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Abstract 

Viral genomes contain records of geographic movements and cross-scale transmission dynamics. 

However, the impact of population heterogeneity, particularly among rural and urban areas, on viral 

spread and epidemic trajectory has been less explored due to limited data availability. Intensive 

and widespread efforts to collect and sequence SARS-CoV-2 viral samples have enabled the 

development of comparative genomic approaches to reconstruct spatial transmission history and 

understand viral transmission across different scales. Large genomic datasets with few mutations 

present challenges for traditional phylodynamic approaches. To address this issue, we propose a 

novel spatial transmission count statistic that efficiently summarizes the geographic transmission 

patterns imprinted on viral phylogenies. Our analysis pipeline reconstructs a time-scaled phylogeny 

with ancestral trait states and identifies spatial transmission linkages, categorized as imports, local 

transmission, and exports. These linkages are summarized to represent the epidemic profile of the 

focal area. We demonstrate the utility of this approach for near real-time outbreak analysis using 

over 12,000 full genomes and linked epidemiological data to investigate the spread of the SARS-

CoV-2 Delta variant in Texas. Our goal is to trace the Delta variant’s origin and to understand the 

role of urban and rural areas in the spatial diffusion patterns observed in Texas. Our study shows 

(1) highly populated urban centers were the main sources of the epidemic in Texas; (2) the 

outbreaks in urban centers were connected to the global epidemic; and (3) outbreaks in urban 

centers were locally maintained, while epidemics in rural areas were driven by repeated 

introductions. 

Significance Statement 

We developed a novel phylogeographic approach that analyzes transmission patterns at low 
computational cost. The population structure and distribution in Texas is not homogenous, with 
most of the population concentrated in a few large and well-connected urban centers, surrounded 
by many smaller rural communities. Few studies have investigated the role of population density 
and distribution on phylodynamic inference of infectious disease dynamics. Applying our new 
method, we examined the variations in epidemic patterns between urban centers (e.g., Houston) 
and rural areas in Texas. We found that urban centers are the primary source for SARS-CoV-2 in 
rural areas. This analysis lays the groundwork for designing effective public health interventions 
specifically tailored to the needs of affected areas. 

 
Main Text 
 
Introduction 
Genomic epidemiology is a field that utilizes pathogen genomes to study the spread of infectious 
diseases through populations (1). This approach has become increasingly popular due to the 
decreasing cost of genomic sequencing combined with increasing computational power. During the 
COVID-19 pandemic, increased number of countries started generating genomic data to inform 
public health responses (2). The Global Initiative on Sharing All Influenza Data (GISAID) (3) 
expanded to accommodate these novel data and now maintains the world’s largest database of 
SARS-CoV-2 sequences. As of December 2023, over 16 million sequences, sampled from over 
200 countries/regions, have been submitted and archived. Such a vast and diverse dataset enables 
researchers and public health officials to identify key mutations (4, 5) and track the emergence of 
variants of interest (VOIs) or variants of concern (VOCs). Additionally, this wealth of genomic 
information creates opportunities to uncover the hidden characteristics of the pandemic, such as 
the spatial scales of transmission and the demographic characteristics contributing to transmission 
patterns. However, effectively handling the complexity of the SARS-CoV-2 genomic dataset 
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requires addressing key challenges, such as developing efficient computational 
algorithms/pipelines and establishing robust sampling frameworks to draw reliable conclusions. 
 
Viral transmission happens at different spatial scales, encompassing international pandemics, 
domestic dispersal, and local outbreaks such as those in jails, nursing homes, hospitals, or schools. 
By mapping how pathogens spread through space and time, evidence-based interventions can be 
better developed and applied across various scales (6). Within the framework of phylogeographic 
analysis, sampling locations are assigned as sequence traits, and the ancestral states for traits are 
estimated on the phylogenetic tree. The well-established software package, Bayesian Evolutionary 
Analysis Sampling Trees (BEAST) (7), implements discrete (8) and continuous (9) phylogeographic 
models. Previous studies have used the discrete model to identify the transmission clusters of 
SARS-CoV-2 introduced in Europe (10), United States (11), Denmark (12) and England (13). 
Additionally, the continuous model has been applied to elucidate the spatial expansion of SARS-
CoV-2 in Belgium (14) and New York City (15). Moreover, the BEAST module can accommodate 
individual travel history (16) to yield high-accuracy prediction regarding the location of ancestral 
nodes. Apart from Bayesian analysis, TreeTime (17) applies a maximum likelihood approach to 
infer the transitions between discrete characters. As a component of the Nextstrain (18) pipeline, 
this fast analysis enables real-time tracking of pathogens. With the rapid growth in SARS-CoV-2 
data, we are now facing extensive phylogenies with thousands of tips. This raises the question: 
How can we translate the evolutionary changes of geographic traits from such expansive trees into 
clear epidemiological insights? 
 
The transmission dynamics of SARS-CoV-2 are shaped by host immunity, host movement patterns, 
and other demographic characteristics (19). For instance, in Chile, people aged under 40 in 
municipalities with the lowest socioeconomic status had an infection fatality rate 3.1 times higher 
than those with the highest socioeconomic status (20). The severity of SARS-CoV-2 infection and 
the risk of mortality increased significantly with age (21). Accordingly, understanding the 
demographic composition of a population at risk is crucial in determining the potential burden on 
public health. In the US, rural populations have been particularly vulnerable to COVID-19 
complications (22), experiencing higher incidences of disease, mortality, and unemployment. This 
vulnerability is largely attributed to limited access to healthcare and social services compared to 
their urban counterparts (23). There have been few studies that investigate the heterogeneity of 
transmission between rural and urban areas. 
 
In genomic epidemiology, it is critical to analyze sampling biases and develop an appropriate 
sampling strategy (24). Recent studies have shown that differences in epidemiology and sampling 
can impact our ability to identify genomic clusters (25). For instance, decreased sampling fraction 
can lead to the identification of multiple, separate clusters. Moreover, sampling biases can also 
impact phylogeographic analyses. In the discrete model, if a specific area is overrepresented in the 
dataset, it may lead to an overrepresentation of the same area at inferred internal nodes (1). In the 
continuous model, extreme sampling bias might cause the posterior distribution to exclude the true 
origin location of the root (26). 
 
In this study, we developed a novel phylogeographic pipeline to mitigate genome sampling bias, 
infer viral phylogenetic relationships, and summarize transmission patterns across multiple scales. 
To demonstrate the utility of this method, we focused on Texas, aiming to characterize the viral 
diffusion within the state and compare epidemic trends between urban and rural areas. 
 
Results 
 
Genome Sampling Bias and Subsampling Scheme Adjustments 
With support from the Houston Health Department (HHD), we gained access to detailed metadata 
(zip codes) for 51,229 SARS-CoV-2 genomes sampled in Texas. Out of these, 24,593 were Delta 
samples (B.1.167.2 and AY*) with high-coverage complete genomes (> 29,000 bp). The metadata 
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in our genome database spans over a thousand distinct zip code records. We subsequently 
translated these zip code records to their corresponding metropolitan areas to facilitate future 
phylogeographic analysis. Based on the USDA’s Rural-Urban Continuum Code (RUCC), 
metropolitan areas can be categorized by their population size. Metropolitan areas with over 1 
million residents are labeled RUCC-1; those housing between 250,000 and 1 million individuals are 
assigned RUCC-2; and areas with fewer than 250,000 residents are denoted as RUCC-3 (27). Four 
major urban centers in Texas - Dallas-Fort Worth, Houston, San Antonio, and Austin - are classified 
as RUCC-1. The detailed list of RUCC classifications for metropolitan areas can be found in Table 
S1. 
To explore sampling biases in Texas, we calculated the sampling ratio by dividing the count of 
available genomes by the count of reported cases. We noted significant heterogeneity in sampling 
ratio across different metropolitan areas from Epi-Week 14 to Epi-Week 43 (Figure S1A). During 
the Delta wave, Victoria, Wichita Falls, and Bryan-College Station emerged as the top three under-
sampled metropolitan areas, while Houston, San Angelo, and Abilene were the most over-sampled. 
Subsequently, we introduced a subsampling scheme (Figure S1B) to reduce these sampling 
biases, thereby enhancing the accuracy of our phylogeographic analysis (1, 28). This proportional 
sampling method establishes a consistent sampling ratio to serve as a baseline for all regions. In 
cases where regions are under-sampled (sampling ratio below the baseline), all available genomes 
were retained. Conversely, over-sampled regions (with a sampling ratio exceeding the baseline) 
were down sampled to align with the baseline rate. By adopting a baseline value of 0.006, we 
selected 5,899 genomes. Consequently, the variance in sampling ratios (Table S2) across all 
metropolitan areas dropped substantially from 5.74e-05 to 7.56e-07. 
 
The Transmission Dynamics of Delta Variant in Texas 
To investigate the timing of virus importations into Texas and the dynamics of the resulting local 
transmission lineages, we conducted a comprehensive phylogeographic analysis of 12,285 SARS-
CoV-2 Delta genomes sampled from March 27th 2021, to October 24th 2021. Of these genomes, 
6,386 served as globally contextual sequences (Table S3), ensuring a balanced 1:1 ratio between 
Texas and non-Texas samples. We estimated the phylogenetic tree with IQ-TREE (29) and inferred 
the time-adjusted phylogeny using TreeTime (17). Through the time-calibrated phylogeny (Figure 
1C), we inferred that the Delta variant was introduced into Texas as early as late March, preceding 
the first reported Delta case in Houston in mid-April 2021 (30). 
The trait states of internal nodes were identified as either ‘Texas’ or ‘non-Texas’ using the 

‘mugration’ model (17) implemented in TreeTime. The observed state changes at each node can 

be used to characterize three transmission categories: importations, local transmissions, and 

exportations (Figure 1A). These transmissions could be viewed as spatial transmission links (Figure 

1B). Here, we defined the sum of these links as the spatial transmission counts, which, over time, 

offered a comprehensive summary of the epidemic’s profile (Figure 1D). Given that the infectious 

periods for SARS-CoV-2 typically ranged from day 2 to day 15 post-infection (19), long branches 

on the phylogeny likely represented multiple transmission events. To reduce uncertainty, we 

excluded branches with durations exceeding 15 days (10,678 out of 19,841 were removed). The 

epidemic in Texas was characterized by at least 265 imports and 259 exports connecting statewide 

cases to the global pandemic. The Texas outbreak was driven by local transmission, with 4,750 

local transmission branches. Our results indicated that numerous co-circulating transmission 

chains were introduced independently. 

 

Characterizing spatial transmission heterogeneity 

To understand the spatial transmission of the Delta SARS-CoV-2 wave in Texas, we estimated the 

ancestral location states (26 location traits: 25 metropolitan areas and 1 combined rural area) 
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(Figure S2) on the phylogeny described above. The spatial transmission counts could be used to 

identify import and export hubs that determine the patterns of epidemic spread (Figures S3-S26). 

To measure the magnitude of viral flow between metropolitan areas in Texas, we utilized the time 

series of spatial transmission counts derived from the phylogeny to construct a weighted network 

(Figure 2). In this network, edges carried weight corresponding to the spatial transmission counts 

connecting two metropolitan areas, without indicating directionality. The inferred network consisted 

of 25 nodes and 88 edges, with an average degree of 3.52. The centrality analysis, detailed in 

Table S4, underscored the top five nodes as identified consistently by betweenness and 

connectedness (31). These pivotal nodes were Dallas–Fort Worth, Houston, San Antonio, Austin, 

and Brownsville. The top 4 were classified as RUCC-1, which supported the idea that populated 

urban areas played a crucial role in the viral spread throughout Texas. The border city of 

Brownsville, classified as RUCC-2, was a well-connected border town, and this classification may 

not accurately capture its population density. 

 

Community source-sink dynamics 
We introduced the Source Sink Score to identify populations as either viral sources or sinks. The 
Source Sink Score ranged between -1 and 1. A score close to 1 indicates that the number of exports 
is significantly higher than the number of imports, classifying the population predominantly as a 
viral source, with very few or no imports. Conversely, a score closer to -1 indicates a predominance 
of imports over exports, classifying the population as a viral sink. 
The metropolitan areas were categorized as sources or sinks based on the accumulated Source 
Sink Score, with the full list detailed in Table S5. We found that the RUCC-1 group, representing 
densely populated urban centers, had the highest Source Sink Score, highlighting its role as the 
major source during the Delta outbreak in Texas (Figure 3). Within the RUCC-1 group, Houston 
had the highest Source Sink Score at 0.147, followed by Dallas-Fort Worth, San Antonio, and 
Austin with values of 0.000, -0.101, and -0.363, respectively. In contrast, the rural areas, with a 
score of -0.711, suggested it primarily functioned as a viral sink. 
 
Epidemic trends in populated urban center compared to rural areas 
We introduced the Local Import Score to determine the characteristics of a source population. The 

Local Import Score can be used to evaluate when an outbreak is locally maintained rather than 

driven by continual introductions from other regions. The import score ranges from 0 to 1, where a 

value close to 1 indicates that the outbreak is driven by external introductions. Determining when 

most new cases are locally acquired is important to inform public health resource allocation, contact 

tracing efforts, and control strategies in emergency situations.  

We calculated the Local Import Score for all metropolitan areas (Table S5). Selecting Houston as 
a representative city, we examined epidemic trends in populated urban centers and compared them 
to those in rural areas (Figure 4). The accumulated Local Import Score (0.168) over the entire Delta 
wave indicated that the outbreak in Houston was locally maintained. Conversely, with an 
accumulated Local Import Score of 0.634, the epidemic in rural areas relied on external 
introductions. Our results suggested that while an outbreak may initially rely on introductions from 
other sources, once the epidemic was established and locally maintained, the region may become 
a primary source of pathogen spread to other regions. 
To assess the impact of global circulation on local-scale transmission patterns, we analyzed the 
viral flow between non-Texas and urban centers (e.g., Houston) (Figure 4A), as well as between 
non-Texas and the rural areas (Figure 4B). Introductions from non-Texas accounted for 56% of all 
imports to Houston and 19% of all exports from Houston went to locations outside of Texas. In 
comparison, Introductions from non-Texas accounted for 27% of all imports to rural areas, and 12% 
of rural exports were to locations outside of Texas. These statistics suggest that Houston, as a 
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highly connected and large urban center, was an important hub connecting the outbreak in Texas 
to the global pandemic. 
 
Discussion  
 

In this study, we introduced a novel spatial transmission count statistic, which characterizes the 

weekly counts of local spread, viral inflow, and outflow, illustrating transmission trends over time. 

The Source Sink Score and Local Import Score allow for quantitative comparison of epidemic 

trends between regions. The Source Sink Score measures net viral exports, weighted by the 

outbreak size, while the Local Import Score compares the significance of external introductions 

versus local transmission in shaping the epidemic. To demonstrate the utility of this novel 

phylogeographic approach, we investigated the geographic diffusion pattern of the Delta variant of 

SARS-CoV-2. At the state level, we characterized the timing and size of viral imports. Within the 

state of Texas, we reconstructed regional dissemination and contrasted the epidemic trends 

between urban centers and rural areas. 

 

The extraordinary size of our genomic data offers unprecedented opportunities for high-resolution 
investigations of spatial transmission history. Our analysis revealed that cryptic transmissions of 
the Delta variant began as early as late March, two weeks before the identification of the first Delta 
case in Houston (30). Additionally, we identified at least 265 imports and 259 exports, highlighting 
Texas’s intensive connection to the global pandemic. Our results indicated that the Delta variant 
invaded Texas through multiple introductions. This pattern aligns with observations from 
Connecticut’s initial COVID-19 wave (32), the UK’s first wave (33), the emergence of B.1.1.7 in the 
United States (11), and the presence of Omicron BA.1 in England (13). These independent 
importations subsequently formed massive local transmission clusters in Texas. 
 

Urban centers were the primary viral sources of the Delta epidemic in Texas. Utilizing the Source 

Sink Score, we ranked 26 subregions across Texas, categorizing them as viral sources or sinks. 

The analysis showed that Houston had the highest score, followed by Dallas-Fort Worth and San 

Antonio, which are the three most populous metropolitan areas in the state. The influence of these 

urban centers in spreading the Delta epidemic may be attributed to their critical positions in both 

road and air travel networks. Houston, Dallas-Fort Worth, and San Antonio, connected by 

Interstates 10, 45, and 35, form the vertices of the Texas Triangle (34), one of 11 megaregions in 

the US and home to the majority of the Texas’s population. This complex connectivity, along with 

the presence of major airports such as George Bush Intercontinental Airport in Houston (a United 

Airlines hub), Dallas-Fort Worth International Airport (American Airlines' largest primary hub and 

headquarters), and San Antonio International Airport (a Southwest Airlines hub), highlights their 

pivotal role in airway travel. Our analysis underscored the crucial role of urban centers in driving 

the Delta outbreak. This insight provides valuable information that can guide public health decision-

making. Increased control efforts in highly connected urban centers may have a disproportionate 

impact on connected rural areas. 

 
Rural areas exhibit a lower level of viral flow in relation to global contexts, with epidemics in these 
areas predominantly relying on external introductions, thus establishing them as viral sinks. 
Notably, urban centers and rural areas demonstrate distinct transmission patterns (35). In rural 
areas that are highly affected, implementing social distancing measures is crucial to reduce local 
spread. It is important to note that our analysis assumes virus transmission in each region is 
impacted only by population size and density and does not account for the influence of community 
behavior and beliefs, healthcare disparities, environmental factors, and other factors, on viral 
transmission. Future studies addressing these aspects will provide more comprehensive insights 
into the underlying drivers of transmission. 
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The proportional sampling scheme we employed ensured a consistent sampling ratio across all 25 
metropolitan areas and 1 combined rural area in Texas. However, we did not have the specific 
count for Delta cases. Relying on overall SARS-CoV-2 case counts for approximation led to a lower 
projected sampling rate of the Delta variant, particularly at the beginning or end of the Delta wave. 
A study in Houston showed that 76.9% of the total sequences were identified as Delta during the 
study period from March 15, 2021, through September 20, 2021 (30). Unlike earlier variants, the 
Delta variant exhibited higher transmissibility and a higher rate of vaccine breakthrough cases (35–
37), quickly becoming the dominant strain (39). This indicates that under-sampling of the Delta 
variant at the beginning and end of the outbreak would have a limited impact.  
 
The spatial transmission count statistic represents the time-series of categorized transmission 
linkages related to the focal regions. Informed by the annotated viral phylogeny, it summarizes the 
trends of local spread and viral flow at a minimal computational cost. This efficiency allows for real-
time surveillance of tens of thousands of viral genomes, which is essential in addressing the 
challenges posed by the current pandemic or potential future outbreaks. Adopting a simplified 
model, we assume that transmission events take place along all the branches of the viral 
phylogeny. However, phylogenetic trees are not equivalent to transmission trees; they do not 
directly reveal who infected whom (40, 41). As a result, our model may introduce bias in the 
estimation of local transmission counts. Nonetheless, it does provide insights into cross-scale 
transmission and epidemic trajectories that could be used to inform control efforts. The ongoing 
large-scale pathogen genomic surveillance of epidemic outbreaks will allow for the continued 
development of near real-time inferential methods to inform and improve public health practice. 
 
Materials and Methods 
 
Surveillance and genetic dataset 
Texas comprises 25 metropolitan areas, as defined by the United States Office of Management 
and Budget (OMB). Any population, housing, and territory not included in a metropolitan area is 
classified as rural. The Rural-Urban Continuum Codes (RUCC) differentiates MAs based on the 
population size. Dallas–Fort Worth, Houston, San Antonio, and Austin, all characterized as RUCC-
1, are the most populated metropolitan area in Texas. 
Historical COVID-19 data of confirmed cases for Texas were accessed through the Texas 
Department of State Health Services (DSHS) website (42). These reported cases, counted by 
county, were then aggregated into metropolitan areas. The weekly tracking of new cases guided 
our proportional sampling strategy. All the scripts that facilitate the sampling scheme have been 
consolidated into an R package called Subsamplerr. The package takes case count tables and 
genome metadata as input, enabling the visual investigation of sampling heterogeneity and the 
implementation of the proportional sampling scheme. It is publicly available at 
https://github.com/leke-lyu/subsamplerr. 
With the support of the Houston Health Department (HHD), we accessed a large dataset of SARS-
CoV-2 genomes sampled in Texas: 51,229 genomes with linked metadata. Out of these, 24,593 
were of the Delta variant, and 5,899 were sampled proportional to the case count. To investigate 
the introduction of the Delta variant into Texas, we also sampled worldwide Delta genomes from 
GISAID as global contextual. We randomly sampled 6,386 genomes from 49 counties. In total, our 
database consists of 12,285 whole genomes. 
 
Phylogeographic analysis pipeline 
The pipeline comprises two major components: (1) phylogenetic reconstruction and (2) spatial 
transmission linkages’ characterization. 
Phylogenetic reconstruction: This component aims to generate a time-labeled phylogeny with 
inferred ancestral trait states which utilizes the Nextstrain pipeline (18). Sequence alignment was 
conducted using Nextalign (18), while the maximum likelihood tree construction was achieved with 
IQ-TREE (29), applying a GTR substitution model. TreeTime (17) was employed to produce a time-
scaled phylogeny and infer ancestral node states. The phylogeny was rooted using early samples 
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from Wuhan (Wuhan-Hu-1/2019). Its temporal resolution was set based on an assumed nucleotide 
substitution rate of 8 ∗ 10−4 substitutions per site per year (default setting of Nextstain build for 
SARS-CoV-2). Migration patterns between distinct geographic regions were inferred through time-
reversible models, mirroring those characterizing genome sequence evolution (17). For a 
comprehensive understanding of the pipeline's setup and configurations, including Snakemake 
profiles, visit our GitHub repository at https://github.com/leke-lyu/surveillanceInTexas. 
Spatial transmission linkages’ characterization: This component utilized custom scripts to identify 
spatial transmission linkages from the phylogeny and summarize epidemic trends in the focal 
region. The tree file was imported using the 'treeio' package (43) in R. Following this, the tree was 
converted into a structured data frame for further analysis, aided by the 'tidytree' package (43). 
Branches with durations surpassing 15 days were excluded, and the shorter branches on the 
phylogeny were designated as spatial transmission linkages. By analyzing the trait states, we can 
determine whether the transmission occurred within the local area, involved an importation from 
another location, or resulted in exportation to another location. The time series of spatial 
transmission count, categorized by type, provides an overview of the focal area’s epidemic trend. 
All scripts used in Texas case study are publicly accessible at https://github.com/leke-
lyu/transmissionCount. 
 
Metrics that describe transmission pattern 
By employing an ‘identify-and-count’ approach for spatial transmission linkages, we were able to 
portray the epidemic profile of the area of interest. Different areas possess varying population sizes, 
levels of population mobility, and immunological characteristics, all of which can contribute to 
differences in the size and dynamics of the epidemic. To quantitatively compare the characteristics 
of epidemics in different areas, we introduced two metrics. 
To investigate the relative importance of repeated introductions versus continuing local spread, we 
define the Local Import Score: 

𝐿𝑜𝑐𝑎𝑙 𝐼𝑚𝑝𝑜𝑟𝑡 𝑆𝑐𝑜𝑟𝑒 =  
𝐶𝑡(𝐼𝑚𝑝𝑜𝑟𝑡)

𝐶𝑡(𝐼𝑚𝑝𝑜𝑟𝑡) +  𝐶𝑡(𝐿𝑜𝑐𝑎𝑙 𝑇𝑟𝑎𝑛𝑠)
 

where 𝐶𝑡(𝐼𝑚𝑝𝑜𝑟𝑡) represents the count of importations over a specific period 𝑡 and 𝐶𝑡(𝐿𝑜𝑐𝑎𝑙 𝑇𝑟𝑎𝑛𝑠) 
signifies the count of local transmissions during the same period. The choice of the time window 
for calculation is contingent on the research objective. It can encompass the entire duration of the 
epidemic wave to assess cumulative effects, or it might focus on shorter intervals, such as 
epidemiological weeks, for real-time surveillance. The Local Import Score ranges between 0 and 
1. A Local Import Score value approaching 1 indicates a predominant role of importations, whereas 
a Local Import Score value nearing 0 suggests a dominance of local transmissions, implying that 
the epidemic is primarily sustained locally. 
To identify whether a region acts primarily as a viral source or sink, we introduce the metric called 
Source Sink Score: 

𝑆𝑜𝑢𝑟𝑐𝑒 𝑆𝑖𝑛𝑘 𝑆𝑐𝑜𝑟𝑒 =  
𝐶𝑡(𝐸𝑥𝑝𝑜𝑟𝑡) − 𝐶𝑡(𝐼𝑚𝑝𝑜𝑟𝑡)

𝐶𝑡(𝐸𝑥𝑝𝑜𝑟𝑡) + 𝐶𝑡(𝐼𝑚𝑝𝑜𝑟𝑡)
 

where 𝐶𝑡(𝐸𝑥𝑝𝑜𝑟𝑡) represents the count of exportations over a specific period 𝑡 and 𝐶𝑡(𝐼𝑚𝑝𝑜𝑟𝑡) 
denotes the count of importations during that same period. The Source Sink Score ranges between 
-1 and 1. A Source Sink Score value approaching 1 suggests a dominant role of exportation, 
indicating that the research region mainly functions as a viral source. Conversely, a Source Sink 
Score value nearing -1 implies a dominant role of importation, suggesting that the research region 
predominantly serves as a viral sink. 
 
Phylogenetic-based spatial network 
To capture the viral flow between metropolitan areas in Texas, we constructed a weighted, 
undirected network. Each metropolitan area is represented as a node, and the edge carries weight 
corresponding to the spatial transmission counts. After establishing the network, we conducted the 
centrality analysis to rank the metropolitan areas based on their betweenness, closeness, and 
degree centrality. We processed the various network data objects using the ‘igraph’ package (44) 
in R. Visualizations were generated with the ‘ggplot2’ package (45). Additionally, we utilized the 
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‘qgraph’ package (46) to compute several node centrality statistics, including edge-betweenness 
centrality. 
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Figures and Tables 

 
Figure 1. The spatial transmission count statistic investigates the transmission dynamics 
of SARS-CoV-2 Delta variant in Texas A. Texas-related transmissions can be classified into three 
categories: importation, local transmission, and exportation. Importation can have multiple sources, 
while exportation can have multiple sinks. B. The schematic tree depicts a total of 18 Texas-related 
spatial transmission linkages in Epi-Week X: 6 imports, 9 local transmissions, and 3 exports. C. In 
the time-adjusted phylogeny, branches are colored based on the categories of the corresponding 
spatial transmission linkages. D. The time series of spatial transmission counts summaries the 
epidemic trend in Texas. 
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Figure 2. Spatial Network of metropolitan areas in Texas. This visualization overlays the 
network on a map of Texas. Each node represents a metropolitan area, and the transparency of 
the blue lines indicates the magnitude of viral flow between the respective metropolitan areas. 
 
  

Rural−Urban Continuum Code RUCC 1 RUCC 2 RUCC 3 rural weight 100 200 300

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2023.12.28.23300535doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.28.23300535


 

 

14 

 

 
Figure 3. The Source Sink Score identifies the source hubs of Delta variant’s spread in 
Texas. All location traits are categorized by RUCC code. The RUCC-1 group, representing the 
most populated urban centers, has the highest score. 
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Figure 4. Epidemic trends in populated urban center vs the rural areas. A. The epidemic trend 
of Houston during the Delta wave. B. The epidemic trend of the rural areas during the Delta wave. 
The top of the panel shows the time series of spatial transmission counts by week. The dashed 
pink line represents exports from the analyzed regions to non-Texas. The dashed green line 
represents imports from non-Texas into the analyzed regions. C. The trend of Local Import Score 
in Houston. D. The trend of Local Import Score in rural areas. The black bars in the middle of the 
panel depict the weekly dynamics of Local Import Score. The dashed blue line indicates the 
accumulated Local Import Score during the Delta wave. E. The trend of Source Sink Score in 
Houston. F. The trend of Source Sink Score in rural areas. The solid red line represents the 
benchmark of 0, indicating a balance between imports and exports. The dashed blue line marks 
the accumulated Source Sink Score during the Delta wave. 
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