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Abstract 24 

Background. 25 

Because M. tuberculosis evolves slowly, transmission clusters often contain multiple individuals with 26 

identical consensus genomes, making it difficult to reconstruct transmission chains. Finding additional 27 

sources of shared M. tuberculosis variation could help overcome this problem. Previous studies have 28 

reported M. tuberculosis diversity within infected individuals; however, whether within-host variation 29 

improves transmission inferences remains unclear. 30 

 31 

Methods. 32 

To evaluate the transmission information present in within-host M. tuberculosis variation, we re-analyzed 33 

publicly available sequence data from three household transmission studies, using household membership 34 

as a proxy for transmission linkage between donor-recipient pairs.  35 

 36 

Findings.  37 

We found moderate levels of minority variation present in M. tuberculosis sequence data from cultured 38 

isolates that varied significantly across studies (mean: 6, 7, and 170 minority variants above a 1% minor 39 

allele frequency threshold, outside of PE/PPE genes). Isolates from household members shared more 40 

minority variants than did isolates from unlinked individuals in the three studies (mean 98 shared 41 

minority variants vs. 10; 0.8 vs. 0.2, and 0.7 vs. 0.2, respectively). Shared within-host variation was 42 

significantly associated with household membership (OR: 1.51 [1.30,1.71], for one standard deviation 43 

increase in shared minority variants). Models that included shared within-host variation improved the 44 

accuracy of predicting household membership in all three studies as compared to models without within-45 

host variation (AUC: 0.95 versus 0.92, 0.99 versus 0.95, and 0.93 versus 0.91).  46 

 47 

Interpretation.  48 
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Within-host M. tuberculosis variation persists through culture and could enhance the resolution of 49 

transmission inferences. The substantial differences in minority variation recovered across studies 50 

highlights the need to optimize approaches to recover and incorporate within-host variation into 51 

automated phylogenetic and transmission inference.  52 

 53 
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Introduction 59 

 60 

Reducing the global burden of tuberculosis urgently requires reducing the number of incident M. 61 

tuberculosis infections. Yet the long and variable latency period of TB infection makes it challenging to 62 

identify sources of transmission and thus intervene. Genomic epidemiology approaches have been 63 

powerfully applied to characterize M. tuberculosis global phylogenetic structure, migration and gene 64 

flow, patterns of antibiotic resistance, transmission linkages. Yet transmission inference approaches have 65 

often failed to identify the majority of transmission linkages in high-incidence settings1–6. Further, while 66 

previous studies have identified heterogeneity in the number of secondary cases generated by infectious 67 

individuals7 and risk factors for onwards transmission8,9, these are often difficult to generalize. Many 68 

critical questions, including the contribution of asymptomatic individuals to transmission, remain 69 

unanswered. Novel, accessible approaches to reconstruct high-resolution transmission patterns are 70 

urgently needed so that public health programs can identify environments driving transmission and risk 71 

factors for onwards transmission.  72 

Commonly used approaches for M. tuberculosis transmission inference use single consensus 73 

genomes, representing the sequence of the most frequent alleles, from infected individuals. Closely 74 

related pathogen genomes are predicted to be more closely linked in transmission chains. For example, M. 75 

tuberculosis consensus sequences within a given genetic distance10–13 are considered clustered and 76 

potentially epidemiologically linked. However, M. tuberculosis evolves at a relatively slow rate14. The 77 

result is that there may be limited diversity in outbreaks. Indeed, several genomic epidemiology studies 78 

reported that multiple individuals harbored identical M. tuberculosis genomes13,15–17, making it difficult to 79 

reconstruct who infected whom. This highlights a need to recover more informative variation from 80 

pathogen genomes. This challenge is not unique to M. tuberculosis—COVID-19 outbreak investigations 81 

frequently generate large numbers of identical genomes18, indicating a broad need for higher-resolution 82 

pathogen genomics approaches.  83 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2023. ; https://doi.org/10.1101/2023.12.28.23300451doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.28.23300451
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

5

Population-level bacterial diversity within an individual, or within-host heterogeneity, can be 84 

attributed to mixed infections, infections with more than one distinct M. tuberculosis genotype, or de 85 

novo evolution, mutations that are introduced over the course of an individual’s infection19. Previous 86 

research has found that a substantial proportion (10-20%)19 of infected individuals harbor mixed 87 

infections with genetically diverse populations of M. tuberculosis19–23. A portion of within-host 88 

heterogeneity is likely transmitted onwards24,25 and therefore, within-host diversity captures potentially 89 

valuable epidemiological information about transmission history25,26. Complex infections are also 90 

important clinically. Within-host heterogeneity is associated with poor treatment outcomes20,27 and hetero-91 

resistance, the presence of both resistant and susceptible alleles within a single infection, reduces the 92 

accuracy of diagnostics for antibiotic resistance27.    93 

Despite the evidence that within-host M. tuberculosis variation is common, there are many open 94 

questions about whether shared within-host variation is a predictor of transmission linkage and, more 95 

practically, how to recover this level of variation and incorporate it into transmission inferences. 96 

Currently, M. tuberculosis is most frequently cultured from sputum samples and sequenced with short 97 

reads to generate a single consensus sequence28. This limits the variation recovered because (a) culture 98 

imposes a severe bottleneck29–31; (b) within-host variation, including mixed infections, are often excluded, 99 

in part due to a lack of validated methodological approaches for accurate recovery of such variation25,31; 100 

and (c) repetitive genomic regions, including the PE/PPE gene families, among the most variant-rich and 101 

potentially informative regions of the genome, are excluded32–34.  102 

Recent work has demonstrated that pathogen enrichment approaches—through either host DNA 103 

depletion or pathogen DNA enrichment—can allow M. tuberculosis to be sequenced directly from clinical 104 

samples, bypassing the need for culture23,35–39. But there have not been consistent findings about whether 105 

culture-free approaches improve the detection of within-host variation. 106 

M. tuberculosis transmission is never directly observed, making it difficult to assess the 107 

performance of genomic methods in identifying true transmission pairs. We therefore tested whether 108 

household members—as a proxy for epidemiologically linked individuals—shared more minority variants 109 
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than did unlinked individuals, and whether minority variation could enhance transmission inferences by 110 

re-analyzing previously published household transmission studies.  111 

 Here, we study household members as a gold standard, the best available proxy for transmission 112 

pairs, to test whether shared minority M. tuberculosis variation may augment fixed genomic differences in 113 

reconstructing epidemiological linkages. In practice, such as in routine population-wide genomic M. 114 

tuberculosis sequencing by public health laboratories, epidemiological linkages are frequently unknown. 115 

Whether a signal of shared minority variation exists in gold standard transmission pairs can then indicate 116 

whether shared minority variation might contribute to resolving such unobserved transmission linkages in 117 

population-wide genomic data.  118 

 119 

Methods 120 

 121 

Sequence and epidemiological data 122 

We accessed publicly available data from 3 household transmission studies for which both raw 123 

sequence data and epidemiological linkages were publicly available: Colangeli et al. (2020)40, Vitória, 124 

Brazil; Guthrie et al. (2018)41, British Columbia, Canada; and Walker et al. 2014, Oxfordshire, England11 125 

(Table 1). Sequence data was available from the Sequence Read Archive (PRJNA475130, 126 

PRJNA413593, and PRJNA549270). Colangeli et al. cultured sputa on Lowenstein-Jensen (LJ) slants, 127 

plated cultures on Middlebrook 7H10 agar, and then scraped three loops of culture for DNA extraction40. 128 

Both Guthrie et. al and Walker et al. re-cultured frozen isolates on MGIT liquid medium or LJ slants11,41. 129 

We accessed information on household pairs from published phylogenies in the Colangeli et al. and 130 

Guthrie et al. papers. For the Walker et al. paper, household linkages were available in the data 131 

supplement.  132 

 133 

Bioinformatic analysis 134 
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We processed raw sequence data with a previously described variant identification pipeline 135 

available on GitHub (https://github.com/ksw9/mtb-call2).4042 We previously conducted a variant 136 

identification experiment to compare commonly used mapping and variant calling algorithms in M. 137 

tuberculosis genomic epidemiology32. We found that the combination of the bwa43 mapping algorithm 138 

and GATK44,45 variant caller routinely minimizes false positive variant calls with minimal cost to 139 

sensitivity as compared to other tool combinations46, especially when the PE/PPE genes are excluded. We 140 

therefore used this combination of tools in our pipeline. 141 

Briefly, we trimmed low-quality bases (Phred-scaled base quality < 20) and removed adapters 142 

with Trim Galore v. 0.6.5 (stringency=3)47. We used CutAdapt v.4.2 to further filter reads (--nextseq-143 

trim=20  --minimum-length=20 --pair-filter=any)48.To exclude potential contamination which a previous 144 

study shows can be a source of false genetic variation49, we used Kraken2 to taxonomically classify reads 145 

and remove reads that were not assigned to the Mycobacterium genus or that were assigned to a 146 

Mycobacterium species other than M. tuberculosis50. We mapped reads with bwa v. 0.7.15 (bwa mem)43 147 

to the H37Rv reference genome (NCBI Accession: NC_000962.3 148 

[https://www.ncbi.nlm.nih.gov/nuccore/NC_000962.3]) and removed duplicates with sambamba51. We 149 

called variants with GATK 4.1 HaplotypeCaller44, setting sample ploidy to 1, and GenotypeGVCFs, 150 

including non-variant sites in output VCF files. We included variant sites with a minimum depth of 5X 151 

and a minimum variant quality score 20 and constructed consensus sequences with bcftools consensus52, 152 

excluding indels.  We flagged SNPs in previously defined repetitive regions (PPE and PE-PGRS genes, 153 

phages, insertion sequences and repeats longer than 50 bp)53 and excluded these variants in figures and 154 

statistics except when otherwise noted. We identified sub-lineage and evidence of mixed infection with 155 

TBProfiler v.4.2.054,55. 156 

We constructed full-length consensus FASTA sequences from VCF files, setting missing 157 

genotypes to missing, and used SNP-sites to extract a multiple alignment of internal variant sites only56. 158 

We used the R package ape to measure pairwise differences between samples (dist.dna, 159 

pairwise.deletion=TRUE)57. We selected a best fit substitution model with ModelFinder58, implemented 160 
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in IQ-TREE multicore version 2.2.059, evaluating all models that included an ascertainment bias 161 

correction for the use of an alignment of SNPs only. We then fit a maximum likelihood tree with IQ-162 

TREE, with 1000 ultrafast bootstrap replicates59,60 to visualize the location of household pairs in the 163 

context of study-wide variation.  164 

 We filtered variants that had coverage higher or lower than two standard deviations from the 165 

sample mean depth, reasoning that the extreme coverage was a result of incorrect mapping. We 166 

considered minority variants as positions with two or more alleles each supported by at least 5X coverage 167 

at the same position, at first, without filtering by minor allele frequency threshold. To examine the impact 168 

of filtering approach on the informativeness of minority variation, we applied increasingly conservative 169 

minor allele thresholds, from 0.05% to 50%. We quantified the number of per-sample minority variants; 170 

the number of shared minority variants between household members, defined as sharing the same minor 171 

allele call at the same position; and the number of shared minority variants between epidemiologically 172 

unrelated pairs.  173 

Following variant identification, all analyses were conducted in R version 4.2.2. All analysis 174 

scripts are available on GitHub (https://github.com/ksw9/mtb-within-host).  175 

 176 

Role of the funding source 177 

The study sponsor played no role in study design; in the collection, analysis, and interpretation of data; in 178 

the writing of the report; and in the decision to submit the paper for publication. 179 

 180 

Results 181 

 182 

M. tuberculosis variation observed in household transmission studies.  183 

To characterize the epidemiological information held in within-host M. tuberculosis variation 184 

present in routinely generated Illumina sequence data from cultured isolates, we reanalyzed sequence data 185 

from three previously published M. tuberculosis transmission studies for which whole genome 186 
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sequencing data and epidemiological linkages were publicly available. Studies were from different 187 

epidemiological settings and included (a) a household transmission study in Vitória, Brazil40 (Colangeli et 188 

al.), a retrospective population-based study of pediatric tuberculosis in British Columbia, Canada41 189 

(Guthrie et al.), and (c) a retrospective population-based study in Oxfordshire, England11 (Walker et al.). 190 

Study design, sampling design, and culture and sequencing methods differed across studies (Table 1).  191 

As reported in the original studies, we observed limited fixed variation between M. tuberculosis 192 

consensus sequences from isolates collected within the same household or among isolates from patients 193 

with epidemiolocal linkages compared to randomly selected pairs of sequences from the same population 194 

(Fig. 1a). Consensus M. tuberculosis sequences from epidemiologically linked individuals were 195 

phylogenetic nearest neighbors for each study (Fig. 1b). However, genetic distances between consensus 196 

sequences often exceeded commonly used 5 and 12 SNP thresholds10,11 for classifying isolates as 197 

potentially linked in transmission, with 44.4% (20/45) of household pairs not meeting a 5-SNP threshold 198 

and 15.6% (7/45) of household pairs not meeting a 12-SNP threshold (Fig. 1a). Twenty-four percent 199 

(11/45) of isolate pairs from epidemiologically linked individuals were within a genetic distance of 2 200 

SNPs or less, underscoring that genomic distances alone may be limited in their resolution. 201 

 202 

Within-host variation observed in routine, culture-based M. tuberculosis sequencing data.  203 

 We quantified minority variation within samples as the number of positions with a minor allele 204 

above a frequency of a range of threshold values, as we were interested in tradeoffs between sensitivity 205 

and specificity of variant detection. We detected limited, but measurable, minority variation above a 1% 206 

minor allele frequency threshold, with a disproportionate number of minority variants occurring within 207 

the PE/PPE genes (24.8%, 82.2%, and 80.1% of all minority variants, across the studies) (Fig. 2). We 208 

found substantial differences in minority variation detected across studies with the Colangeli et al. study 209 

(median: 160 minority variants, IQR:130-220) identifying a higher level of minority variation than both 210 

the Guthrie et al. study (median: 3, IQR:1-8; Wilcoxon test, p < 0.005) and the Walker et al. study 211 

(median: 2, IQR: 1-4, p < 0.005) (Table 3).  212 
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Most minority variants were in unique genomic locations and no minority variant was found in 213 

more than 5 samples in a single study (Fig. S1). About half of minority variants were predicted to be 214 

missense variants (50.0%; 964/1929) and only 1.3% (25/1929) minority variants were stop mutations, 215 

which would generate a truncated protein. However, the 5 most common minority variants across all three 216 

studies occurred in intergenic regions.   217 

Median depth of coverage was significantly correlated with the total number of iSNVs detected 218 

outside the PE/PPE genes for the Walker et al. study, though no association was identified in the 219 

Colangeli et al. or Guthrie et al. studies (Fig. S2). Additionally, minor allele frequency was negatively 220 

correlated with site depth of coverage in the Colangeli et al. and the Walker et al. studies, but not Guthrie 221 

et al. (Fig. S2), potentially indicating that both culture method and sequencing depth were responsible for 222 

the observed differences in recovered variation (Table 1). 223 

 224 

Signatures of transmission in within-host M. tuberculosis variation.  225 

 To test whether within-host variation could be used to identify potential transmission linkages, we 226 

quantified the number of shared minority variants passing quality, depth, and frequency thresholds 227 

between each pair of samples in each study. Isolates from household pairs shared more minority variants 228 

≥1% frequency and outside of PE/PPE genes than did randomly selected pairs of isolates in all three 229 

studies (mean 98 shared minority variants vs. 10; 0.8 vs. 0.2; and 0.7 vs. 0.2, respectively; all p<0.001, 230 

Wilcoxon) (Table 2; Fig. 3). This effect rapidly declines as the definition of minority variant becomes 231 

more stringent (Fig. S3). In each study, the distribution of shared minority variants differed significantly 232 

between epidemiologically unlinked isolate pairs and epidemiologically linked pairs (Fig. 4a). 233 

In a general linear model, shared within-host variation ≥1% frequency and outside of PE/PPE 234 

genes was significantly associated with household membership (OR: 1.51 [1.30,1.71] for one standard 235 

deviation increase in shared minority variants. Genomic clustering, based on a standard 12-SNP 236 

clustering distance thresholds, was also significantly associated with household membership (OR: 3,670 237 

[1,160, 15,380]), with similar results when applying a 5-SNP clustering distance threshold. We measured 238 
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the performance of general linear models in classifying household pairs versus unlinked pairs with 239 

receiver operator characteristic (ROC) curves. Including shared within-host variation improved the 240 

accuracy of predictions in all three studies as compared to a model without within-host variation (AUC: 241 

0.95 versus 0.92, 0.99 versus 0.95, and 0.93 versus 0.91) (Fig. 4b). A model including within-host 242 

variation independently of consensus sequence-based clustering resulted in AUCs of 0.69, 0.64, and 0.64 243 

for each study (Fig. 4b). 244 

A major challenge in studies of pathogen variation and within-host variation, is distinguishing 245 

true biological variation from errors introduced through sampling, sequencing, and bioinformatic 246 

identification of variation in sequence data. To assess tradeoffs in sensitivity and specificity in minority 247 

variant identification, we applied a series of increasingly conservative minor allele frequency thresholds, 248 

filtering variants below a 0.05% to 50% frequency. Maximum AUC for predicting household membership 249 

was 0.998 (minor allele frequency threshold: 2%) for the Colangeli et al. study, 0.996 (threshold: 5%) for 250 

the Guthrie et al. study, and 0.94 (threshold: 5%) for the Walker et al. study (Fig. S4).  251 

 Among epidemiologically unlinked pairs, shared iSNVs declined significantly with increased 252 

genetic distance between samples across all studies (Fig. S5). For household pairs, we did not find a 253 

significant correlation between the genetic distance between isolate consensus sequences and number of 254 

shared minority variants in the Colangeli et al. and Walker et al. studies (Fig. S5), suggesting that this 255 

relationship may not be linear. While we did find a positive correlation between genetic distance and 256 

shared iSNVs for the Guthrie et al. study, this was due to a single pair with a genetic distance of greater 257 

than 20 SNPs.  258 

Allele frequencies of shared minority variants ≥ 1% frequency located outside of PE/PPE genes 259 

were correlated between isolates from household pairs in Colangeli et al. (Pearson’s r=0.17, p<0.001) and 260 

Guthrie et al. (r=0.94, p <0.001), but not Walker et al. (Fig. S6). We predicted that sampling time might 261 

impact recovery of shared minority alleles because of changes in allele frequency between the time of 262 

sampling and time of transmission. Shared minority variation was negatively correlated with time 263 

between collection of isolates from household index cases and household members, though the 264 
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association was not significant in the Colangeli et al. study, which reported time between sampling (Fig. 265 

S7).  266 

 267 

Discussion 268 

 To maximize the epidemiological information gleaned from the continuous evolution of M. 269 

tuberculosis, approaches to leverage biological variation more fully are needed. Here, we found that (1) 270 

within-host M. tuberculosis variation persists in sequence data from culture, (2) the magnitude of within-271 

host variation varies between and within studies and is impacted by methodological choices, and (3) M. 272 

tuberculosis isolates from epidemiologically linked individuals share higher levels of variation than do 273 

unlinked individuals and shared within-host variation improves predictions of epidemiological linkage. 274 

Our results suggest that minority variation could contribute epidemiological information to transmission 275 

inferences, improving inferences from consensus sequences, and that alternative approaches to culture-276 

based sequencing may further contribute to this observed epidemiological signal.  277 

As sequencing has become more efficient and less expensive, pathogen genomic studies have 278 

begun to describe previously uncharacterized levels of minority variation within individual hosts and 279 

shared between transmission pairs. For example, M. tuberculosis within-host variation has been used to 280 

reveal an undetected superspreader event25,26 in a single large outbreak in the Canadian Arctic. In another 281 

study, Goig et al. observed minority variants that were shared between epidemiologically linked 282 

individuals, and one example of isolates from a four-person transmission cluster that all shared a minority 283 

variant at different allele frequencies35. The existence of shared minority variants suggests that multiple 284 

variants present in a donor’s infection persist through transmission and are maintained within the recipient 285 

through population changes and immune pressures. A similar observation has been made for other 286 

pathogens—shared within-host diversity of SARS-CoV-2 has been used to improve phylogenetic and 287 

transmission inferences in empirically collected and modeled sequence data61–63. Recently developed 288 

transmission inference approaches include pathogen within-host diversity to infer transmission events64–
289 

67, but have not yet been applied to M. tuberculosis, which is unique in its slow substitution rate and long 290 
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and variable periods of latent infection. Future work is needed to develop automated, user-friendly 291 

pipelines for transmission and phylogenetic inference that include both fixed genomic differences and 292 

within-host variation.  293 

 Our findings that within-host diversity persists through culture and is impacted by methodological 294 

choices underscore the further work needed to optimize approaches for highly accurate identification of 295 

within-host variation. Each step of generating sequence data, including clinical sampling, sample 296 

preparation, sequencing, bioinformatic pipeline, may introduce a bottleneck and/or bias the variation 297 

recovered. For example, our observation that minority variants are concentrated in PE/PPE genes, 298 

highlights the need for testing whether long read sequencing or alternative mapping approaches can 299 

improve the accuracy of variant identification in this region46. Further, we found that increased 300 

sequencing coverage and, potentially, culture approach, detect higher levels of within-host variation.  301 

 A major challenge in pathogen genomics, including studies of within-host pathogen variation, is 302 

in distinguishing true biological variation from noise introduced by sequencing, bioinformatic, or other 303 

errors. There are significant trade-offs between sensitivity and specificity in variant identification; often, 304 

pathogen genomic approaches err on the side of specificity and impose conservative variant filters. Our 305 

findings here and previously46 suggest that for studying transmission linkages, including low frequency 306 

minority variants may improve predictions of transmission linkage. However, it is likely that some of the 307 

minority variants within individual samples and shared across samples are artefacts. For example, we 308 

found that some unlinked pairs of isolates share minority variants, potentially errors or true variants 309 

occurring at highly mutable sites (Fig. 3).  310 

 There are several limitations to our study. First, we conducted a re-analysis of previously 311 

published sequence data from clinical M. tuberculosis samples. We therefore do not have information 312 

about the true biological variation present within samples and cannot assess sensitivity and specificity of 313 

variants identified using alternative approaches. To measure performance of hybrid capture and other 314 

methods in recovering true within-host variation and the limit of detection of within-host variation, 315 

experiments that directly compare recovery of minority variants in known strain mixtures are required. 316 
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Second, we found that one study found substantially higher within-host variation than the others, likely 317 

reflecting large differences in study design and sample preparation (Table 1). The Colangeli et al. was a 318 

prospective study, and included three loops of culture for DNA extractions, while the Guthrie et al. and 319 

Walker et al. studies were retrospective and re-cultured isolates after frozen storage. This difference could 320 

also reflect higher population-wide M. tuberculosis diversity circulating in a higher-incidence setting. It is 321 

possible that other steps in M. tuberculosis sampling, sampling time (i.e. Fig. S5), culture, laboratory 322 

preparation, or sequencing influenced recovered within-host variation; if these steps were not reported, 323 

we were not able to include them in our models of within-host variation. For example, data on sequencing 324 

run, a potential source of false shared variation, was not available. Third, we considered household 325 

transmission pairs as our gold standard for transmission linkages. While the studies we included 326 

employed additional filters to exclude household pairs unlikely to be epidemiologically linked, it is 327 

possible that these pairs are misclassified. However, the impact of such misclassification would be to bias 328 

our results towards the null finding that shared minority variants are not more likely to be found in 329 

transmission pairs than unlinked pairs. Finally, we do not have access to sequencing replicates of the 330 

same sputum culture or biological replicates of the same sputum to quantify the concordance of minority 331 

variants across sequencing or biological replicates. 332 

 Our findings of within-host variation present in cultured M. tuberculosis samples suggests that 333 

within-host M. tuberculosis variation may be able to augment routine transmission inferences. More 334 

broadly, these finding suggests that assessing M. tuberculosis variation more broadly, including not only 335 

within-host variants, but also genome-wide variants and indels may yield more information and improve 336 

both transmission and phylogenetic inferences. 337 
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Table 1. M. tuberculosis household transmission study characteristics. TB incidence per 100,000 is 343 

from the World Health Organization 2022 Country Profiles unless otherwise noted. 344 

 345 

Study Colangeli et al. (2020) Guthrie et al. 
(2018) 

 

Walker et al. 
(2014) 

 
Location Vitória, Brazil BC, Canada Oxfordshire, England 

Sample size 48 (24 pairs) 2
6
 
(
1
3
 
p
a
i
r
s
) 

253 (11 pairs) 

TB incidence  
per 100,000 person-years 

49  5.7 8.4 (reported in study) 

Study design - Prospective household 
transmission study 
- Index smear + TB cases & 
household enrolled, followed 
prospectively to identify 
secondary cases. 

- Retrospective study  
- Included pediatric cases of 
TB & household members. 

- Retrospective study  
- All Oxfordshire residents 
with an M. tuberculosis 
culture or clinical TB 
diagnosis from 2007-2012. 
- TB nurses identified 
epidemiological linkages: 
shared space and time. 

Culture - Isolates cultured on LJ 
slants.  
- Each strain plated on 
Middlebrook 7H10 agar.  
- Three loops of culture were 
scraped and suspended in 
SET buffer. 

 

- Isolates revived from frozen 
archival stocks on 
Lowenstein-Jensen (LJ) 
slants or in MGIT™ liquid 
medium. 

 

- Cultures obtained from 
frozen archival stocks. 
- All cultures were grown 
in MGIT containing 
modified Middlebrooks 
7H9 liquid medium and on 
LJ agar. 

DNA extraction - Phenol-chloroform DNA 
extraction. 

- MagMA Total Nucleic Acid 
Isolation Kit DNA extraction. 

- Mechanical disruption 
with Fastprep homogeniser 
and Lysing Matrix B; 
extraction and purification 
with Fuji Quickgene kit. 

Sequencing 2 lanes on an Illumina HiSeq 
2500 

llumina HiSeqX Illumina HiSeq 

Median sample depth 447X 146X 103X 
Accession number PRJNA475130 PRJNA413593 PRJNA549270 

 346 
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Table 2. Measured within-host M. tuberculosis variation. Per-sample and shared minority variants 348 

across pairwise comparisons with different epidemiological linkages, including minority variants ≥1% 349 

allele frequency, outside of the PE/PPE genes, and within an expected depth (defined in Methods). 350 

 351 

 352 
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Figure 1. M. tuberculosis consensus genomes are closely related but are not always predictive of 354 

epidemiological linkage. (a) Histograms indicate pairwise genetic distances between M. tuberculosis 355 

consensus genomes, with facets indicating study and pairwise comparison type. (b) Phylogeny of 356 

consensus sequences for each study, with branch tips colored to indicate samples from a single household 357 

or with known epidemiologic links.  358 

 359 
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 361 
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Figure 2. Limited M. tuberculosis within-host diversity is recovered with culture-based Illumina 362 

sequencing. Ridgeline plot of the minor allele frequency distribution for five randomly selected samples 363 

from each study, indicated by ridge color. Panels indicate genomic region: outside PE/PPE genes and 364 

within PE/PPE genes. 365 
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Figure 3. Pairwise shared variants above a 1% minor allele frequency. Boxplots of the number of 368 

high-quality shared minority variants between sample pairs in three previously published M. tuberculosis 369 

transmission studies (columns) with jittered points indicating pairwise observations. Colors indicate 370 

comparison type: sample, within-host minority variants; household, minority variants shared between 371 

household pairs; unlinked, minority variants shared between individuals in different households. Boxes 372 

indicate group interquartile ranges and center lines indicate group medians.  373 
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Figure 4. Shared minority variants contain information about household membership. (a) Stacked 376 

barplot showing the proportion of sample pairs across different levels of shared minority variants ≥ 1% 377 

minor allele frequency threshold. Panels indicate study. (b) ROC curves showing sensitivity (true positive 378 

rate) as a function 1 – specificity (true negative rate) for predicting household membership in general 379 

linear models that include both shared iSNVs and consensus sequence-based clusters (Full model), 380 

consensus sequence-based cluster only (Consensus sequences), and Shared iSNVs only (Shared iSNVs). 381 

All models include study as a predictor.  382 
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