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Abstract 34 

Background 35 

Viral genomes contain records of geographic movements and cross-scale transmission dynamics. 36 

However, the impact of regional heterogeneity, particularly among rural and urban centers, on viral 37 

spread and epidemic trajectory has been less explored due to limited data availability. Intensive 38 

and widespread efforts to collect and sequence SARS-CoV-2 viral samples have enabled the 39 

development of comparative genomic approaches to reconstruct spatial transmission history and 40 

understand viral transmission across different scales. 41 

 42 

Methods 43 

We proposed a novel spatial transmission count statistic that efficiently summarizes the geographic 44 

transmission patterns imprinted in viral phylogenies. Guided by a time-scaled tree with ancestral 45 

trait states, we identified spatial transmission linkages and categorize them as imports, local 46 

transmissions, and exports. These linkages were then summarized to represent the epidemic 47 

profile of the focal area. 48 

 49 

Results 50 

We demonstrated the utility of this approach for near real-time outbreak analysis using over 12,000 51 

full genomes and linked epidemiological data to investigate the spread of the SARS-CoV-2 in 52 

Texas. Our study showed (1) highly populated urban centers were the main sources of the epidemic 53 

in Texas; (2) the outbreaks in urban centers were connected to the global epidemic; and (3) 54 
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outbreaks in urban centers were locally maintained, while epidemics in rural areas were driven by 55 

repeated introductions. 56 

 57 

Conclusions 58 

In this study, we introduce the Source Sink Score, which allows us to determine whether a localized 59 

outbreak may be the source or sink to other regions, and the Local Import Score, which assesses 60 

whether the outbreak has transitioned to local transmission rather than being maintained by 61 

continued introductions. These epidemiological statistics provide actionable information for 62 

developing public health interventions tailored to the needs of affected areas. 63 

 64 

Plain Language Summary 65 

This study examined how COVID-19 spread through urban and rural areas in Texas by analyzing 66 

the virus's genomes from over 12,000 samples. Our goal was to understand how the virus travels 67 

and impacts different regions. Our findings revealed that densely populated urban centers were the 68 

primary sources of the virus in Texas. In contrast, outbreaks in rural areas were often fueled by 69 

new introductions of the virus from external sources. To conduct this analysis, we employed new 70 

computational methods that track where the virus originates and where it spreads. These methods 71 

provide detailed information crucial for public health officials, particularly in regions where the virus 72 

has more severe impacts or exhibits unique spread patterns. 73 

 74 

Introduction 75 

Genomic epidemiology is a field that utilizes pathogen genomes to study the spread of infectious 76 

diseases through populations 1. This approach has become increasingly popular due to the 77 

decreasing cost of genomic sequencing combined with increasing computational power. During the 78 

COVID-19 pandemic, increased number of countries started generating genomic data to inform 79 
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public health responses 2. The Global Initiative on Sharing All Influenza Data (GISAID) 3 expanded 80 

to accommodate these novel data and now maintains the world’s largest database of SARS-CoV-81 

2 sequences. As of December 2023, over 16 million sequences, sampled from over 200 82 

countries/regions, have been submitted and archived. Such a vast and diverse dataset enables 83 

researchers and public health officials to identify key mutations 4,5 and track the emergence of 84 

variants of interest (VOIs) or variants of concern (VOCs). Additionally, this wealth of genomic 85 

information creates opportunities to uncover the hidden characteristics of the local-scale outbreak, 86 

such as the spatial dispersal of transmission and the demographic characteristics contributing to 87 

transmission patterns. However, effectively handling the complexity of the SARS-CoV-2 genomic 88 

dataset requires addressing key challenges, such as establishing robust sampling frameworks to 89 

draw reliable conclusions and developing efficient computational algorithms/pipelines. 90 

 91 

In genomic epidemiology, analyzing sampling biases and develop an appropriate sampling strategy 92 

are crucial steps 6. Recent studies have shown that differences in epidemiology and sampling can 93 

impact our ability to identify genomic clusters 7. For instance, decreased sampling fraction can lead 94 

to the identification of multiple, separate clusters. Sampling biases can also impact 95 

phylogeographic analyses. When investigating diffusion in discrete spaces, if a specific area is 96 

overrepresented in the dataset, it may lead to an overrepresentation of the same area at inferred 97 

internal nodes 1. Similarly, when investigating diffusion in continuous space, extreme sampling bias 98 

might cause the posterior distribution to exclude the true origin location of the root 8. 99 

 100 

Viral transmission happens at different spatial scales, encompassing international pandemics, 101 

domestic dispersal, and local outbreaks such as those in jails, nursing homes, hospitals, or schools. 102 

By mapping how pathogens spread through space and time, evidence-based interventions can be 103 

better developed and applied across various scales 9. The well-established software package, 104 

Bayesian Evolutionary Analysis Sampling Trees (BEAST) 10, implements discrete 11 and continuous 105 

12 phylogeographic models. Previous studies have used the discrete model to identify the 106 
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transmission clusters of SARS-CoV-2 introduced in Europe 13, United States 14, Denmark 15 and 107 

England 16. Additionally, the continuous model has been applied to elucidate the spatial expansion 108 

of SARS-CoV-2 in Belgium 17 and New York City 18. Moreover, the BEAST module can 109 

accommodate individual travel history 19 to yield high-accuracy prediction regarding the location of 110 

ancestral nodes. Apart from Bayesian analysis, TreeTime 20 applies a maximum likelihood 111 

approach to infer the transitions between discrete characters. As a component of the Nextstrain 21 112 

pipeline, this fast analysis enables real-time tracking of pathogens. With the rapid growth in SARS-113 

CoV-2 genome data, we are now facing extensive phylogenies with thousands of tips. This raises 114 

the question: How can we translate the evolutionary changes of geographic traits from such 115 

expansive trees into clear epidemiological insights? 116 

 117 

The transmission dynamics of SARS-CoV-2 are shaped by host immunity, host movement patterns, 118 

and other demographic characteristics 22. For instance, in Chile, people aged under 40 in 119 

municipalities with the lowest socioeconomic status had an infection fatality rate 3.1 times higher 120 

than those with the highest socioeconomic status 23. The severity of SARS-CoV-2 infection and the 121 

risk of mortality increased significantly with age 24. Accordingly, identifying at-risk populations is 122 

crucial for determining the potential burden on public health. In the US, rural populations have been 123 

particularly vulnerable to COVID-19 complications 25, experiencing higher incidences of disease 124 

and mortality 26. This vulnerability is largely attributed to limited access to healthcare and social 125 

services 27, as well as reduced access to and utilization of health information sources 28 compared 126 

to urban residents. Previous phylodynamic analyses have shown that frequent bi-directional 127 

transmission occurs between rural and urban communities 29. However, few studies have 128 

investigated the differences in transmission patterns between these areas. 129 

 130 

In this study, we developed a pipeline to understand local-scale epidemic trends. Our approach 131 

includes proportional genome sampling based on case counts 14, followed by phylogeographic 132 

analysis using the Nextstrain framework 21. Lastly, we summarize and compare transmission 133 
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patterns across subregions to identify viral sources and sinks. To demonstrate the utility of this 134 

method, we focused on the Delta wave in Texas, aiming to characterize viral diffusion within the 135 

state and compare epidemic trends between urban and rural areas. 136 

 137 

Methods 138 

Surveillance and genetic dataset 139 

The United States Office of Management and Budget (OMB) defines Texas as having 25 140 

metropolitan areas (Table S1). Any population, housing, or territory not included in these 141 

metropolitan areas is classified as rural. The Rural-Urban Continuum Codes (RUCC) further 142 

categorize metropolitan areas based on population size. Dallas–Fort Worth, Houston, San Antonio, 143 

and Austin, all classified as RUCC-1 30, represent the most populous metropolitan areas in Texas. 144 

 145 

We obtained historical COVID-19 data for confirmed cases in Texas from the Texas Department of 146 

State Health Services (DSHS) website 31. These weekly case counts, organized by county, were 147 

aggregated into metropolitan areas to inform our genome sampling strategy. Following the 148 

approach of Anderson F. Brito 14, we developed R scripts, later consolidated into an R package 149 

called Subsamplerr. This package processes case count tables and genome metadata, enabling 150 

visual exploration of sampling heterogeneity and the implementation of proportional sampling 151 

schemes. 152 

 153 

With support from the Houston Health Department (HHD), we accessed a large dataset of SARS-154 

CoV-2 genomes sampled in Texas: 51,229 genomes with linked metadata. We focused on the 155 

Delta variant for our analysis, as its outbreak caused severe illness, spread rapidly before 156 

widespread immunity was established, and was intensely sampled at multiple scales 32. Of the 157 

available genomes, 24,593 were identified as Delta variant, and 5,899 were subsampled 158 

proportionally to the case counts. Additionally, we sampled 6,386 Delta genomes from 49 countries 159 
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to provide global context and estimate viral migration to and from Texas. Our final dataset 160 

comprises 12,285 epidemiologically linked SARS-CoV-2 genomes. 161 

 162 

Phylogeographic analysis pipeline 163 

The pipeline comprises two major components: (1) Phylogenetic Reconstruction and (2) 164 

Characterization of Spatial Transmission Linkages. 165 

 166 

Phylogenetic Reconstruction: This component utilizes the Nextstrain pipeline 21 to generate a time-167 

labeled phylogeny with inferred ancestral trait states. Sequence alignment was conducted using 168 

Nextalign 21, while the maximum likelihood tree construction was achieved with IQ-TREE 33, 169 

applying a GTR substitution model. TreeTime 20 was employed to produce a time-scaled phylogeny 170 

and infer ancestral node states. The phylogeny was rooted using early samples from Wuhan 171 

(Wuhan-Hu-1/2019). Its temporal resolution was set based on an assumed nucleotide substitution 172 

rate of 8 ∗ 10!" substitutions per site per year (default setting of Nextstrain build for SARS-CoV-2). 173 

Migration patterns between distinct geographic regions were inferred through time-reversible 174 

models 20. 175 

 176 

Characterization of Spatial Transmission Linkages: This component used custom scripts to identify 177 

spatial transmission linkages from the phylogeny and summarize epidemic trends in the focal 178 

region. The tree file was imported and read using the 'treeio' 34 package in R. The tree was then 179 

converted into a structured data frame for further analysis, facilitated by the 'tidytree' package 34. 180 

Branches with durations exceeding 15 days were excluded, and the shorter branches in the 181 

phylogeny were designated as spatial transmission linkages. By analyzing trait states, we identified 182 

whether transmissions occurred within the focal area, involved imports from another location, or 183 
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resulted in exports to another area. The time series of spatial transmission counts, categorized by 184 

type, provides an overview of the epidemic trends in the focal region. 185 

 186 

Metrics that describe transmission pattern 187 

Different areas possess varying population sizes, levels of population mobility, and immunological 188 

characteristics, all of which can contribute to differences in the size and dynamics of the epidemic. 189 

We introduced two metrics to quantitatively compare the characteristics of epidemics in different 190 

areas. 191 

 192 

We define the Local Import Score to estimate the proportion of new cases due to introductions: 193 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼	𝑆𝑆𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆 = 	
𝐶𝐶#(𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼)

𝐶𝐶#(𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼) +	𝐶𝐶#(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝐼𝐼𝐿𝐿𝑇𝑇𝑇𝑇)
 194 

𝐶𝐶#(𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼 ) represents the count of viral imports over a specific period 𝐼𝐼  and 𝐶𝐶#(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝐼𝐼𝐿𝐿𝑇𝑇𝑇𝑇 ) 195 

represents the count of local transmissions during the same period. The choice of the time window 196 

for calculation is contingent on the research objective. It can encompass the entire duration of the 197 

epidemic wave to assess cumulative effects, or it might focus on shorter intervals, such as 198 
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epidemiological weeks, for real-time surveillance. The Local Import Score ranges between 0 and 199 

1. 200 

 201 

We introduce the Source Sink Score to identify whether a region acts primarily as a viral source or 202 

sink: 203 

𝑆𝑆𝐿𝐿𝑆𝑆𝐼𝐼𝐿𝐿𝑆𝑆	𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆	𝑆𝑆𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆 = 	
𝐶𝐶#(𝐸𝐸𝐸𝐸𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼) −	𝐶𝐶#(𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼)
𝐶𝐶#(𝐸𝐸𝐸𝐸𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼) +	𝐶𝐶#(𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼) 204 

𝐶𝐶#(𝐸𝐸𝐸𝐸𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼) represents the count of exports over a specific period 𝐼𝐼. The Source-Sink Score ranges 205 

from -1 to 1. A score close to 1 indicates that the region primarily acts as a viral source, while a 206 

score near -1 suggests that the region mainly functions as a viral sink. 207 

 208 

Phylogenetic-based spatial network 209 

We constructed a weighted, undirected network to capture the viral flow between metropolitan 210 

areas in Texas. Each metropolitan area is represented as a node, and the edge carries weight 211 

corresponding to the spatial transmission counts. After establishing the network, we conducted the 212 

centrality analysis to rank the metropolitan areas based on their betweenness, closeness, and 213 

degree centrality. We processed the various network data objects using the ‘igraph’ package 35 in 214 

R. Visualizations were generated with the ‘ggplot2’ package 36. We utilized the ‘qgraph’ package 37 215 

to compute the centrality statistics of nodes. 216 

 217 

Sensitivity analysis of Source Sink Score and Local Import Scores 218 

To evaluate the robustness of the Source Sink Score and Local Import Score, we conducted a 219 

sensitivity analysis by generating nine additional genome datasets for Texas. These datasets were 220 

created using the same proportional sampling scheme as the original dataset. We then ran the 221 

same phylogeographic workflows on each dataset. By comparing the results across these 222 
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replicates, we assessed how uncertainties in sampling and phylogenetic inference affected the 223 

calculated scores. 224 

 225 

Results 226 

Genome sampling bias and subsampling scheme adjustments 227 

With support from the Houston Health Department (HHD), we collected 24,593 Delta samples 228 

(B.1.167.2 and AY*) with high-coverage complete genomes (>29,000 bp) and linked sampling site 229 

ZIP codes. Our genome database contained over a thousand distinct ZIP code records, which we 230 

translated into their affiliated metropolitan areas. We calculated the sampling ratio by dividing the 231 

number of available genomes by the number of reported cases to explore sampling biases. 232 

Significant heterogeneity in sampling ratios was observed across different metropolitan areas from 233 

Epi-Week 14 to Epi-Week 43 (Figure S1A). Victoria, Wichita Falls, and Bryan-College Station were 234 

identified as the top three under-sampled metropolitan areas, while Houston, San Angelo, and 235 

Abilene were the most over-sampled. To mitigate potential sampling biases, we applied a 236 

proportional sampling scheme (Figure S1B), thereby enhancing the accuracy of our 237 

phylogeographic analysis 9,10. We adopted a consistent sampling ratio of 0.006 as a baseline for all 238 

regions. In regions that were under-sampled (sampling ratio below the baseline), all available 239 

genomes were retained. Conversely, over-sampled regions (with a sampling ratio exceeding the 240 

baseline) were down-sampled to match the baseline rate. As a result, we selected 5,899 Texas 241 

genomes, and the variance in sampling ratios across all metropolitan areas dropped substantially 242 

from 5.74e-05 to 7.56e-07. 243 

 244 

The transmission dynamics in Texas 245 

We conducted a comprehensive phylogeographic analysis of 12,048 SARS-CoV-2 Delta genomes 246 

sampled from March 27, 2021, to October 24, 2021, to investigate the timing of virus introduction 247 

into Texas and the dynamics of the resulting local transmission lineages. These genomes were 248 
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selected to ensure a roughly 1:1 ratio between Texas sequences (Table S2) and globally contextual 249 

sequences (Table S3). The Nextstrain 21 phylogenetic workflow was applied, in which a 250 

phylogenetic tree was estimated using IQ-TREE 33, and a time-adjusted phylogeny was inferred 251 

with TreeTime 20. The trait states of ancestral nodes were reconstructed as either 'Texas' or 'non-252 

Texas' using the ‘mugration’ model implemented in TreeTime. 253 

 254 

By considering the branches connecting each node to its parent as spatial transmission links, the 255 

location trait assigned to the nodes helps us categorize these connections into imports, local 256 

transmissions, and exports (Figures 1A, 1C). We defined a time series for these links as spatial 257 

transmission counts, providing a comprehensive summary of the epidemic's trends over time 258 

(Figures 1B, 1D). Given that the infectious period for SARS-CoV-2 typically ranges from day 2 to 259 

day 15 post-infection 22, longer branches in the phylogeny likely indicate multiple transmission 260 

events. To reduce uncertainty, we excluded branches with durations exceeding 15 days, removing 261 

9,995 out of 22,991 branches. Our findings reveal that the Delta variant was first introduced into 262 

Texas on April 5, 2021, with a confidence interval from March 18, 2021, to April 5, 2021, preceding 263 

the first documented case in Houston in mid-April 2021 39. The Texas epidemic featured at least 264 

311 viral imports and 433 viral exports, linking statewide cases to the global pandemic. The 265 

outbreak in Texas was predominantly driven by local transmission, with 6,584 branches classified 266 

as local transmission. 267 

 268 

Characterizing spatial transmission heterogeneity 269 

To understand the spatial transmission of SARS-CoV-2 in Texas, we estimated ancestral location 270 

states on the phylogeny described above, incorporating 27 location traits: one contextual trait and 271 

26 subregions of Texas (25 metropolitan areas and one combined rural area) (Figure S2). We then 272 

constructed a network of metropolitan areas in Texas based on phylogeographic signals (Figure 273 

2A). The inferred network consisted of 25 nodes and 88 edges. Centrality analysis, detailed in 274 

Table S4, highlighted four pivotal nodes: Dallas–Fort Worth, Houston, San Antonio, and Austin. 275 
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These subregions were consistently identified as key hubs based on degree, betweenness, and 276 

connectedness 40. Notably, all four of these metropolitan areas are classified as RUCC-1, 277 

suggesting populated urban centers played a crucial role in the viral spread across Texas. 278 

 279 

Community source-sink dynamics 280 

We introduced the Source Sink Score to classify populations as either viral sources or sinks. This 281 

score ranges from -1 to 1, with a score near 1 indicating a population is predominantly a viral 282 

source—where the number of exports greatly exceeds imports—and a score near -1 indicating a 283 

population is primarily a viral sink, where imports dominate over exports. 284 

 285 

Subregions of Texas were categorized as sources or sinks based on their cumulative Source Sink 286 

Score, with the full list provided in Table S5. Our analysis showed that the RUCC-1 group, which 287 

represents densely populated urban centers, had the highest Source Sink Scores, emphasizing its 288 

role as a major source during the outbreak in Texas (Figure 2B). Within the RUCC-1 group, Dallas-289 

Fort Worth had the highest score at 0.092, followed by Houston (0.063), San Antonio (0.000), and 290 

Austin (-0.444). In contrast, rural areas, with a score of -0.717, primarily acted as viral sinks. 291 

 292 

Epidemic trends in populated urban centers compared to rural areas 293 

We introduced the Local Import Score to estimate the proportion of new cases due to introductions. 294 

This score ranges from 0 to 1, with values closer to 1 indicating that the outbreak is primarily driven 295 

by external introductions, and values closer to 0 suggesting that local transmission is well-296 

sustained. Identifying when most new cases are locally acquired is crucial for informing public 297 

health resource allocation, contact tracing efforts, and control strategies during emergency 298 

situations. 299 

 300 

Using Houston as a representative city, we compared epidemic trends in densely populated urban 301 

centers to those in rural areas (Figure 3). Epidemic trends for other subregions are shown in Figures 302 
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S3–S26. The accumulated Local Import Score for Houston during the entire Delta wave was 0.176, 303 

indicating that the outbreak was largely sustained by local transmission. In contrast, rural areas 304 

had an accumulated Local Import Score of 0.558, suggesting that the epidemic there was primarily 305 

driven by external introductions. Our results suggest that while an outbreak may initially rely on 306 

external introductions, once the epidemic becomes locally sustained, the region can evolve into a 307 

primary source of pathogen spread to other areas (Figures 3C and 3D). 308 

 309 

We also analyzed viral flow between global contexts and urban centers (e.g., Houston) (Figure 4A), 310 

as well as between global contexts and rural areas (Figure 4B). Introductions from outside Texas 311 

accounted for 60% of all imports to Houston, while 25% of all exports from Houston were to 312 

locations outside Texas. By comparison, introductions from non-Texas sources accounted for 26% 313 

of all imports to rural areas, and 3% of rural exports were to locations outside Texas. These findings 314 

suggest that Houston, as a highly connected and large urban center, served as an important hub 315 

linking the outbreak across Texas to the broader global pandemic. 316 

 317 

Assessing the sensitivity of the new metrics 318 

Despite the uncertainties inherent in sampling and phylogenetic reconstruction, our previous 319 

conclusions remained consistent across replicates. All 10 replicates supported RUCC-1 regions as 320 

the predominant viral sources, as these regions consistently showed the highest Source Sink 321 

Scores (Figure 4). Houston and Dallas–Fort Worth displayed the most robust results, as reflected 322 

by their narrow score ranges. Specifically, the Source Sink Score for Dallas–Fort Worth ranged 323 

from 0.049 to 0.151, while Houston's score ranged from 0.063 to 0.190. The Local Import Score for 324 

Dallas–Fort Worth ranged from 0.142 to 0.169, while Houston's score ranged from 0.152 to 0.178. 325 
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A detailed record of the sensitivity analysis conducted across different metrics is provided in Table 326 

S6. 327 

 328 

Discussion 329 

In this study, we introduced a novel spatial transmission count statistic, which characterizes the 330 

weekly counts of local spread, viral inflow, and outflow, illustrating transmission trends over time. 331 

The Source Sink Score and Local Import Score are heuristic metrics that allow for quantitative 332 

comparison of epidemic trends between regions. The Source Sink Score measures net viral 333 

exports, weighted by the outbreak size, while the Local Import Score compares the significance of 334 

external introductions versus local transmission in shaping the epidemic. We investigated the 335 

geographic diffusion pattern of SARS-CoV-2 in Texas to demonstrate the utility of this novel 336 

phylogeographic approach. At the state level, we characterized the timing and size of viral imports. 337 

Within the state of Texas, we reconstructed regional dissemination and contrasted the epidemic 338 

trends between urban centers and rural areas. 339 

 340 

The size of our genomic data offers unprecedented opportunities for high-resolution investigations 341 

of spatial transmission history. Our analysis revealed that cryptic transmissions began as early as 342 

late March, 2 to 3 weeks before the identification of the first Delta case in Houston 39. Additionally, 343 

we identified at least 311 imports and 433 exports, highlighting Texas’s intensive connection to the 344 

global pandemic. Our results indicated that the Delta variant invaded Texas through multiple 345 

introductions. These independent imports subsequently formed massive local transmission clusters 346 

in Texas. This pattern aligns with observations from Connecticut’s initial COVID-19 wave 41, the 347 

UK’s first wave 42, the emergence of B.1.1.7 variant across the United States 14, and the presence 348 

of Omicron BA.1 in England 16. 349 

 350 

The spatial transmission count statistic represents the time-series of categorized transmission 351 

linkages related to the focal regions. Informed by the annotated viral phylogeny, it summarizes the 352 
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trends of local spread and viral flow at a minimal computational cost. Adopting a simplified model, 353 

we assume that transmission events take place along all the branches of the viral phylogeny. 354 

However, phylogenetic trees are not equivalent to transmission trees; they do not directly reveal 355 

who infected whom 43,44. As a result, our model may introduce bias in the estimation of local 356 

transmission counts. Despite this limitation, it provides valuable insights into local-scale 357 

transmission and epidemic trajectories that can inform control efforts. The efficiency of this statistic 358 

enables real-time surveillance of tens of thousands of viral genomes, which is crucial for addressing 359 

the challenges posed by the current pandemic or potential future outbreaks. 360 

 361 

The role of a population as a source or sink evolves dynamically as the outbreak progresses and 362 

host immunity develops. Therefore, the Source Sink Score should be interpreted as a comparative 363 

measure, emphasizing relative differences between regions rather than absolute values. In Texas, 364 

populated urban centers functioned as the primary viral sources during the outbreak. Among all 365 

subregions, the RUCC-1 group had the highest Source Sink Scores, with Dallas-Fort Worth had 366 

the score at 0.092, followed by Houston (0.063), San Antonio (0.000), and Austin (-0.444). The 367 

significant role of these urban centers in spreading the epidemic can be linked to their key locations 368 

in road and air travel networks. Houston, Dallas-Fort Worth, and San Antonio, connected by 369 

Interstates 10, 45, and 35, form the vertices of the Texas Triangle 45, one of 11 megaregions in the 370 

US and home to the majority of the Texas’s population. This complex connectivity, along with the 371 

presence of major airports such as George Bush Intercontinental Airport in Houston (a United 372 

Airlines hub), Dallas-Fort Worth International Airport (American Airlines' largest primary hub and 373 

headquarters), and San Antonio International Airport (a Southwest Airlines hub), highlights their 374 

pivotal role in airway travel. Our analysis underscored the crucial role of urban centers in driving 375 

the outbreak. This insight provides valuable information that can guide public health decision-376 
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making. Increased control efforts in highly connected urban centers may have a disproportionate 377 

impact on connected rural areas 46. 378 

 379 

Rural areas exhibit a lower level of viral flow in relation to global contexts, with epidemics in these 380 

regions predominantly relying on external introductions, thus establishing them as viral sinks. 381 

Notably, urban centers and rural areas demonstrate distinct transmission patterns. It is important 382 

to note that our analysis assumes that virus transmission in each region is influenced only by 383 

population size and density, without accounting for the effects of community behavior and beliefs, 384 

healthcare disparities, environmental factors, and other influences on viral transmission. Future 385 

studies addressing these aspects will provide more comprehensive insights into the underlying 386 

drivers of transmission. 387 

 388 

Despite uncertainties in sampling and phylogenetic reconstruction, all replicates from the sensitivity 389 

analysis supported RUCC-1 regions as the predominant viral sources. The robustness of both the 390 

Source Sink Score and the Local Import Score varied across regions. Houston and Dallas–Fort 391 

Worth exhibited more stable results, with narrower score ranges, likely due to the larger volume of 392 

data available (>1500 genomes). In contrast, regions such as Amarillo, Odessa, and San Angelo 393 

had fewer genomes (<50 genomes), leading to broader score ranges and making interpretation 394 

less reliable. We believe that data availability and volume significantly impact the robustness of 395 

these metrics. Therefore, future users must carefully inspect data disparities and be cautious when 396 

interpreting results from regions with limited genome data. 397 

 398 

Former Bayesian phylodynamic analyses, such as those conducted in Washington State 47,48, 399 

investigated the role of viral introductions in community spread. These studies use effective 400 

population sizes estimated from approximate structured coalescent models to determine the 401 

percentage of new cases resulting from introductions. Inspired by these studies, we propose 402 

integrating the Source Sink Score and Local Import Score into a Bayesian phylodynamic framework 403 
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as future direction. This integration would allow us to calculate Bayesian Credible Intervals for these 404 

scores, providing a reliable measure of their uncertainty. This approach is particularly valuable 405 

when testing whether the Source Sink Score in one region, such as region A, is significantly higher 406 

than in another, such as region B, thereby facilitating robust regional comparisons. 407 

 408 

Data availability 409 

The GISAID accession IDs of the genomes used in this study are provided on our GitHub repository 410 

(https://github.com/leke-lyu/transmissionCount). Additional data obtained during the study is 411 

available from the corresponding author upon reasonable request. 412 

 413 

Code availability 414 

The R package Subsamplerr, which enables visual exploration of sampling heterogeneity and the 415 

implementation of proportional sampling schemes, is publicly available at https://github.com/leke-416 

lyu/subsamplerr. For the pipeline setup and configurations used in the Nextstrain build, including 417 

Snakemake profiles, visit our GitHub repository at https://github.com/leke-418 

lyu/surveillanceInTexas. All scripts used to generate the results in the Texas case study are publicly 419 

available at https://github.com/leke-lyu/transmissionCount. 420 
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Figures and Tables 542 

 543 

Figure 1. The spatial transmission count statistic investigates the transmission dynamic. A. 544 

Conceptual figure showing that transmissions can be classified into three categories: import, local 545 

transmission, and export. B. The schematic tree depicts a total of 18 spatial transmission linkages 546 

in Epi-Week X: 6 imports, 9 local transmissions, and 3 exports. C. In the time-adjusted phylogeny, 547 

branches are colored based on the categories of the corresponding spatial transmission linkages. 548 

D. The time series of spatial transmission counts summarizes the epidemic trend in Texas. 549 
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 551 

Figure 2. Characterizing Spatial Transmission Heterogeneity. Subregions across Texas are 552 

categorized by their Rural-Urban Continuum Codes (RUCC). RUCC-1 includes metropolitan areas 553 

with over 1 million residents, RUCC-2 includes areas with populations between 250,000 and 1 554 

million, and RUCC-3 represents areas with fewer than 250,000 residents. The four major urban 555 

centers—Dallas-Fort Worth, Houston, San Antonio, and Austin—are classified as RUCC-1. A. 556 

Phylogeographic network of Texas metropolitan areas. In this network, each node represents a 557 

metropolitan area, and the width of the edges is proportional to the spatial transmission counts. B. 558 

The Source Sink Score identifies key source hubs of SARS-CoV-2 spread in Texas. Dots in the 559 

box plot represent subregions of Texas. 560 
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 562 

Figure 3. Epidemic trends on the Delta outbreak in populated urban centers vs the rural 563 

areas. A. The epidemic trend of Houston. B. The epidemic trend of the rural areas. The top of the 564 

panel shows the time series of spatial transmission counts by week. The dashed pink line 565 

represents exports from the analyzed regions to non-Texas. The dashed green line represents 566 

imports from non-Texas into the analyzed regions. C. The trend of Local Import Score in Houston. 567 

D. The trend of Local Import Score in rural areas. The black bars in the middle of the panel depict 568 

the weekly dynamics of Local Import Score. The dashed blue line indicates the accumulated Local 569 

Import Score. E. The trend of Source Sink Score in Houston. F. The trend of Source Sink Score in 570 

rural areas. The solid red line represents the benchmark of 0, indicating a balance between imports 571 

and exports. The dashed blue line marks the accumulated Source Sink Score. 572 
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 574 

Figure 4. Sensitivity Analysis of 10 Replicates. A. Source Sink Score for subregions in Texas. 575 

B. Local Import Score for subregions in Texas. Both plots share the same x-axis, where regions 576 

are ranked from highest to lowest mean Source Sink Score. Each colored line connects the 577 

statistics estimated from the same replicate. 578 
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