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Abstract 

Viral genomes contain records of geographic movements and cross-scale transmission dynamics. 
However, the impact of population heterogeneity, particularly among rural and urban areas, on viral 
spread and epidemic trajectory has been less explored due to limited data availability. Intensive and 
widespread efforts to collect and sequence SARS-CoV-2 viral samples have enabled the development of 
comparative genomic approaches to reconstruct spatial transmission history and understand viral 
transmission across different scales. Large genomic datasets with few mutations present challenges for 
traditional phylodynamic approaches. To address this issue, we propose a novel spatial transmission 
count statistic that efficiently summarizes the geographic transmission patterns imprinted on viral 
phylogenies. Our analysis pipeline reconstructs a time-scaled phylogeny with ancestral trait states and 
identifies spatial transmission linkages, categorized as imports, local transmission, and exports. These 
linkages are summarized to represent the epidemic profile of the focal area. We demonstrate the utility of 
this approach for near real-time outbreak analysis using over 12,000 full genomes and linked 
epidemiological data to investigate the spread of the SARS-CoV-2 Delta variant in Texas. Our goal is to 
trace the Delta variant’s origin, timing and to understand the role of urban and rural areas in the spatial 
diffusion patterns observed in Texas. Our study shows (1) highly populated urban centers were the main 
sources of the epidemic in Texas; (2) the outbreaks in urban centers were connected to the global 
epidemic; and (3) outbreaks in urban centers were locally maintained, while epidemics in rural areas were 
driven by repeated introductions. 

Significance Statement 

We developed a novel phylogeographic approach that analyzes transmission patterns at low 
computational cost. This method not only facilitates the inference of spatial scales of transmission but 
also enables exploration of how specific demographic characteristics influence transmission patterns 
among heterogenous populations. The rural population in the US, comprising approximately 60 million 
individuals, has been significantly impacted by COVID-19. Applying our new method, we examined the 
variations in epidemic patterns between urban centers (e.g., Houston) and rural areas in Texas. We found 
that urban centers are the primary source for SARS-CoV-2 in rural areas. This analysis lays the 
groundwork for designing effective public health interventions specifically tailored to the needs of affected 
areas. 
 
 
Main Text 
 
Introduction 
Genomic epidemiology is a field that utilizes pathogen genomes to study the spread of infectious 
diseases through populations (1). This approach has become increasingly popular due to the decreasing 
cost of genomic sequencing combined with increasing computational power. During the COVID-19 
pandemic, increased number of countries started generating genomic data to inform public health 
responses (2). The Global Initiative on Sharing All Influenza Data (GISAID) (3) expanded to 
accommodate these novel data and now maintains the world’s largest database of SARS-CoV-2 
sequences. As of December 2023, over 16 million sequences, sampled from over 200 countries/regions, 
have been submitted and archived. Such a vast and diverse dataset enables researchers and public 
health officials to identify key mutations (4, 5) and track the emergence of variants of interest (VOIs) or 
variants of concern (VOCs). Additionally, this wealth of genomic information creates opportunities to 
uncover the hidden characteristics of the pandemic, such as the spatial scales of transmission and the 
demographic characteristics contributing to transmission patterns. However, effectively handling the 
complexity of the SARS-CoV-2 genomic dataset requires addressing key challenges, such as developing 
efficient computational algorithms/pipelines and establishing robust sampling frameworks to draw reliable 
conclusions. 
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Viral transmission happens at different spatial scales, encompassing international pandemics, domestic 
dispersal, and local outbreaks such as those in jails, nursing homes, hospitals, or schools. By mapping 
how pathogens spread through space and time, evidence-based interventions can be better developed 
and applied across various scales (6). Within the framework of phylogeographic analysis, sampling 
locations are assigned as sequence traits, and the ancestral states for traits are estimated on the 
phylogenetic tree. The well-established software package, Bayesian Evolutionary Analysis Sampling 
Trees (BEAST) (7), implements discrete (8) and continuous (9) phylogeographic models. Previous studies 
have used the discrete model to identify the transmission clusters of SARS-CoV-2 introduced in Europe 
(10), United States (11), Denmark (12) and England (13). Additionally, the continuous model has been 
applied to elucidate the spatial expansion of SARS-CoV-2 in Belgium (14) and New York City (15). 
Moreover, the BEAST module can accommodate individual travel history (16) to yield high-accuracy 
prediction regarding the location of ancestral nodes. Apart from Bayesian analysis, TreeTime (17) applies 
a maximum likelihood approach to infer the transitions between discrete characters. As a component of 
the Nextstrain (18) pipeline, this fast analysis enables real-time tracking of pathogens. With the rapid 
growth in SARS-CoV-2 data, we are now facing extensive phylogenies with thousands of tips. This raises 
the question: How can we translate the evolutionary changes of geographic traits from such expansive 
trees into clear epidemiological insights? 
 
The transmission dynamics of SARS-CoV-2 are shaped by host immunity, host movement patterns, and 
other demographic characteristics (19). For instance, in Chile, people aged under 40 in municipalities with 
the lowest socioeconomic status had an infection fatality rate 3.1 times higher than those with the highest 
socioeconomic status (20). The severity of SARS-CoV-2 infection and the risk of mortality increased 
significantly with age (21). Accordingly, understanding the demographic composition of a population at 
risk is crucial in determining the potential burden on public health. In the US, rural populations have been 
particularly vulnerable to COVID-19 complications (22), experiencing higher incidences of disease, 
mortality, and unemployment. This vulnerability is largely attributed to limited access to healthcare and 
social services compared to their urban counterparts (23). There have been few studies that investigate 
the heterogeneity of transmission between rural and urban areas. 
 
In genomic epidemiology, it is critical to analyze sampling biases and develop an appropriate sampling 
strategy (24). Recent studies have shown that differences in epidemiology and sampling can impact our 
ability to identify genomic clusters (25). For instance, decreased sampling fraction can lead to the 
identification of multiple, separate clusters. Moreover, sampling biases can also impact phylogeographic 
analyses. In the discrete model, if a specific area is overrepresented in the dataset, it may lead to an 
overrepresentation of the same area at inferred internal nodes (1). In the continuous model, extreme 
sampling bias might cause the posterior distribution to exclude the true origin location of the root (26). 
 
In this study, we developed a novel phylogeographic pipeline to mitigate genome sampling bias, infer viral 
phylogenetic relationships, and summarize transmission patterns across multiple scales. To demonstrate 
the utility of this method, we focused on Texas, aiming to characterize the viral diffusion within the state 
and compare epidemic trends between urban and rural areas. 
 
Results 
 
Genome Sampling Bias and Subsampling Scheme Adjustments 
With support from the Houston Health Department (HHD), we gained access to detailed metadata (zip 
codes) for 51,229 SARS-CoV-2 genomes sampled in Texas. Out of these, 24,593 were Delta samples 
(B.1.167.2 and AY*) with high-coverage complete genomes (> 29,000 bp). The metadata in our genome 
database spans over a thousand distinct zip code records. We subsequently translated these zip code 
records to their corresponding metropolitan areas to facilitate future phylogeographic analysis. Based on 
the USDA’s Rural-Urban Continuum Code (RUCC), metropolitan areas can be categorized by their 
population size. Metropolitan areas with over 1 million residents are labeled RUCC-1; those housing 
between 250,000 and 1 million individuals are assigned RUCC-2; and areas with fewer than 250,000 
residents are denoted as RUCC-3 (27). Four major urban centers in Texas - Dallas-Fort Worth, Houston, 
San Antonio, and Austin - are classified as RUCC-1. The detailed list of RUCC classifications for 
metropolitan areas can be found in Table S1. 
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To explore sampling biases in Texas, we calculated the sampling ratio by dividing the count of available 
genomes by the count of reported cases. We noted significant heterogeneity in sampling ratio across 
different metropolitan areas from Epi-Week 14 to Epi-Week 43 (Figure S1A). During the Delta wave, 
Victoria, Wichita Falls, and Bryan-College Station emerged as the top three under-sampled metropolitan 
areas, while Houston, San Angelo, and Abilene were the most over-sampled. Subsequently, we 
introduced a subsampling scheme (Figure S1B) to reduce these sampling biases, thereby enhancing the 
accuracy of our phylogeographic analysis (1, 28). This proportional sampling method establishes a 
consistent sampling ratio to serve as a baseline for all regions. In cases where regions are under-
sampled (sampling ratio below the baseline), all available genomes were retained. Conversely, over-
sampled regions (with a sampling ratio exceeding the baseline) were down sampled to align with the 
baseline rate. By adopting a baseline value of 0.006, we selected 5,899 genomes. Consequently, the 
variance in sampling ratios (Table S2) across all metropolitan areas dropped substantially from 5.74e-05 
to 7.56e-07. 
 
The Transmission Dynamics of Delta Variant in Texas 
To investigate the timing of virus importations into Texas and the dynamics of the resulting local 
transmission lineages, we conducted a comprehensive phylogeographic analysis of 12,285 SARS-CoV-2 
Delta genomes sampled from March 27th 2021, to October 24th 2021. Of these genomes, 6,386 served as 
globally contextual sequences (Table S3), ensuring a balanced 1:1 ratio between Texas and non-Texas 
samples. We estimated the phylogenetic tree with IQ-TREE (29) and inferred the time-adjusted 
phylogeny using TreeTime (17). Through the time-calibrated phylogeny (Figure 1C), we inferred that the 
Delta variant was introduced into Texas as early as late March, preceding the first reported Delta case in 
Houston in mid-April 2021 (30). 
 
The trait states of internal nodes were identified as either ‘Texas’ or ‘non-Texas’ using the ‘mugration’ 
model (17) implemented in TreeTime. The observed state changes at each node can be used to 
characterize three transmission categories: importations, local transmissions, and exportations (Figure 
1A). These transmissions could be viewed as spatial transmission links (Figure 1B). Here, we defined the 
sum of these links as the spatial transmission counts, which, over time, offered a comprehensive 
summary of the epidemic’s profile (Figure 1D). Given that the infectious periods for SARS-CoV-2 typically 
ranged from day 2 to day 15 post-infection (19), long branches on the phylogeny likely represented 
multiple transmission events. To reduce uncertainty, we excluded branches with durations exceeding 15 
days (10,678 out of 19,841 were removed). The epidemic in Texas was characterized by at least 265 
imports and 259 exports connecting statewide cases to the global pandemic. The Texas outbreak was 
driven by local transmission, with 4,750 local transmission branches. Our results indicated that numerous 
co-circulating transmission chains were introduced independently. 
 
Characterizing spatial transmission heterogeneity 
To understand the spatial transmission of the Delta SARS-CoV-2 wave in Texas, we estimated the 
ancestral location states (26 location traits: 25 metropolitan areas and 1 combined rural area) (Figure S2) 
on the phylogeny described above. The spatial transmission counts could be used to identify import and 
export hubs that determine the patterns of epidemic spread (Figures S3-S26). 
 
To measure the magnitude of viral flow between metropolitan areas in Texas, we utilized the time series 
of spatial transmission counts derived from the phylogeny to construct a weighted network (Figure 2). In 
this network, edges carried weight corresponding to the spatial transmission counts connecting two 
metropolitan areas, without indicating directionality. The inferred network consisted of 25 nodes and 88 
edges, with an average degree of 3.52. The centrality analysis, detailed in Table S4, underscored the top 
five nodes as identified consistently by betweenness and connectedness (31). These pivotal nodes were 
Dallas–Fort Worth, Houston, San Antonio, Austin, and Brownsville. The top 4 were classified as RUCC-1, 
which supported the idea that populated urban areas played a crucial role in the viral spread throughout 
Texas. The border city of Brownsville, classified as RUCC-2, was a well-connected border town, and this 
classification may not accurately capture its population density. 
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Community source-sink dynamics 
We introduced the Source Sink Score to identify populations as either viral sources or sinks. The Source 
Sink Score ranged between -1 and 1. A score close to 1 indicates that the number of exports is 
significantly higher than the number of imports, classifying the population predominantly as a viral source, 
with very few or no imports. Conversely, a score closer to -1 indicates a predominance of imports over 
exports, classifying the population as a viral sink. 
 
The metropolitan areas were categorized as sources or sinks based on the accumulated Source Sink 
Score, with the full list detailed in Table S5. We found that the RUCC-1 group, representing densely 
populated urban centers, had the highest Source Sink Score, highlighting its role as the major source 
during the Delta outbreak in Texas (Figure 3). Within the RUCC-1 group, Houston had the highest Source 
Sink Score at 0.147, followed by Dallas-Fort Worth, San Antonio, and Austin with values of 0.000, -0.101, 
and -0.363, respectively. In contrast, the rural areas, with a score of -0.711, suggested it primarily 
functioned as a viral sink. 
 
Epidemic trends in populated urban center compared to rural areas 
We introduced the Local Import Score to determine the characteristics of a source population. The Local 
Import Score can be used to evaluate when an outbreak is locally maintained rather than driven by 
continual introductions from other regions. The import score ranges from 0 to 1, where a value close to 1 
indicates that the outbreak is driven by external introductions. Determining when most new cases are 
locally acquired is important to inform public health resource allocation, contact tracing efforts, and control 
strategies in emergency situations.  
 
We calculated the Local Import Score for all metropolitan areas (Table S5). Selecting Houston as a 
representative city, we examined epidemic trends in populated urban centers and compared them to 
those in rural areas (Figure 4). The accumulated Local Import Score (0.168) over the entire Delta wave 
indicated that the outbreak in Houston was locally maintained. Conversely, with an accumulated Local 
Import Score of 0.634, the epidemic in rural areas relied on external introductions. Our results suggested 
that while an outbreak may initially rely on introductions from other sources, once the epidemic was 
established and locally maintained, the region may become a primary source of pathogen spread to other 
regions. 
 
To assess the impact of global circulation on local-scale transmission patterns, we analyzed the viral flow 
between non-Texas and urban centers (e.g., Houston) (Figure 4A), as well as between non-Texas and 
the rural areas (Figure 4B). Introductions from non-Texas accounted for 56% of all imports to Houston 
and 19% of all exports from Houston went to locations outside of Texas. In comparison, Introductions 
from non-Texas accounted for 27% of all imports to rural areas, and 12% of rural exports were to 
locations outside of Texas. These statistics suggest that Houston, as a highly connected and large urban 
center, was an important hub connecting the outbreak in Texas to the global pandemic. 
 
Discussion  
 
In this study, we introduced a novel spatial transmission count statistic, which characterizes the weekly 
counts of local spread, viral inflow, and outflow, illustrating transmission trends over time. The Source 
Sink Score and Local Import Score allow for quantitative comparison of epidemic trends between regions. 
The Source Sink Score measures net viral exports, weighted by the outbreak size, while the Local Import 
Score compares the significance of external introductions versus local transmission in shaping the 
epidemic. To demonstrate the utility of this novel phylogeographic approach, we investigated the 
geographic diffusion pattern of the Delta variant of SARS-CoV-2. At the state level, our primary questions 
were when the outbreak in Texas began and the number of introductions that occurred. Within the state 
of Texas, we highlighted subregions that served as primary viral sources and contrasted the epidemic 
trends between urban centers and rural areas. 
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The extraordinary size of our genomic data offers valuable insights into the micro-epidemiological 
patterns that underlie the COVID-19 epidemic in Texas. Our analysis revealed that cryptic transmissions 
of the Delta variant began as early as late March, two weeks before the identification of the first Delta 
case in Houston (30). Additionally, we identified at least 265 imports and 259 exports, highlighting 
Texas’s intensive connection to the global pandemic. Our results indicated that the Delta variant invaded 
Texas through multiple introductions. This pattern aligns with observations from Connecticut’s initial 
COVID-19 wave (32), the UK’s first wave (33), the emergence of B.1.1.7 in the United States (11), and 
the presence of Omicron BA.1 in England (13). These independent importations subsequently formed 
massive local transmission clusters in Texas. 
 
Urban centers were the primary sources of the Delta epidemic in Texas. Utilizing the Source Sink Score, 
we ranked 26 subregions across Texas, categorizing them as viral sources or sinks. The analysis showed 
that Houston had the highest score, followed by Dallas-Fort Worth and San Antonio, which are the three 
most populous metropolitan areas in the state. The influence of these urban centers in spreading the 
Delta epidemic may be attributed to their critical positions in both road and air travel networks. Houston, 
Dallas-Fort Worth, and San Antonio, connected by Interstates 10, 45, and 35, form the vertices of the 
Texas Triangle (34), one of 11 megaregions in the US and home to the majority of the Texas’s population. 
This complex connectivity, along with the presence of major airports such as George Bush 
Intercontinental Airport in Houston (a United Airlines hub), Dallas-Fort Worth International Airport 
(American Airlines' largest primary hub and headquarters), and San Antonio International Airport (a 
Southwest Airlines hub), highlights their pivotal role in airway travel. Our analysis underscored the crucial 
role of urban centers in driving the Delta outbreak. This insight provides valuable information that can 
guide public health decision-making. In particular, increased control efforts in highly connected urban 
centers may have a disproportionate impact on connected rural areas. 
 
Rural areas exhibit a lower level of viral flow in relation to global contexts, with epidemics in these areas 
predominantly relying on external introductions, thus establishing them as viral sinks. Notably, urban 
centers and rural areas demonstrate distinct transmission patterns (35). In rural areas that are highly 
affected, implementing social distancing measures is crucial to reduce local spread. It is important to note 
that our analysis assumes virus transmission in each region is impacted only by population size and 
density and does not account for the influence of community behavior and beliefs, healthcare disparities, 
environmental factors, and other factors, on viral transmission. Future studies addressing these aspects 
will provide more comprehensive insights into the determinants of cross-scale transmission. 
 
The proportional sampling scheme we employed ensured a consistent sampling ratio across all 25 
metropolitan areas and 1 combined rural area in Texas. However, we did not have the specific count for 
Delta cases. Relying on overall SARS-CoV-2 case counts for approximation led to a lower projected 
sampling rate of the Delta variant, particularly at the beginning or end of the Delta wave. A study in 
Houston showed that 76.9% of the total sequences were identified as Delta during the study period from 
March 15, 2021, through September 20, 2021 (30). Unlike earlier variants, the Delta variant exhibited 
higher transmissibility and a higher rate of vaccine breakthrough cases (35–37), quickly becoming the 
dominant strain (39). This indicates that under-sampling of the Delta variant at the beginning and end of 
the outbreak would have a limited impact.  
 
The spatial transmission count statistic represents the time-series of categorized transmission linkages 
related to the focal regions. Informed by the annotated viral phylogeny, it summarizes the trends of local 
spread and viral flow at a minimal computational cost. This efficiency allows for real-time surveillance of 
tens of thousands of viral genomes, which is essential in addressing the challenges posed by the current 
pandemic or potential future outbreaks. Adopting a simplified model, we assume that transmission events 
take place along all the branches of the viral phylogeny. However, phylogenetic trees are not equivalent 
to transmission trees; they do not directly reveal who infected whom (40, 41). As a result, our model may 
introduce bias in the estimation of local transmission counts. Nonetheless, it does provide insights into 
cross-scale transmission and epidemic trajectories that could be used to inform control efforts. The 
ongoing large-scale pathogen genomic surveillance of epidemic outbreaks will allow for the continued 
development of near real-time inferential methods to inform and improve public health practice. 
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Materials and Methods 
 
Surveillance and genetic dataset 
Texas comprises 25 metropolitan areas, as defined by the United States Office of Management and 
Budget (OMB). Any population, housing, and territory not included in a metropolitan area is classified as 
rural. The Rural-Urban Continuum Codes (RUCC) differentiates MAs based on the population size. 
Dallas–Fort Worth, Houston, San Antonio, and Austin, all characterized as RUCC-1, are the most 
populated metropolitan area in Texas. 
Historical COVID-19 data of confirmed cases for Texas were accessed through the Texas Department of 
State Health Services (DSHS) website (42). These reported cases, counted by county, were then 
aggregated into metropolitan areas. The weekly tracking of new cases guided our proportional sampling 
strategy. All the scripts that facilitate the sampling scheme have been consolidated into an R package 
called Subsamplerr. The package takes case count tables and genome metadata as input, enabling the 
visual investigation of sampling heterogeneity and the implementation of the proportional sampling 
scheme. It is publicly available at https://github.com/leke-lyu/subsamplerr. 
With the support of the Houston Health Department (HHD), we accessed a large dataset of SARS-CoV-2 
genomes sampled in Texas: 51,229 genomes with linked metadata. Out of these, 24,593 were of the 
Delta variant, and 5,899 were sampled proportional to the case count. To investigate the introduction of 
the Delta variant into Texas, we also sampled worldwide Delta genomes from GISAID as global 
contextual. We randomly sampled 6,386 genomes from 49 counties. In total, our database consists of 
12,285 whole genomes. 
 
Phylogeographic analysis pipeline 
The pipeline comprises two major components: (1) phylogenetic reconstruction and (2) spatial 
transmission linkages’ characterization. 
Phylogenetic reconstruction: This component aims to generate a time-labeled phylogeny with inferred 
ancestral trait states which utilizes the Nextstrain pipeline (18). Sequence alignment was conducted using 
Nextalign (18), while the maximum likelihood tree construction was achieved with IQ-TREE (29), applying 
a GTR substitution model. TreeTime (17) was employed to produce a time-scaled phylogeny and infer 
ancestral node states. The phylogeny was rooted using early samples from Wuhan (Wuhan-Hu-1/2019). 
Its temporal resolution was set based on an assumed nucleotide substitution rate of 8 � 10�� substitutions 
per site per year (default setting of Nextstain build for SARS-CoV-2). Migration patterns between distinct 
geographic regions were inferred through time-reversible models, mirroring those characterizing genome 
sequence evolution (17). For a comprehensive understanding of the pipeline's setup and configurations, 
including Snakemake profiles, visit our GitHub repository at https://github.com/leke-
lyu/surveillanceInTexas. 
Spatial transmission linkages’ characterization: This component utilized custom scripts to identify spatial 
transmission linkages from the phylogeny and summarize epidemic trends in the focal region. The tree 
file was imported using the 'treeio' package (43) in R. Following this, the tree was converted into a 
structured data frame for further analysis, aided by the 'tidytree' package (43). Branches with durations 
surpassing 15 days were excluded, and the shorter branches on the phylogeny were designated as 
spatial transmission linkages. By analyzing the trait states, we can determine whether the transmission 
occurred within the local area, involved an importation from another location, or resulted in exportation to 
another location. The time series of spatial transmission count, categorized by type, provides an overview 
of the focal area’s epidemic trend. All scripts used in Texas case study are publicly accessible at 
https://github.com/leke-lyu/transmissionCount. 
 
Metrics that describe transmission pattern 
By employing an ‘identify-and-count’ approach for spatial transmission linkages, we were able to portray 
the epidemic profile of the area of interest. Different areas possess varying population sizes, levels of 
population mobility, and immunological characteristics, all of which can contribute to differences in the 
size and dynamics of the epidemic. To quantitatively compare the characteristics of epidemics in different 
areas, we introduced two metrics. 
To investigate the relative importance of repeated introductions versus continuing local spread, we define 
the Local Import Score: 
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where ��������) represents the count of importations over a specific time period, �, and �������	 �����) 
signifies the count of local transmissions during the same period. The choice of the time window for 
calculation is contingent on the research objective. It can encompass the entire duration of the epidemic 
wave to assess cumulative effects, or it might focus on shorter intervals, such as epidemiological weeks, 
for real-time surveillance. The Local Import Score ranges between 0 and 1. A Local Import Score value 
approaching 1 indicates a predominant role of importations, whereas a Local Import Score value nearing 
0 suggests a dominance of local transmissions, implying that the epidemic is primarily sustained locally. 
To identify whether a region acts primarily as a viral source or sink, we introduce the metric called Source 
Sink Score: 

������ ���� ����� �  
��������� �  ���������

��������� �  ���������
 

where ��������) represents the count of exportations over a specific time period �, and ��������) 
denotes the count of importations during that same period. The Source Sink Score ranges between -1 
and 1. A Source Sink Score value approaching 1 suggests a dominant role of exportation, indicating that 
the research region mainly functions as a viral source. Conversely, a Source Sink Score value nearing -1 
implies a dominant role of importation, suggesting that the research region predominantly serves as a 
viral sink. 
 
Phylogenetic-based spatial network inference 
To capture the viral flow between metropolitan areas in Texas, we constructed a weighted, undirected 
network. Each metropolitan area is represented as a node, and the edge carries weight corresponding to 
the spatial transmission counts. After establishing the network, we conducted the centrality analysis to 
rank the metropolitan areas based on their betweenness, closeness, and degree centrality. We 
processed the various network data objects using the ‘igraph’ package (44) in R. Visualizations were 
generated with the ‘ggplot2’ package (45). Additionally, we utilized the ‘qgraph’ package (46) to compute 
several node centrality statistics, including edge-betweenness centrality. 
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Figures and Tables 

Figure 1. The spatial transmission count statistic investigates the transmission dynamics of
SARS-CoV-2 Delta variant in Texas A. Texas-related transmissions can be classified into three
categories: importation, local transmission, and exportation. Importation can have multiple sources, while
exportation can have multiple sinks. B. The schematic tree depicts a total of 18 Texas-related spatial
transmission linkages in Epi-Week X: 6 imports, 9 local transmissions, and 3 exports. C. In the time-
adjusted phylogeny, branches are colored based on the categories of the corresponding spatial
transmission linkages. D. The time series of spatial transmission counts summaries the epidemic trend in
Texas. 
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Figure 2. Spatial Network of metropolitan areas in Texas. This visualization overlays the network on a
map of Texas. Each node represents a metropolitan area, and the transparency of the blue lines indicates
the magnitude of viral flow between the respective metropolitan areas. 
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Figure 3. The Source Sink Score identifies the source hubs of Delta variant’s spread in Texas. All
location traits are categorized by RUCC code. The RUCC-1 group, representing the most populated
urban centers, has the highest score. 
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Figure 4. Epidemic trends in populated urban center vs the rural areas. A. The epidemic trend of
Houston during the Delta wave. B. The epidemic trend of the rural areas during the Delta wave. The top
of the panel shows the time series of spatial transmission counts by week. The dashed pink line
represents exports from the analyzed regions to non-Texas. The dashed green line represents imports
from non-Texas into the analyzed regions. C. The trend of Local Import Score in Houston. D. The trend of
Local Import Score in rural areas. The black bars in the middle of the panel depict the weekly dynamics of
Local Import Score. The dashed blue line indicates the accumulated Local Import Score during the Delta
wave. E. The trend of Source Sink Score in Houston. F. The trend of Source Sink Score in rural areas.
The solid red line represents the benchmark of 0, indicating a balance between imports and exports. The
dashed blue line marks the accumulated Source Sink Score during the Delta wave. 
 

 

 
of 
op 
ne 

s 
 of 
of 
lta 

. 
he 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.28.23300535doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.28.23300535


All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.28.23300535doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.28.23300535


All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.28.23300535doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.28.23300535


All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.28.23300535doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.28.23300535


All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.28.23300535doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.28.23300535

