is the first and only full reference-based technique 

proposing to tackle issues related to both the non-completeness of the atlas and the 

noisy nature of sequencing data. However, the number of parameters in CelFiE’s 

underlying model scales to the number of markers and (unknown) cell types, 

therefore exposing the method to overfitting risks. Full tissue–type deconvolution 

with modelling of unknowns has, to our knowledge, only been proposed in CelFiE 

and has not been properly addressed in the literature, as described above. Here we 

propose a novel computational method, coined MetDecode, to disentangle the 

methylation patterns of different cell types contributing to cfDNA mixtures, while 
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accounting for the potential incompleteness of the reference atlas and the inaccurate 

estimation of methylation ratios in low-coverage regions. 

Incorporating these algorithms into our pipeline was not practically feasible, since the 

peculiarities of our data make them mostly unsuitable for most of these 

deconvolution approaches. For example, MeDeCom [26] was not designed to handle 

a reference atlas, as the method is unsupervised. MethAtlas [22], like many other 

methods, does not account for the coverage, as the method expects methylation 

array data as input instead of sequencing data. Finally, CfNOMe [28] requires 

nucleosome occupancy profiles which we did not compute, as such profiles are not 

handled by some of the other tools (e.g. CelFIE [23]). 

The deconvolution of in-silico mixes affirms the performance of our deconvolution 

method. With respect to the gDNA samples, 2 ovarian carcinomas were 

misclassified as colorectal cancer. We hypothesize that the misassignment results 

from not including different ovarian carcinoma subtypes to build the reference atlas. 

In fact, the subtype used to build the reference atlas was high-grade ovarian 

carcinoma, while the three gDNA test samples were classified as clear cell ovarium 

carcinoma (n=2) and mucinous carcinoma (n=1). Similar to what was observed in the 

deconvolution of gDNA, one cfDNA sample from an ovarian cancer patient was not 

correctly classified. We hypothesize that the misassignment is a consequence of the 

absence of these ovarian carcinoma subtypes in the reference atlas and hence 

remains unrecognised [41,42].  

A way to overcome this limitation might reside in using cell-type specific methylation 

data for the reference atlas creation [38]. The development of cell-type-based 

methylome atlases might provide an opportunity to dissect the different contributing 

cell types and may well outperform the methylome markers based on bulk tissue-

specific entities. Cell-type specific methylation would ensure more precise 

deconvolution and offer clearer insight into the origin of the tumour. However, cell-

type-based methylation data is not yet available for the cancer tissues of interest 

[22]. Similarly, including different subtypes for the marker selection could potentially 

allow subtype identification and improve overall cancer diagnosis. Given the small 

number of samples available, no clear correlation between (mis)classification and 

cancer stage could be drawn. 
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Unique to our approach of selecting methylation markers is that we select regions 

with a methylation pattern distinct to one cell or tissue type and depending on the 

aims of the end user, it can be applied to different tissues or cell types. Existing 

marker selection approaches seek to maximise the difference between methylation 

ratio and the median of the ratio across all tissues. This does not necessarily ensure 

that only one tissue or cell type is differentially methylated compared to the rest of 

the entities in the reference atlas [23]. The limitation of our approach is that the 

number of markers may reduce with an increment in the number of atlas entities. 

Additionally, our methylome atlas was built with a limited number of samples per 

atlas entity. We envision that increasing the number of samples per atlas entity may 

improve specificity of the selected methylation markers. 

Conclusions 

Deconvolution of the cfDNA epigenetic signatures is an elegant approach to deduce 

the TOO or cancer-type. To estimate the contributions and the type of cancer and 

white blood cell types in a cfDNA sample, we developed MetDecode, a methylome 

reference-based deconvolution algorithm. MetDecode can model the unknown 

contributors unavailable in the reference and account for the coverage of each 

marker region to alleviate the potential sources of noise. 

Despite the limited sample size, the results presented here are encouraging and 

important for the future of liquid biopsy clinical application. In fact, a tool able to 

pinpoint the TOO of a malignancy can be used to streamline the diagnostic process 

in cancer patients. Emblematic cases in which the TOO detection via cfDNA can be 

of clinical utility are in the detection of cancer-like signals in maternal blood during 

routine non-invasive prenatal screening and in case of metastatic tumours of 

unknown primary. Deconvoluting and defining the TOO will aid the oncologists in 

identifying the tumour and direct treatment, streamlining the diagnostic process, 

especially in cases in which invasive examinations and radiological investigation are 

not ideal. Furthermore, if specific immune characteristics of the malignancy could be 

detected thanks to the blood-derived entities residing in the atlas, an important dowel 

for the treatment decision of the patient can be added simultaneously to the TOO 

identification. To conclude, we developed a method for deconvoluting the 
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components of plasma enabling detection of cancer origin using tissue-specific 

methylome information. 
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cfDNA - cell-free DNA 

TOO - tissue of origin 
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MSE - mean squared error 

HGSOC - high-grade serous ovarian carcinoma 

WBC - white blood cells 
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