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Abstract 

Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis has the potential to 

transform care of cardiovascular disease patients. Most algorithms rely on digitised signal 

data and are unable to analyse paper-based ECGs, which remain in use in numerous 

clinical settings. An image-based ECG dataset incorporating artefacts common to paper-

based ECGs, which are typically scanned or photographed into electronic health records, 

could facilitate development of clinically useful image-based algorithms. This paper 

describes the creation of GenECG, a high-fidelity, synthetic image-based dataset 

containing 21,799 ECGs with artefacts encountered in routine care. Iterative clinical Turing 

tests confirmed the realism of the synthetic ECGs: expert observer accuracy of 

discrimination between real-world and synthetic ECGs fell from 63.9% (95% CI 58.0%-

69.8%) to 53.3% (95% CI: 48.6%-58.1%) over three rounds of testing, indicating that 

observers could not distinguish between synthetic and real ECGs. GenECG is the first 

publicly available synthetic image-based ECG dataset to pass a clinical Turing test. The 

dataset will enable image-based AI-ECG algorithm development, ensuring the translation 

of AI-ECG research developments to the clinical workspace. 
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Introduction 

The use of synthetic data in healthcare can facilitate the development of high-fidelity, fully 

anonymised patient datasets on a previously unachievable scale.[1] Synthetic patient data 

can be used as training data to develop artificial intelligence-enhanced (AI) algorithms 

offering the potential to revolutionise the scope and utility of AI within the healthcare 

setting.  Several studies have already highlighted the potential benefits that AI algorithms 

may offer when applied to the electrocardiogram (ECG),[2] a low-cost, non-invasive, 

ubiquitous tool which provides important information about the electrical activity of the 

heart.[3] For example, AI-ECG can detect electrolyte imbalances,[4] identify left ventricular 

systolic dysfunction[5] and predict risks of paroxysmal arrhythmia[6] and all-cause 

mortality.[7] Cardiovascular diseases represent the leading causes of morbidity and 

mortality worldwide.[8] The ability of AI-ECG to facilitate automated ECG interpretation and 

detect patterns imperceptible to human observers[2] presents a significant opportunity to 

improve the care of patients with cardiovascular disease, ultimately contributing to a 

reduction in global cardiovascular disease burden.  

However, despite the potential uses for AI-ECG, current algorithms are primarily limited to 

analyses of digitised ECG signals rather than ECG images. This is reflective of the 

composition of currently available public ECG datasets. Whilst multiple signal-based 

datasets exist,[9–11] the availability of image-based ECG data is limited. To our 

knowledge, only one publicly available image-based ECG dataset exists.[12] However, this 

dataset lacks the artefacts encountered with real-world paper-based ECGs, and it is 

substantially smaller than most digital ECG datasets. Nevertheless, numerous healthcare 

settings continue to rely on printed or scanned ECG images.[13,14] Given the ongoing, 

widespread use of paper-based ECGs, a disconnect exists between commonly available 

data types and the AI algorithms designed for their analysis. The creation of a dataset 

comprising ECG images could enable the development of image-based AI algorithms for 

use in scenarios where ECG signal data is unavailable. Such a dataset should capture the 

full range of diversity in paper-based ECGs incorporating artefacts common to clinical 

practice. 

The aims of this study were to 1) create a large, publicly available image-based ECG 

dataset of labelled images from clinical ECG recordings; 2) modify the images to simulate 

the composition of a real-world image-based ECG dataset; 3) demonstrate the fidelity of 

the modified ECGs by testing the discrimination of synthetic from real-world images by 

healthcare professionals; and 4) evaluate the performance of pre-existing image-based AI 
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algorithms on synthetic images containing artefacts and compare their performance with 

artefact-free ECGs. 

Results 

ECG recreation 

Synthetic ECG images were created for all 21,799 unique PTB-XL ECGs (Dataset A: ECG 

images without artefact) (Figure 1A, B). Methods to check ECG lead position confirmed 

that all ECG leads were plotted in the correct location according to the AHA/ACCF/HRS 

‘Recommendations for the Standardisation and Interpretation of the ECG’ (Figure 1A and 

B).[15] There was a perfect correlation between measured and actual sine wave amplitude 

and frequency for each ECG lead. 

Clinical validation: Turing tests 

Image degradation techniques were applied to a randomly selected subset of synthetic 

ECGs for clinical validation via Turing tests. The results of the initial two rounds of Turing 

Tests indicated that healthcare professionals were able to distinguish real-world ECGs 

from synthetic images (Round one accuracy 63.9% (95% CI 58.0%-69.8%)), round two 

accuracy 59.8% (95% CI 55.9%-63.7%)) (Table 1). Qualitative feedback (summarised in 

Figure 2) was used to iteratively improve the fidelity of the ECG images (Figure 1C, D). In 

the third round of Turing tests, the Accuracy, True Recognition Rate and False 

Recognition Rate were 53.3% (95% CI 48.6%-58.1%), 53.0% (95% CI 48.7%-57.2%) and 

53.7% (95% CI 47.4%-60.0%) respectively (Table 1). The Fleiss-Kappa score of 0.049 

(95% Confidence interval 0.007-0.092) indicated a high degree of inter-observer variability. 

The area under the curve-receiver operating characteristic (AUC-ROC) curve score was 

0.480 (95% CI 0.432-0.529) indicating that level of confidence was not an accurate 

predictor of an observer’s ability to accurately distinguish a real-world ECG from a 

synthetic image (Figure 3). The response “Not at all confident” was the most frequently 

obtained level of confidence for both the real-world and synthetic ECG images. Further 

qualitative feedback was obtained with five observers commenting that it was difficult to 

distinguish real-world ECGs from synthetically created images. 

Assessment on pre-existing image-based algorithms 

Using the same architecture as an image-based model developed by Bridge et al.,[16] we 

trained a synthetic model with artefact-free images from an open access real-world dataset 

and then fine-tuned it on synthetic images. Initially, the synthetic model achieved an AUC 

score of 0.956 (95% CI 0.936-0.977) on an open access image-based dataset[12](Figure 
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4A). The initial model was less able to distinguish normal from abnormal on 43 synthetic 

images (AUC score 0.592, 95% CI 0.421-0.763) (Figure 4B). Fine-tuning of the model led 

to a substantial improvement in image classification (AUC score 0.945, 95% CI 0.876-

1.000) (Figure 4C). The fine-tuned model subsequently achieved an AUC score of 0.896 

(95% CI 0.864-0.928) on 400 real-world ECG images, down from 0.956 (95% CI 0.936-

0.977), demonstrating that the model did not over-fit throughout the fine-tuning process 

(Figure 4D).  

We assessed the performance of 75 abnormal ECGs both with and without artefact on the 

ECG-Dx© image-based algorithm.[13] The algorithm was able to correctly identify 

abnormal diagnoses for 51/75 (68%) artefact-free images compared with 29/75 (39%) 

images containing artefact (Figure 5). 

Dataset creation and release 

Upon completion of the ‘Turing Tests’, the artefact generation algorithm was deemed 

capable of recreating life-like ECGs from the PTB-XL database. A dataset of 21,799 

images containing PTB-XL ECGs with the incorporation of artefacts common to 

photographed images was created (Dataset B: ECG images which appear photographed) 

(Figure 1C, D). 

Discussion 

In the present study, we have created a synthetic, image-based ECG dataset – GenECG – 

from a publicly available signal-based dataset. Clinical Turing tests confirmed the fidelity of 

the ECG images containing artefact with iterative development resulting in the creation of 

synthetic images that were indistinguishable from real-world ECGs. Pre-existing image-

based AI algorithms exhibited good performance levels on synthetic images without 

artefacts, but poor performance on synthetic images with artefacts. Importantly, the 

accuracy of these algorithms could be improved through fine-tuning without overfitting on 

synthetic ECG images with artefacts. These findings highlight the potential for synthetic 

ECG data to augment clinically useful image-based AI-ECG algorithm development. 

GenECG will facilitate algorithm development on a diverse array of images containing 

artefacts and ensure real-world utility of image-based AI-ECG analysis. This presents a 

significant opportunity to capitalise on the benefits of synthetic patient data in healthcare 

and ensure the translation of AI-ECG analysis from the research setting to the clinical 

workspace.   
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The field of AI-ECG has grown considerably in recent years with signal-based algorithms 

now demonstrating diagnostic capabilities comparable to experienced clinicians.[17,18] 

Studies have also shown that AI-ECG may be able to detect patterns unrecognisable by 

the human eye thereby facilitating precise screening and prediction for disease, and the 

phenotyping of patients with pre-existing disease.[19] Whilst promising, the requirement for 

signal data to be inputted into these algorithms presents a barrier to use in a range of real-

world clinical areas where signal data may not be readily available.[14] Such areas include 

hospital settings, where paper-based ECGs continue to be used, and non-hospital settings 

such as remote healthcare areas or pre-hospital settings. Several groups have attempted 

to develop ECG digitisation tools to address the issue.[20–22] Such tools have been 

designed to derive signal data from paper-based ECGs. Unfortunately, these tools are 

limited by the requirements for manual intervention to ensure correct ECG lead 

identification by the user, are unable to process large volumes of paper-based ECGs and 

often require users to individually input single ECGs one at a time. 

Even if a reliable automatable ECG digitisation method was available, there is an absence 

of a universal format for the storage and exchange of digitised ECG data,[23] and a lack of 

interoperability amongst the array of ECG storage formats that do exist.[24] These factors 

further limit the integration of re-digitised ECG signal data into signal-based AI-ECG 

models. In contrast, paper-based ECGs have a standardised lead format which is widely 

recognised by several major international cardiac societies.[15] The GenECG dataset was 

created according to these specifications thereby overcoming issues pertaining to digitised 

ECG data format heterogeneity and obviating the requirement to digitise paper-based 

ECGs. 

Whilst some image-based AI-ECG algorithms have been developed,[13,16] there is a 

relative absence of large ECG image-based datasets. Real-world image-based datasets 

have previously been created,[12] but are limited in comparison to signal-based datasets 

in their size and scope,[9–11] and lack the artefacts encountered with ECGs when they 

are encountered in clinical practice. In the present study, we have been able to utilise an 

existing signal-based dataset to create a vast image-based ECG dataset which is 

indistinguishable from real-world ECGs. In creating the ECG images from the PTB-XL 

database, GenECG benefits from the PTB-XL dataset’s broad scope and variety.[9]  

To date, AI-ECG algorithms based on signal data have required ECG signal denoising to 

improve their accuracy and diagnostic yield.[25] In the present study, we have 

demonstrated the addition of simulated noise to ECGs images. In clinical practice, 
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artefacts are frequent and can result from patient-related issues such as movement, or 

non-patient related issues such as interference by devices.[26] Paper-based ECGs are 

typically photographed or scanned, and subsequently uploaded to electronic health 

records and this process also introduces artefacts. The incorporation of these artefacts 

into synthetic image-based ECG datasets is necessary to ensure that such repositories 

represent real-world clinical datasets as closely as possible. Within our study, the series of 

‘clinical Turing tests’ ensured that the dataset that we have created is life-like with 

generated images incorporating the multitude of artefacts typically encountered with real-

world ECGs. To our knowledge, this is the first study to examine the realism of synthetic 

ECG images using Turing testing.  

In the third round of clinical Turing tests, the Accuracy, True Recognition Rate and False 

Recognition Rates were all in the region of 50% indicating an inability of observers to 

distinguish real-world ECGs from synthetically created images. Furthermore, the AUC-

ROC score of 0.480 provided evidence to suggest that user certainty was unable to 

influence healthcare professionals’ ability to distinguish real-world ECGs from synthetic 

images. The series of clinical Turing tests that were performed provided a robust validation 

method to confirm the realism of the synthetic ECG dataset. Whilst Turing tests have been 

used to validate other forms of synthetic medical imaging data,[27–30] our iterative 

methodology is novel as it integrates healthcare professionals’ feedback to enhance the 

realism of the synthetic images. The methodology described in this study presents a 

framework that can be used by other disciplines to generate large, life-like synthetic patient 

datasets reducing the requirement to prospectively create new patient datasets. 

The performance of pre-existing image-based algorithms on our GenECG data indicates 

poor generalisability of existing algorithms to real-world settings. In training and fine-tuning 

the model developed by Bridge et al.[16], we have demonstrated that utilising synthetic 

ECG data may overcome the limited efficacy of pre-existing image-based algorithms on 

real-world ECG images. Importantly, the performance of the fine-tuned model on real-

world images has also demonstrated that over-fitting can be avoided. Our synthetic ECG 

images provide a large data repository which can be used to facilitate the development of 

AI-ECG algorithms on images containing artefacts. This will ensure the translation of AI-

ECG analysis from the research setting to the clinical workplace. 

Limitations 

A limitation of our study is that ECGs were reconstructed from clinically recorded signal 

data. Whilst the clinical Turing tests confirmed the fidelity of the images created, whether 
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fully synthetic ECGs images can be created is not yet known. A further limitation is that the 

ECGs created are of a single layout type. Whilst several major cardiac societies have 

advocated a standardised simultaneous lead format for paper-based ECGs,[15] ECG 

layouts can vary in clinical practice. It is therefore crucial to ensure that future image-

based datasets capture this variability such that image-based artificial intelligence-

enhanced algorithms can be applied to ECGs regardless of the ECG layout encountered.    

In the present study, we have shown how a pre-existing ECG signal-based dataset can be 

utilised to synthetically create a high-fidelity ECG image-based dataset. Our diverse 

dataset will enable the development of image-based AI-ECG algorithms offering the 

potential to bridge the gap that exists between AI-ECG research and current clinical 

practice. On a wider scale, our study presents a framework which other disciplines can 

utilise to synthetically generate large, life-like patient datasets. The use of synthetic patient 

data to augment AI algorithm development presents an exciting opportunity to enhance 

the use of AI in the healthcare setting. 

Methods 

PTB-XL Dataset 

Input ECG signals were provided by the PTB-XL database which contains signal data 

representing 21,799 clinical ECGs from 18,869 patients, stored in Wave Form Database 

Format (WFDB).[9] The PTB-XL ECGs are configured as 12 channel binary files with a 

resolution of 1μv / LSB at 500Hz (each sample is 0.002 sec). Annotated by two 

cardiologists, there are a total of 71 different ECG statements observed throughout the 

dataset. The statements cover form, rhythm, and diagnostic labels in a machine-readable 

form. The diagnostic labels are organised into five superclasses and 24 subclasses as 

described in [9]. 

ECG recreation 

For each PTB-XL ECG, an ECG image was created according to recommendations 

outlined in the ‘AHA/ACCF/HRS Recommendations for the Standardization and 

Interpretation of the Electrocardiogram’ document,[15] comprising a continuous ten 

second recording divided into three rows and four columns consisting of 2.5 seconds of 

data for each lead where column one represents leads I, II and II; column two represents 

aVR, aVL and aVF; column three represents V1, V2 and V3 and column four represents 

V4, V5 and V6. An additional rhythm strip containing 10 seconds of data (lead II) was 

included for rhythm analysis.  
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The Blender (Blender Foundation, Amsterdam, the Netherlands) software platform was 

used to create synthetic ECG images using custom code (developed by AB). ECG images 

were recreated by sampling 2.5s epochs for each lead, positioned according to the 

AHA/ACCF/HRS recommendations[15] and with lead markers, lead labels and calibration 

scales added. Resulting waveform traces were superimposed onto a paper grid (with a 

resolution set to 150Hz (25mm/s) horizontally and 10.0mm/mV vertically) leading to the 

generation of a single waveform layout for each PTB-XL ECG. The resolution of the 

waveform image was set to 5 pixels/mm with a final image output size of 1397 x 1029 

pixels for a 10 second trace. 

To validate the accuracy of initial ECG images created from signal data, ECG files 

representing sine waves of known amplitude (0mV) and frequency (1.25Hz), one per ECG 

lead, were created using MATLAB and written to file using the WFDB Toolbox for 

MATLAB/Octave.[31] A total of 12 test ECGs were created, consisting of ECGs with the 

sine wave at a single ECG lead location with all other leads set to a constant electrical 

potential of 0mV. These files were converted into ECG images using the same code used 

for ECG recreation. All validation ECGs were manually inspected to confirm the correct 

location of the ECG leads. For each lead of each simulated ECG containing a sine wave, 

the amplitude and cycle length (frequency) were measured by an observer (NB) blinded to 

the actual amplitude and frequency. 

Creation of synthetic ECG images 

To add realistic artefacts to ECG images (i.e. to make it appear as though ECG images 

had been photographed), ECG images were passed to a second render which placed 

each ECG image trace on a 3D model comprising a paper sheet positioned in a 

synthetically developed workspace. In total, 352 unique geometric variations were created 

from eight paper sheet variations, eleven workspaces and four synthetic workspace 

orientations. The Blender platform’s bpy module was used to create an automated Python 

script for ECG image generation. For each ECG, a mesh and synthetic workspace were 

randomly selected, and the location and rotation of the ECG paper sheet, camera, and 

light sources were randomly adjusted. Varying degrees of stucci noise were subsequently 

applied to enhance the realism of the rendered images. 

Clinical Turing Tests 

A series of visual Turing tests were designed using previously published healthcare 

research utilising image-based Turing testing[27–30] and conducted to assess the fidelity 

of synthetic ECG images via an online survey (Qualtrics, Provo, UT).  In all rounds of 
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Turing tests, healthcare professionals were provided with a series of 60 images comprising 

30 synthetically created ECGs and 30 photographs of real-world ECGs. ECG images were 

redacted in areas where text may appear. Images were displayed one-by-one to 

participants and shown in uniform order. Participants were asked to select whether they 

thought the images were real or synthetic and, in the second and third rounds, to rate their 

confidence using a five-point Likert scale (Figure 6). At the end of each survey, healthcare 

professionals were asked to provide qualitative feedback through a series of open 

questions. Feedback was summarised and used to iteratively improve the dataset’s 

fidelity. All readers decided whether each image was real or synthetic without any time 

limit and no prior knowledge regarding the number of real or synthetic images. To avoid 

bias, healthcare professionals were only allowed to complete one round of clinical Turing 

tests. 

Assessment on pre-existing image-based algorithms 

To examine the performance of currently available image-based algorithms on the 

GenECG dataset, synthetically created images were inputted into two image-based AI-

ECG algorithms.[13,16]  

Bridge et al., have previously developed an image-based algorithm capable of 

distinguishing ‘normal’ ECGs from ‘abnormal’ ECGs, and this has demonstrated good 

performance on scanned ECG printouts.[16] The dataset used to train the model was 

unavailable. We therefore trained the model with 1682 artefact-free images from an open 

access real-world, image-based dataset (split into train (n=1082), validation (n=200) and 

test datasets (n=400)).[12] The trained model was applied to evaluate its performance on 

43 synthetic ECG images containing image degradation techniques. Following the initial 

results, the model had low efficiency on our synthetic images since it was not exposed to 

images that resembled our images during training. Therefore, the model was fine-tuned on 

215 synthetic images (split into train (n=150), validation (n=22) and test (n=43) images), 

while the weights of the model trained on the open access dataset were used as initial 

weights for this new model. To assess the generalisation power of the synthetic-model and 

to ensure that the model did not over-fit throughout the fine-tuning process, we evaluate 

the trained synthetic-model over the open access test dataset (n=400). AUC-ROC analysis 

was performed to evaluate the performance of the models. 

ECG Dx© (https://www.cards-lab.org/ecgdx) is a publicly available automated diagnostic 

algorithm capable of detecting six diagnoses (atrial fibrillation, sinus tachycardia, sinus 

bradycardia, left bundle branch block, right bundle branch block and first-degree 
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atrioventricular block). We selected 75 abnormal ECGs from the PTB-XL dataset. Images 

with and without image degradation techniques were inputted into the web-based platform. 

The corresponding classifiers were compared with labels assigned from the PTB-XL 

dataset.   

Statistical Analysis 

For each round of Turing Tests, we measured the Accuracy (overall proportion of ECGs 

correctly identified as ‘real-world’ or ‘synthetic’), True Recognition Rate (proportion of real-

world ECGs identified correctly) and False Recognition Rate (proportion of synthetic ECGs 

identified correctly) using adapted terminology from previous Turing tests used in 

healthcare research.[28,30] The Fleiss-Kappa score was calculated to evaluate the degree 

of inter-observer agreement. For the second and third rounds of clinical Turing tests, 

confidence Likert scale scores were converted to a signed ordinal scale for AUC-ROC 

score analysis. The data were analysed using SPSS version 29 (IBM Corp., Amonk, NY). 

Data availability statement 

The ECG images described in the study were created from the PTB-XL database.[9] The 

ECG images will be used for a British Heart Foundation Data Science Centre open 

challenge (https://bhfdatasciencecentre.org/areas/unstructured-data/imaging-open-

challenge). Following this challenge, Dataset A and B will be made publicly available via a 

Creative Commons license. 

Code Availability statement 

The code used to facilitate batch image generation will be made publicly available via a 

Creative Commons license.
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Figure 1. Synthetic ECG images recreated from the PTB-XL dataset. Panels A and B represent artefact-free images. Pan
represent the same images following the application of image degradation techniques to make it appear as though the image
photographed. Panels A and Panels C have been recreated from 00074_hr_1R.dat. Panels B and D have been rec
00067_hr_1R.dat. 
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Figure 2. Example of a synthetic ECG used in the initial Turing test with a summary of the qualitative feedback provided b

professionals. 
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Figure 3. Confidence levels in ECG classification for Turing Test round three. Panels (A) and (B) represent the number of re
each option for (A) real-world ECGs and (B) synthetically created ECGs. Panel C shows an Area under the curve-receiv
characteristic (AUC-ROC) curve examining the impact of confidence level on ability to correctly identify an ECG image as ‘r
‘synthetically created.’ 

 

f responses for
eiver operating
 ‘real-world’ or

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

preprint (w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this
this version posted D

ecem
ber 29, 2023. 

; 
https://doi.org/10.1101/2023.12.27.23300581

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.12.27.23300581


Figure 4. Area under the curve-receiver operator characteristic score curves for ECG images on the algorithm initially d
Bridge et al., [16]. (A) represents the performance of the model on 400 test images obtained from an artefact-free real-world i
dataset [12], (B) demonstrates the performance of the trained model on 43 test synthetic ECG images containing 
demonstrates the performance of the trained model on the same synthetic ECG images following fine-tuning, (D) shows the 
of the fine-tuned model on the 400 test images from the artefact-free real-world image-based dataset. 
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Figure 5. Performance of ECG Dx© image-based algorithm on abnormal images obtained from the PTB-XL dataset. Diag

the Y axis represent PTB-XL labelled diagnoses. 
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Figure 6. Clinical Turing Tests. ECG images were individually displayed on pages and observers asked to select whether 
each ECG image was a real-world ECG or synthetically created. For the second round and third rounds, observers we
indicate their levels of confidence in their answers using a five-point Likert scale. Figures (A) and (B) demonstrate two separa
showing examples of (A) a real world-ECG and (B) a synthetically created ECG. Images were redacted in areas where text m

 

er they thought
were asked to

arate questions
t may appear. 
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Table 1. Summarised results of iterative Turing tests. CI = Confidence interval. AUC-ROC = Area under the curve-receiver operating 
characteristic. 
 

  Round One Round Two Round Three 

Number of participants 9  8 9 

Job role breakdown 

2 Consultants 
5 Registrars 

1 Senior House Officer 
1 Nurse 

 

1 Consultant 
3 Registrars 

2 Senior House Officers 
1 Physiologist 

1 Nurse 

2 Consultants 
2 Registrars 

3 Senior House Officers 
1 Physiologist 

1 Advanced Clinical Practitioner 
Total number of 
electrocardiograms 
correctly identified 345/540 287/480 288/540 

Accuracy 63.9% (95% CI 58.0%-69.8%) 59.8% (95% CI 55.9%-63.7%) 53.3% (95% CI 48.6%-58.1%) 
Real world 
electrocardiograms 
correctly identified 179/270 148/240 143/270 

True Recognition Rate 66.3% (95% CI 60.4%-72.2%) 61.7% (95% CI 55.3%-68.1%) 53.0% (95% CI 48.7%-57.2%) 
Synthetic 
electrocardiograms 
correctly identified 166/270 139/240 145/270 

False Recognition Rate 61.5% (95% CI 54.7%-68.3%) 57.9% (95% CI 51.4%-64.5%) 53.7% (95% CI 47.4%-60.0%) 

Fleiss-Kappa Score 0.045 (95% CI 0.003-0.087) 0.003 (95% CI -0.044-0.051) 0.049 (95% CI 0.007-0.092)  

AUC-ROC score Not performed 0.565 (95% CI 0.514-0.616) 0.480 (95% CI 0.432-0.529) 
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