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Abstract

Plasmodium falciparum is believed to escape immunity via antigenic variation, mediated in part by 60
var genes. These genes undergo mutually exclusive expression and encode the PfEMP1 surface antigen.
The frequency of var switching and the immunogenicity of each expressed PfEMP1 remain unclear. To this
end, we carried out a Controlled Human Malaria Infection (CHMI) study with 19 adult African volunteers
in The Gambia to gain insight into the effect of naturally acquired immunity on the expressed var gene
repertoire during early phase of an infection. Our findings demonstrated a strong correlation between the
diversity of var expression, quantified through entropy, and infection outcome. Low-immunity individuals
were characterised by high var entropy profiles, higher parasitaemia, and lower sero-recognised PfEMP1
domains compared to high-immunity individuals. For the first time we recorded the probability of var gene
switching in vitro and of turnover in vivo, enabling us to estimate both intrinsic switching and negative-
selection effects. These processes are rapid, resulting in estimated turnover/switching probabilities of 69% -
97% and 7% - 57% per generation, in vivo and in vitro, respectively. Var (PfEMP1) expression triggered time-
dependent humoral immune responses in low immunity individuals, with many PfEMP1 domains remaining
weakly immunogenic. We conclude that the role of intrinsic var switching is to reset and maintain a diverse
var repertoire. The high var switching rates and weak PfEMP1 immunogenicity benefit parasite survival
during the CHMI.

1 Introduction
While all human-infecting Plasmodium species invade, grow and replicate within erythrocytes, P. falciparum
is distinct in its ability to modify the surface of infected cells.These changes impact erythrocytes’ cytoadhesive
properties, with late-pigmented trophozoite and schizont stages sequestering within the microvasculature. Se-
questration is essential for the avoidance of splenic clearance of late-stage infected red blood cells (iRBC), but
can result in microvascular obstruction and the release of pro-inflammatory cytokines, which are key features of
malaria pathogenesis [63]. Of the parasite Variant Surface Antigens (VSA), Plasmodium falciparum Erythro-
cyte Membrane Protein 1 (PfEMP1) is the major ligand binding to human endothelial receptors. PfEMP1 is
encoded by a family of ∼60 var genes that undergo mutually exclusive expression; meaning, a single type of var
gene is expressed at each cycle (with peak transcription at 16 hours post invasion). Each P. falciparum isolate
typically contains a unique set of 60 var sequences, making the worldwide pool of var gene sequences virtually
infinite [7]. Despite this mind-boggling polymorphism, var genes are classified into four main sub-families,
named Group A, B, C and E, based on their upstream sequence (Ups) and some conserved motifs [47]. Almost
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all PfEMP1s have a head structure composed of an N-terminal sequence (NTS), followed by a total of four
to nine Duffy binding-like (DBL) and cysteine-rich interdomain region (CIDR) domains, and a semi-conserved
intra-cellular acidic terminal sequence (ATS) domain. Crucially, this nomenclature has been repeatedly as-
sociated with malaria pathogenesis [65]. In younger children and in cerebral malaria cases, parasites tend to
express group A var genes; more specifically, PfEMP1s containing a CIDR1α domain that mediates binding the
brain endothelial receptor EPCR. Conversely, Group B and group C PfEMP1 are expressed in uncomplicated
malaria cases and bind to endothelial cell receptor CD36. The best-characterised PfEMP1 variant expression
and infection prognosis is pregnancy-associated malaria, where var2csa (group E) binds chondroitin sulfate A
(CSA) in the placenta, leading to the sequestration of infected red blood cells in placental blood vessels [37, 62].
Other polymorphic VSA include rif (∼180 copies), with a role in dampening anti-malarial immunity [52], and
stevor (∼30 copies), which are key for iRBC stiffness [39].

Owing to their extracellular exposure, cytoadherent molecules on the surface of infected erythrocytes are also
the primary antigenic targets of the immune system, eliciting variant-specific antibody responses. Although anti-
RIFIN [22] and anti-STEVOR [40] antibodies have been shown to be functional for promoting immune effector
mechanisms, PfEMP1 is thought to be the main target of both total and functional anti-VSA antibodies
[12]. Antibodies against group A PfEMP1s are quickly acquired in life and show moderate level of strain-
transcending cross-reactivity 21, likely providing protection against the most severe forms of malaria. On the
other hand, immunity against Group B and C PfEMP1 takes years, if ever, to develop. Theoretical modeling
and experimental data predicts immune acquisition against PfEMP1 variants likely leads to sequential and/or
homogeneous var expression - a phenomenon postulated to maintain infection chronicity by restricting the
number of PfEMP1 variants due to partially cross-reactive and short-lived epitope-specific antibodies [49, 67,
23]. Consequently, in malaria-endemic regions, older children and adults with partially acquired immunity are
frequently asymptomatic, i.e. individuals often carry parasite loads without exhibiting symptoms of malaria
[35, 19, 13]. P. falciparum parasites have thus evolved unique mechanisms of regulating the expression of
adhesive surface protein variants to evade the host’s adaptive immunity [17, 18]. The proportions of parasites
expressing different var genes in a population can change through two mechanisms; intrinsic switching and
turnover as a result of selection. Intrinsic switching is the probabilistic change of the expressed gene from one
intraerythrocytic cycle to the next [63, 54]. In vivo, in addition to intrinsic switching, parasites expressing
specific PfEMP1 can be recognized and eliminated by the host immune system. Both mechanisms contribute
to the turnover rate, describing how frequently the repertoire of expressed var genes change. Low switching
and turnover rates are thought to promote prolonged infections by preventing the depletion of the entire gene
repertoire [14]. However, as discussed in [14], even the lowest in vitro rates estimated from [27] are not capable
of explaining very long infections such as chronic malaria. Moreover, it is conceivable that rapid, as opposed
to slow switching, provides an advantage for parasites, enabling them to evade recognition by the host immune
system during the early stages of an infection. Here, we revisit these concepts and perform an investigation of
switching under in vitro and turnover under in vivo conditions using a Controlled Human Malaria Infections
(CHMI) study.

CHMI studies in which human volunteers are infected with P. falciparum sporozoites or intra-erythrocytic
stages, using the NF54/3D7 clone have highlighted the inherent differences in expression of various var genes,
with group B being predominantly expressed at the early stages of infection, group A to a lesser extent and
group C almost entirely absent [4, 3, 38, 26]. Here, we examined var gene transcription at multiple timepoints
in vivo and in vitro in a CHMI study carried out with semi-immune individuals in The Gambia, using the
NF54/3D7 parasite clone. We observed that the breadth of serological responses against 3D7 var/PfEMP1
domains affected the pattern of var expression at different time points in the CHMI. Exposed individuals with
better ability to control infection in endemic regions had a broader breadth of response against 3D7 PfEMP1
domains, and had a distinct var expression pattern compared to individuals that were unsuccessful at controlling
the infection. Conversely, in non-controller individuals, var expression amplified the breadth of response against
3D7 var/PfEMP1 domains, while controllers exhibit a comparatively stable response.
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Figure 1: Characteristics of the CHMI for monitoring var expression and immune response: A) 19 semi-immune
adult males were selected based on their pre-existing antibody levels against six P. falciparum antigens and
classified as either sero-high (red) or sero-low (blue) [1]. All volunteers were infected with 3200 sporozoites
(NF54/3D7 strain) on the same day and monitored for symptoms of malaria and parasitaemia, var gene ex-
pression and immune response against PfEMP1 protein domains. Venous blood samples were collected for var
gene expression at one or two timepoints during the infection; on day 14 post inoculation and day of treat-
ment/termination of study for "long" infections, or only on day of treatment in case an individual was treated
before day 14 (short). The immune responses to PfEMP1 domains (n=158) were measured before, during
(once or twice, depending on whether the individual was treated before or after day 14) and two weeks after
the CHMI. B) parasitaemia vs days post infection, stratified as sero-high (red) or sero-low (blue). C) Parasite
Multiplication Rates (fold change per cycle) across the groups of volunteers; classified here as sero-high (red)
and sero-low (blue). DVI - direct venous inoculation.
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Volunteer Immune Response before CHMI Latency
(days) Entropy Generation Time

(days)
Peak parasitaemia

(Pf\ml)

CH001 sero-high 16.00 1.95 1.30 476
CH002 sero-high 10.45 3.00 0.38 1961
CH003 sero-high 9.38 2.64 0.30 5187
CH004 sero-high 11.37 1.60 0.46 10910
CH008 sero-high 9.57 2.89 0.37 12645
CH009 sero-high 9.48 3.58 0.34 14300
CH010 sero-high 7.30 2.64 0.48 15400
CH011 sero-low 9.38 3.30 0.32 21360
CH012 sero-low 10.20 4.00 0.32 22880
CH013 sero-low 6.39 3.85 0.41 27430
CH014 sero-low 6.57 3.50 0.41 27980
CH015 sero-low 6.81 3.40 0.43 71264
CH016 sero-low 6.40 3.85 0.44 84475
CH017 sero-low 9.21 4.06 0.34 100595
CH018 sero-low 5.61 3.22 0.60 148950
CH019 sero-low 8.94 3.69 0.38 168700
CH020 sero-low 8.69 4.01 0.32 205850

Table 1: Parasitaemia characteristics for CHMI volunteers: Different parameters stratified by volunteer immune
status before the start of the infection (sero-low or sero-high). The relationships between these parameters are
highlighted in Figure 1. The latency period is defined as number of days until there is detectable parasitaemia.
The generation time is the average time taken to double the parasite density. One sero-high individual (CH006)
remained negative for the infection throughout the study, while another one (CH007) never reached a para-
sitaemia sufficient for transcriptome analysis.

2 Results

2.1 Pre-existing immunity determines infection outcome
As previously described, 19 semi-immune adult males living in The Gambia were selected for their antibody
levels against six P. falciparum antigens and classified as sero-high or sero-low [1]. All volunteers were inoculated
with sporozoites (NF54/3D7 strain) by direct venous inoculation (DVI) and treated with anti-malarials once
parasitaemia was detectable by microscopy or at the onset of symptoms. The infection outcome differed signif-
icantly in the two groups. Sero-low individuals had more symptoms (mean = 4.10, sd = 2.07) than sero-high
individuals (mean = 5, std = 0.48) with symptoms occurring in both categories approximately 4-5 days after
being positive for parasitaemia by PCR [1]. The peak parasitaemia before treatment in individuals classified as
sero-low was significantly higher than the sero-high individuals (Mann Whitney U-Test; p = 0.01). In addition
to the parasitaemia peak and clinical symptoms, we also compared the parasite growth rates across volunteers
and the pre-patent period (Figure 1, Table 1), defined here as latency. Only two individuals had a long latency
period (CH004 = 11 days, CH001 = 16 days), with one of them having an exponential rise in parasite growth
rate post latency (CH004). The peak parasitaemia was lowest in the individual with highest latency period and
lowest parasite growth rate (CH001). As in [3], we further used the differences in growth rate to classify the
individuals as non-controllers (n=17) and controllers (n=2). The "Controllers" were defined as individuals with
the longest latency and smallest parasite multiplication rate. Both individuals classified as controllers (CH001
and CH004) were sero-high (Figure 1 and Table 1).

2.2 VSAs are the main differentially expressed genes between sero-high and sero-
low individuals:

To understand how identical parasites adapt to different hosts, we performed a low input, whole transcriptome
analysis of parasites recovered from ten volunteers on the day of treatment. Gene expression and subsequent
differential expression analyses are highly influenced by the age and developmental stage of parasites [59]. Thus,
we first estimated parasite ages from sequencing reads by calculating the maximum likelihood estimate against
data from an in vitro time-course experiment [33]. Parasites were ∼ 7.6 hours post invasion (hpi) (95% CI; 6.67
– 9.35) (Figure S1 A & Supplementary file S1), with no significant disparity between the ages of sero-low and
sero-high parasites (p=0.28; Student t-test) (Figure S1 B).
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Figure 2: Whole transcriptome expression analysis: A) Differential expression analysis between sero-high and
sero-low volunteers. Blue and red represent down and up-regulated genes, respectively. VSAs (var and rif ) are
labeled with gene IDs. B) Heat map of the log2 FPKM of the top 50 differentially expressed genes in a pairwise
comparison. Var genes are in bold. Scale bar represent log2 fold change values. C) Bland-Altman plot of var
expression by RT-qPCR and RNA sequencing.

Applying a log2 fold change of > 2 (more than 4 fold difference) and Benjamini-Hochberg adjusted p value <
0.01 as cuttoff, 144 P. falciparum genes were differentially expressed, of which 103 were down-regulated and 41
up-regulated in sero-high compared to sero-low. Among these, genes coding for proteins with cell-cell adhesion
predicted function were the most prominent, including 8 var genes (Figure 2 A, Supplementary file S2). Due to
the nature of clonally variant gene transcription, a pooled analysis might not effectively capture VSAs expressed
in a limited number of isolates. Consequently, we undertook pairwise comparisons of all isolates to detect genes
displaying differential expression among individuals (Supplementary file S3). Genes were then ranked based
on their frequency of appearance in these pairwise comparisons. Remarkably, the top 50 most differentially
expressed genes exhibited a notable enrichment of var (8 out of the 61 var genes were present in the top 50)
(Figure 2B). These observations indicated that the most variably expressed genes among individual volunteers
were members of the var family. Other Variant Surface Antigens (VSAs) including stevor (∼30 members) and
rifin (∼180 members), were poorly detected (Figure S2), likely due to their transcription peaking later in the
intra-erythrocytic life cycle [31, 43, 68, 45]. The exception was the rifin PF3D7_0401600, which was detected in
almost all samples (Supplementary Figure S2B, Supplementary file S4), and was also the major expressed rifin
in a CHMI study with naive volunteers [38]. In contrast, var genes were robustly detected in all samples. To
validate the accuracy of our var gene observations, we measured var expression in each volunteer by RT-qPCR
and compared outcomes of both methods. A Bland-Altman plot comprising 610 observations (61 var genes in
10 volunteers) showed high c oncordance, with only 15 observations falling outside the 95% confidence interval
(Figure 2C). Based on these observations, we focused our attention on var gene expression within hosts of
varying immunity and the corresponding humoral immune responses.
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Figure 3: Var expression landscape across two CHMIs. A heatmap of var gene relative expression proportion at
several timepoints; includes data from this CHMI and from Gabon (at the day of peak infection). The relative
expression of each gene is scaled with the total amount of var expression, quantified by RT-qPCR and ranges
from low to high (0-0.40). The bottom of the heatmap is annotated by the entropy of expression, representing
the amount and diversity of var genes in each sample. Top annotation is based on immunity and geographical
region of origin. All volunteers across different timepoints were hierarchically clustered using an average-linkage
method. Distinct clusters formed based on immunity, but not necessarily location. Non-controllers (blue)
developed symptoms and patent parasitaemia faster than controllers (red) and expressed a high diversity of
var genes during the CHMI, independent of the geographical region of origin of the volunteers. B) Entropy
of var expression: violin plots for the Shannon index of var expression across the two categories of volunteers
(Sero-High; red & Sero-Low ; blue). In the Gambian cohort, the expression entropy was lowest for the two
controllers: CH001 and CH004.

2.3 Var gene expression pattern is shaped by host-immunity:
To assess the impact of selection due to pre-existing immunity on var expression repertoire, var gene expression
was analysed in all individuals by RT-qPCR. This was either done at day 14 post-inoculation and/or on the
day of treatment. Comparison of total var quantity from RT-qPCR data showed higher var transcript levels
in sero-low individuals (Mann-Whitney U-test, p-value <0.001). Hierarchically clustering of pooled volunteers
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from the current study and a previous one in Gabon [3], based on their var expression patterns alone showed
distinct separation of controllers (CH001 & CH004 from The Gambian CHMI and L1.023, L1.26, L1.010, L.018,
L1.028 from the CHMI in Gabon [3]) from non-controllers (Figure 3A).

To estimate var gene heterogeneity, we compared the diversity of var repertoires across sero-high and sero-
low groups by computing the Shannon entropy, a measure encompassing both diversity and relative abundance.
Significantly higher entropies were observed for sero-low individuals (Mann-Whitney U-Statistic, p-value =
0.0002); indicating a larger breadth of var expression, in contrast to sero-high isolates that exhibited a more
restricted repertoire of transcribed var genes (Figure 3B). This difference in diversity was also negatively asso-
ciated with other markers of infection progression including latency (Spearmann Rank Correlation, r = -0.55,
p = 0.02) and parasite doubling time (Spearmann Rank Correlation, r= -0.53, p =0.02).
In summary, the distinct (restricted) var gene expression pattern in controllers could be a proxy for a slow
growing P. falciparum infection, possibly resulting from selection against specific PfEMP1s.

2.4 In vivo var gene renewal rates are very high:
To evaluate var transcript profile changes in vivo, we compared the expression levels in individuals with two
available timepoints, ranging from day 14 to day 20. We then computed the theoretical limits of probability
to stop expressing a certain gene, given its expression at the first time point (the turnover probability of that
gene). As expected, the turnover probability increased with time between day 14 post-infection and the day of
peak infection (Figure 4 A). For the individual with the highest time gap between two time points (CH004), all
genes expressed on day 14 were undetectable after three life cycles (6 days).

We further computed the instantaneous transition rates per unit time (days−1) during the CHMI, defined as
turnover probability per unit time. On comparing the var transition rates per day across different var groups,
groups A, C and E (var2csa) had the highest transition rates. (Figure 4 B). The median transition rates were
higher than 1 per day in all three groups, which correspond to transition probabilities higher than 86% per
cycle. These high in vivo transition rates may arise from a combination of the inherent switching rate and the
potential selection pressure acting against parasites that express particular PfEMP1 variants.

2.5 In vitro var gene switching sustains a steady state with elevated entropy
Out of the original pool of volunteers (n=19), ten blood isolates drawn from seven volunteers were cultured in
vitro for several cycles to investigate the impact of a lack of host-immunity on var expression patterns. Five
isolates (CH001-D28, CH002-D14 CH002-D15.8 CH004-D14 & CH004-D20.3) belonged to the sero-high, while
five isolates (CH012-D14, CH012-D16.3, CH014-D12.3, CH016-D12.3 & CH020-D14)1 were from the sero-low
category. For each isolate in culture, we analysed var transcription profiles by RT-qPCR at 3 to 8 time points
for up to 100 days (Figure S3). Isolates derived from sero-low individuals all converged to near-identical var
gene expression pattern within 20 days in culture, with all Pearson correlation values above 0.80 (Figure S4).
In contrast, sero-high isolates did not demonstrate any uniform expression pattern even after 50 days of culture,
with Pearson values ranging from 0.20 to 0.95.

To rigorously assess the hypothesis that the host immunity level may have a lasting impact on var gene
expression in vitro, we integrated data analysis with mathematical modeling.

First, the multi-dimensional traces from the ten timeseries were projected onto a 3D space using PCA.
We divided the time points in three categories: early (0-6 days), intermediate (20 ≤ 50 days), and late (50-
100 days). The projected point clouds from different categories show that the var gene global dynamics is
quantitatively different for samples from sero-low and sero-high volunteers (Figure 5). For samples derived
from sero-low volunteers, var gene transcription profiles are more spread at early time points than late time
points (Figure 5A), shown quantitatively by using the convex hull of the PCA projected points (Figure 5C).
This suggests that after a fast transient phase, the var gene transcription profile reaches a steady state; an
observation which is similar for all isolates. This can also be seen in Figure 5E where the transcription profiles
of all late timepoint samples are compared without projection. Sero-high volunteer samples showed a different
trend: the variability of the transcription programs starts from smaller values, but not all samples reached
a steady state (the final variability is not close to zero) (Figure 5B,D,F). The similarity of the late time var
gene expression profiles in different samples was also tested to be higher for Sero-low compared to Sero-high
volunteer samples by using an AUC criterion (Figure S5). Nevertheless, when utilizing entropy as a metric to
assess the diversity of var gene expression within a particular profile, we observed that all samples exhibited
a consistent trend of monotonic entropy increase with the highest entropy being reached in the steady state
(Figure 5I). Moreover, the primary distinction between sero-low and sero-high samples appears to be the initial
transcription profile, which exhibits higher entropy in the former as opposed to the latter.

1the first and second part of the sample symbol indicates the volunteer and the the day after infection when the isolate was
drawn, respectively
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Figure 4: Quantifying change in var expression during an infection. A) Transition (turnover) probability
comparison across different timepoints indicated that genes expressed at day 14 are no longer detectable by
the end of the infection in most volunteers. This turnover probability is ordered between day 14 and day 20
post-infection. The median of the turnover probability is highest on day 20 (black dashed line). B) The finite-
time transition (turnover) probability for each gene at each time point was used to calculate the instantaneous
transition rate per day. The transition rates (off-rates) for various genes are shown per group, sorted by the
median transition rate, in increasing order from left to right. Based on our data, Group A var genes had the
higher transition rates ∼ 1.78 per day as compared to 0.59 per day for Group B var genes.

Secondly, we performed a more accurate analysis of the var gene transcription dynamics using a mathematical
model. In the absence of host immunity, the in vitro dynamics is not influenced by selection, but results only
from intrinsic switching of the var gene system. Under this hypothesis, the var gene dynamics can be modelled
as a continuous time, four-state Markov chain (see Methods and Materials). The four-states Markov chain
model fits well to the data of all the samples (Figure S7). As observed in the first analysis of the data, the
theoretical steady state of the inferred Markov chain has high entropy, where many var genes are significantly
expressed. Sero-high samples require more time to reach steady state due to distinct initial data compared to
the steady state, while sero-low samples have initial states with higher entropy closer to the steady state. The
fitted values of the transition rates are represented in the Figure S6. The C and BC switching rates are similar
to turnover transition rates in vivo, while those for A and B are much smaller than the respective in vivo rates
(Figure 5J). Altogether, our data indicate that immune selection within sero-high individuals may still impact
the var gene transcription profile in vitro after 25 generations.
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Figure 5: In vitro dynamics of var gene transcription. A,B) distribution of early (red), intermediate (green)
and late (blue) time samples projected on the 3 first PCA components. C,D) volume of the convex hull of
the samples projected on the same 3D space was used as a proxy for the variability of the var transcription
programs. E,F) probabilities of expression of different var genes for all late time samples. G,H) probabilities of
expression of different groups of var genes for all late time samples. I) in vitro evolution of var gene expression
entropy. J) estimated in vitro transition rates.
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2.6 Immune responses against VSAs differ significantly between sero-high and
sero-low individuals:
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Figure 6: Heatmap of serorecognition of all PfEMP1 domains from all volunteers. Each column is a time point
for a particular volunteer during the infection (top annotation). The sero-high and sero-low individuals have
been annotated in green and blue, respectively. The naive individuals are grouped on the left (labelled and
annotated in green). Each row corresponds to a PfEMP1 domain, grouped based on the receptors they bind to
and the fluorescence intensity is scaled for each domain, in increasing order (from yellow to red). The domains
are grouped by the type of antibody binding types they are associated with, namely; CD36 Binding domains
(associated with less severe symptoms), Non-CD36 Binding domains (EPCR-binding) and Intracellular domains
(ATS)

We evaluated the antibody levels against different antigenic domains corresponding to PfEMP1s and other
antigens by exploiting recombinant protein microarray data. Serological responses to a total of 213 falciparum
PfEMP1 domains (159 from 3D7, 54 from three other strains) and 18 other recombinant antigenic proteins
(MSP1, CSP, AMA1, RIFIN and STEVOR) were analysed for each volunteer at several timepoints: before
the injection (day 0), during the infection (Range: day 13-28) and about 2-3 weeks after treatment (day 35)
(Figure 6). At day 0, antibodies against non-PfEMP1 surface antigens were associated with the latency period
(AMA1: r= 0.80, p < 0.01 & MSP1: r = 0.48, p < 0.01 and the peak parasitaemia (AMA1: r= -0.80 , p < 0.01,
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Figure 7: Significant increase of serorecognised PfEMP1 domains post-CHMI in sero-low individuals. A) Sero-
positivity throughout time in CHMI participants (top panel): The scatterplot showing the number of domains
that were sero-recognized at different timepoints during the CHMI across the two groups, sero-high (red) and
sero-low (blue). The shaded region represents the confidence interval (± 2 SD) for the number of domains
recognized in each sub-group. B) Relative feature importance score to predict infection outcome. The random
Forest classification model was ranked according to the association between antibody levels against domain
groups to predict volunteer subgroups.

MSP1: r= -0.59,p < 0.01) using Spearmann Rank Correlation. These results confirmed previous data from the
same CHMI study [1].

Moreover, based on the breadth of response at the beginning of the CHMI, sero-high individuals had sero-
recognition of a significantly higher number of 3D7 PfEMP1 domains in comparison to sero-low individuals before
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(Mann-Whitney U-Test, p < 0.01) and after the infection (Mann-Whitney U-Test, p < 0.01) (Figure 7 A). When
examining the change in the number of recognized domains before and after the CHMI study, no significant
induced response was observed in the sero-high group (Mann-Whitney U-Test, p < 0.01) (Figure 7A). This is
in sharp contrast with the breadth of antibody levels in sero-low individuals, that more than doubled after the
infection (mean number of recognized domains pre-infection ∼11, ±6; post-infection ∼28, ±12, Mann-Whitney
U-Test= 17.0, p < 0.01).

Additionally, we employed a random forest model to predict the subgroup to which the volunteers were linked
using microarray data related to PfEMP1 domain responses. Using this model, the subgroups were re-confirmed
with a predictive accuracy of 98% (Figure 7B). Feature scores of the model revealed that the most important
domains for predicting infection outcome were either DBL-CIDR di-domains, ATS domains or CIDRα-binding
domains, with CIDRα-binding domains being the sub-domains that are linked to severe symptoms of falciparum
infection. The sero-recognition breadth within each individual was negatively correlated with infection markers
in vivo, i.e. latency (Spearmann Correlation: 0.67,p < 0.01) and the peak parasitaemia (Spearmann Correlation:
-0.68,p < 0.01) (Figure S8).

2.7 Var expression is moderately associated with pre-existing specific immune
response:

To investigate the interplay between pre-existing specific immune responses and PfEMP1 expression, we exam-
ined our primary hypothesis that the presence of antibodies targeting specific PfEMP1 domains would impose
a selective pressure against infected red blood cells (iRBCs) expressing the corresponding var gene during the
asexual blood stage. Overall, we observed a moderate association between the breadth of PfEMP1 domain recog-
nition prior to challenge and the Shannon entropy of var gene expression during CHMI (day 12-20) (Spearman
Rank Correlation = -0.52, p < 0.05). This suggests that the diversity of var gene expression may be constrained
by the breadth of immune responses directed against PfEMP1 domains.

To make inter-PfEMP1 responses throughout the CHMI comparable, we used a discretized method to
evaluate both the fluoroscence intensity values for antibody levels per domain and the expression levels of the
var transcripts (described in Methods and Materials) based on quantiles per domain (for immune response
data) and per gene (expression data). On comparing the intensity of recognition at the start of infection to
var gene expression, we observed a moderate association during the CHMI (Figure 8). This relationship was
strongest for var groups ’B\C’,’A’ and ’B’, indicating that some PfEMP1 expression could have been inhibited
by existing specific immune response. However the antibody intensity against PfEMP1s corresponding to the
intermediate group ’B/A’ and ’var2csa’ was not significantly associated with reduction in expression during the
CHMI.

.
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Figure 8: Anti-correlation between pre-existing PfEMP1 antibodies on day 0 and var expression during the
CHMI. A PfEMP1 was considered sero-recognised in an individual if at least one of its domains showed antibody
signal on the array. We calculated, across all volunteers, the Spearmann Rank correlation between the PfEMP1
sero-recognition intensity on day 0 and its subsequent expression during the infection. The correlation was
plotted separately for each var group, ordered by the median of the correlation between the two quantities.

2.8 The increase in antibody levels is not necessarily dependent on the intensity
of PfEMP1 expression during the CHMI.

In order to examine the hypothesis that the overall intensity of PfEMP1, specifically the quantity of PfEMP1
expressed at a particular time point within an individual, initiates antibody production, we contrasted the
discrete intensity levels at which various var genes were expressed during CHMI with the quantity of antibodies
acquired against the corresponding PfEMP1. On evaluating the correlation between these two variables, we
observed no evident of association in antibody development towards genes expressed at high intensity when
compared group-wise for all var groups (Figure 9). These results indicate that the gain in antibody levels is
not necessarily dependent on the intensity with which a particular gene was expressed during the infection.
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Figure 9: Correlation between expression intensity of PfEMP1s and antibody acquisition at day 35. Group-wise
comparison of var genes based on the correlation between their expression intensity during the infection and
the corresponding antibody gain against them at day 35.

3 Discussion
Controlled Human Malaria Infection (CHMI) studies are useful not only for evaluating drug efficacy and vaccine
development but also for understanding pathogenesis of Plasmodium within the human host and its interactions
with the immune system in real time [55]. Leveraging clinical and experimental data from CHMI studies, our
aim was to document the heterogeneity in host responses and compare infection characteristics that transcend
different geographical regions.

Individuals selected for their previous malarial exposure showed diverse infection outcome and var expression
heterogeneity, consistent with previous findings in Gabon [3]. In our study, the whole transcriptome sequencing
approach underscores var genes as the primary cause of transcriptome heterogeneity among isolates. Despite the
geographical distance between Gabon and The Gambia, there is a consistent var gene expression pattern linked
to pre-existing immunity against malaria. The observed similarity suggested an immune response that selectively
targeted certain PfEMP1 variants in individuals classified as “controllers”. These individuals, characterized by
low entropy profiles featuring limited expressed genes, exhibited longer latency periods, lower parasitaemia
levels before treatment, and demonstrated recognition of a wide array of PfEMP1 domains prior to the infection
challenge. On the other hand, individuals classified as “non-controllers”, who had high entropy profiles and a wide
range of expressed genes, showed elevated parasitaemia levels, shorter infection delays, and limited recognition
of PfEMP1 domains. This is reminiscent of the rodent malaria model, in which P. chabaudi parasites express
a very limited number of pir genes in chronic infections [10].

Antigenic variation, encompassing intrinsic switching of the PfEMP1 proteins that a parasite displays at the
red blood cell surface, is regarded as a prominent survival strategy employed by P. falciparum during its blood
cycle. This process has been extensively studied in vitro [27, 48, 70]. Nevertheless, antigenic variation is also
contingent on the host-pathogen interaction, triggered both by intrinsic switching and by elimination of variants
through the immune system’s negative selection process. Negative-selection eliminates variants and is therefore
detrimental to the parasite survival, whereas intrinsic switching replaces one variant with another and maintains
the expression diversity of the antigens. Here, from 9 volunteers, two blood isolate timepoints were available,
providing a rare opportunity to quantify the turnover rates of var genes in vivo. Turnover probabilities rapidly
increased over time. For instance, in the volunteer that was able to control the infection until the end of the
CHMI without turning symptomatic, we found that the initial repertoire of var genes had completely changed
after three cycles (between day 14 and 20). Given the short interval between timepoints, this shows that the
var turnover during an infection is much higher than reported previously [42, 20]. Our mathematical estimates
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based on a Markov chain model lead to turnover probability estimates with group averages between 69% and
97% per generation (corresponding to instantaneous rates from 0.59 to 1.78 per day, see Figure 4B), likely as a
result of a combination of intrinsic switching and immune selection. Additionally, group A var had the highest
rates of transition in vivo, a phenomena previously observed in vitro [43].

To get an accurate estimate of switching events and rates in the absence of immunity, we modelled the var
transcripts coming from the CHMI volunteers in vitro for several cycles in culture. In our study setting, although
smaller than in vivo values, intrinsic switching rates were found higher than reported elsewhere [51, 27]. In
vitro transition (switching) probabilities for var genes B and A (7% and 44% per generation, respectively) are
over two-fold lower than in vivo turnover, whereas the in vitro values for var C and BC (57% and 49% per
generation, respectively) are close to in vivo values. These large, per group values, do not exclude that some
rarely transcribed var genes have low transition rates, even within fast groups. Furthermore, var expression
profiles evolved in vitro towards a steady-state distribution marked by a significant increase in entropy and many
expressed var genes. The steady state distribution in both sub-groups comprised as major constituents var
groups B and C, that is compatible with previous findings 43. In the sero-low groups, the parasite populations
reached the corresponding steady state relatively quickly, within fewer than 10 cycles. Remarkably, for sero-
high individuals, the parasite cultures took longer to converge to the steady state, with some samples retaining
memory of the initial state even after 50 days in culture. We therefore hypothesize that epigenetic imprinting
on parasite populations from hosts with robust immune responses led to a var gene repertoire significantly
divergent from the in vitro steady state. However, given that the switching rates were found to be similar, the
disparities in time to reach a steady state can be primarily attributed to differences in the expression profiles
between the two groups at the peak of infection.

We propose that in all sero-low individuals expressing multiple var genes, the in vivo var distribution closely
mirrors the in vitro steady state. This is consistent with the hypothesis that var gene expression is reset during
mosquito and/or hepatic stage passage [4]. We also hypothesize that a similar state is initially present but is
rapidly lost through negative selection in sero-high individuals. This state is reached by parasite intrinsic var
gene switching as part of a “bet-hedging” strategy in a hostile environment. In all individuals, the observed
distribution at later in vivo time points evolve to a less diverse repertoire through negative selection. Several
studies highlight that the initial probabilities of expression of different variants at the onset of blood stage
infection are consistent across multiple CHMI studies with limited stochasticity between individuals [4, 26]. :
Similarly, broad group B var expression was observed in a CHMI study with the 7G8 clone, although in this
instance, a group C var was the most dominantly expressed in all volunteers [69][45, 69].

The most common approach to study naturally acquired immunity involves incubating antibodies from semi-
immune individuals against parasite recombinant proteins derived from the 3D7 strain [12, 46]. However, to test
antibody sero-recognition against the PfEMP1 family, these assays must rely on some level of cross-reactivity,
due to the extremely high var gene sequence polymorphism. Here, we circumvented this limitation with a 3D7-
based protein array and plasma samples from 3D7-infected individuals, allowing us to determine the precise
antibody-acquisition against each PfEMP1 variant. The sero-low/sero-high grouping made from Luminex assay
[1] was validated with MSP1, CSP and AMA1 on our protein array. As expected, these sero-high individuals also
sero-recognised a significantly larger proportion of PfEMP1 domains. These pre-existing antibodies decreased
the likelihood of reaching the treatment threshold for the infection. The diversity in recognition, coupled
with cross-reactivity against VSAs can be considered crucial to prevent symptomatic infections [11, 30, 24] for
controlling malaria infections. Our results re-confirm that anti-PfEMP1 immunity is a marker for infection
outcome and severity of malaria infection [66, 8], and that certain PfEMP1 subsets have been linked to shield
against severe symptoms of the disease [58, 60, 2, 41]. We also found that the pre-existing specific PfEMP1
antibody levels were at least moderately negatively associated with the expression of var genes during the
infection, and this stems from acquired immunity to previous malarial infections. The negative correlation
was most pronounced for group B and A PfEMP1, which constitute the var gene repertoire in early stages of
infection.

Although blood-stage infections were artificially shortened by anti-malarial drugs, the breadth of antibody
levels against PfEMP1 domains drastically increased by day 35 in sero-low individuals. Among the notable
increases in antibodies was against the PfEMP1 domain ATS, located inside the red blood cell. This finding has
been consistently demonstrated [61, 46], establishing ATS, the only conserved PfEMP1 domain, as a marker
of exposure rather than protection. We did not identify a direct correlation between the var genes detected
during the infection and the antibody-acquisition by day 35. Merozoites emerge from the liver around day
6, thus the var gene expression over the first 3 cycles is unknown, but they could have led to acquisition
of novel antibodies observed post-infection. The observation that many highly expressed var genes at peak
parasitaemia did not trigger an antibody response is intriguing. We hypothesize that certain PfEMP1 domains
are poorly immunogenic. While it is evident that PfEMP1s generally induce a robust immune response, in fact
most antibodies targeting surface antigens are against PfEMP1 [12]. However, whether surface expression of a
PfEMP1 automatically generates a new antibody had not been previously explored. We argue that P. falciparum
has evolved not only an extremely polymorphic gene family but also protein domains that are relatively weakly
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immunogenic. This evolutionary pressure does not apply to the intracellular ATS domain, explaining its higher
immunogenicity.

In summary, our findings corroborate the following scenario: The driving force behind maintaining a high-
entropy repertoire of PfEMP1 variants is the intrinsic var gene switching. The establishment of a high-entropy
repertoire occurs through resetting during mosquito and liver passage. This bet-hedging strategy proves to be
effective when the parasites are confronted with a less diverse immune response. The high entropy repertoire
is maintained by intrinsic switching in sero-low individuals, but does not survive negative-selection in sero-
high individuals. However, some PfEMP1 domains are only poorly immunogenic and can persist. As such,
poor immunogenicity combined with bet-hedging insures the parasite survival during CHMI. Intrinsic var gene
switching is responsible for the reset and maintenance of a diverse var repertoire. Its high rates represent a
challenge for the immune system during CHMI, because of the limited immunogenicity and duration of the
infection. In the case of prolonged infections, such rapid rates of exhaustion of the repertoire could be a
disadvantage for the parasite, which then has to depend on alternative mechanisms to generate variability
such as recombination [64, 16, 15]. Interestingly, parasites submitted to high negative selection in sero-high
individuals tend to express more stable variants and recover much slower, the high entropy steady state. This
again could work in favor of the host/immune system and contribute to establishing a dynamic asymptomatic
equilibrium during extended infections.

4 Methods and Materials

4.1 Epidemiological study design and sample collection
The epidemiological data used in this study was obtained from a previously published, non-randomized clinical
trial in the Gambia (low transmission intensity) carried out by the Medical Research Council Unit The Gambia
(MRCG) [1]. Briefly, participants aged between 18-35 years were recruited for this study and were screened for
various hematological and biochemical abnormalities. Previous malaria exposure in these participants before
DVI (Direct Venous Inoculation) was approximated using the LUMINEX platform by comparing responses
against 6 malaria antigens (AMA-1, MSP1.19, GLURP.R2, GEXP18, Etramp5, Rh2) known to be markers of
malaria exposure. Based on these responses, the volunteers were classified into two groups, sero-high and sero-
low [1]. All volunteers received PfSPZ Challenge (3.2 × 103 PfSPZ in 0.5 mL, NF54/3D7 strain from Sanaria)
by direct venous inoculation. Venous blood samples were collected the day before the inoculation (Day 0), once
or twice between day 11 to 28, and at at day 35. All volunteers were treated with artemether-lumefantrine once
thick blood smears were positive with P. falciparum.

4.2 Parasite enrichment and sorting
Infected venous erythrocytes frozen in glycerolyte were thawed and immediately treated with Streptolysin
O (SLO) from Streptococcus pyogens (Sigma) as previously described [28, 9], with few modifications. Briefly,
lyophilized SLO was reconstituted at 25U/µL stock concentrations, activated at room temperature for 15 minutes
with 1M dithiothreitol (DTT) and used at a final activity of 1U/µL. Cells were lysed at room temperature for
6 minutes and reaction quenched with 5% PBS-BSA. Cell pellets were resolved on 60% Percoll gradient to
remove cell debris, by centrifugation at 2500 x g for 3 minutes. Pellets were washed twice with PBS and
stained with 500µL of 1:2000 dilutions of Vybrant DyeCycle Green Stain (Thermo Fisher) for 30 minutes at
37oC. Where possible, 100 infected erythrocytes were sorted in triplicates with a BD FACSAria flow cytometer
(BD Biosciences) into wells containing lysis buffer of 2µL 0.8% Triton-X100, 1µL of 10mM dNTP mix (Thermo
Fisher), 0.1µL of 20U/µL RNase Inhibitor (SUPERase•In™; Thermo Fisher), 0.1µL of 100µM non-anchored oligo
dT (IDT) [50], 0.4µL of 50% polyethylene glycol (PEG8000) (Sigma) and 0.4µL nuclease-free water. Plates were
snap-frozen on dry ice and stored at -80oC until use.

4.3 Whole transcriptome amplification with SMARTseq2
Complementary DNA (cDNA) were synthesized from sorted cells with a modified version of the SMARTseq2
protocol which has been optimized for Plasmodium [50], with few modifications. Briefly, a molecular crowding
step [5] was included to improve library yield by adding 5% polyethylene glycol (PEG8000) (Sigma) to the
lysis buffer [25]. Additionally, the SmartScribe (Clontech) reverse transcriptase was substituted with the better
performing Maxima H (Thermo Fisher) at the cDNA synthesis step [5, 25, 72]. Frozen plates were thawed
and incubated at 72oC for 5 minutes. cDNA synthesis master mix with final concentrations of 1X Maxima H
RT buffer, 10µM TSO (Qiagen), 5U SUPERase•In RNase Inhibitor, 25U Maxima H enzyme, and nuclease-free
water in 6µL volumes were added to each well. The cDNA was synthesized at 42oC for 90 minutes, followed
by 10 cycles of 2 minutes at 50oC and 2 minutes at 42oC, and deactivation at 85oC for 5 minutes. cDNA was
then amplified at 26 cycles with the KAPA HiFi HotStart ReadyMix PCR Kit (KAPA Biosystems), using the
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following conditions: denaturation at 98oC for 3 minutes, cycling steps of denaturing at 98oC for 20 seconds,
annealing at 67oC for 15 seconds, extension at 72oC for 6 minutes, and final extension at 72oC for 5 minutes.
PCR products were cleaned with 1X AMPure XP beads (Beckman Coulter), and eluted with 20µL of nuclease-
free water. cDNA quantity and quality were assessed with Qubit dsDNA HS Assay (Invitrogen) and Agilent
High Sensitivity DNA Assay (Agilent), on a Qubit 4 fluorometer and Agilent 2100 Bioanalyzer, respectively.

4.4 Whole transcriptome sequencing and data analysis
Amplified whole transcriptomes were sequenced by BGI genomics (Hong Kong). Paired-end fastQ files were
aligned with HISAT2 (default alignment parameters) [29] and bam files made with SAMtools [34]. The Summa-
rizeOverlaps feature of the GenomicAlignments package [32] was used to count reads against the P. falciparum
3D7 reference genome (version 3.0) and DESeq2 [36] used for differential expression analysis in R.

4.5 Parasite culturing
Cryopreserved parasites were thawed with NaCl solution [56], and parasites cultured in RPMI-1640 (sigma)
supplemented with 25mM HEPES, 2mM L-glutamine, 0.5% Albumax II (sigma) and 50µg/L gentamicin (sigma).
Parasites were cultured in 10mL volumes at 2% haematocrit in a blood gas environment of 90% N2, 5% CO2
and 5% oxygen. Parasites were harvested for RNA extraction at respective timepoints after synchronization
with 5% D-sorbitol.

4.6 RNA extraction from samples stored in RNAprotect and cultured isolates
Total RNA was extracted by the phenol-chloroform extraction method with TRIzol reagent. For in vivo sam-
ples stored in RNAprotect Cell Reagent (Qiagen), five volumes of TRIzol reagent (Ambion) was added for
homogenisation. For in vitro samples, 1mL of TRIzol was added to 200µL erythrocyte pellets and homogenised.
One-fifth TRIzol volumes of chloroform (Sigma-Aldrich) were added, and phase-separated by centrifuged at
16,000xg for 15 minutes at 4oC. RNA was precipitated from the aqueous phase with ice-cold isopropanol and
15µg of glycogen (GlycoBlue™ Coprecipitant; Invitrogen) for 2 hours or overnight at 4oC. After centrifugation
at 16,000xg for 30 minutes (at 4oC), the precipitated RNA pellets were washed with 75% ethanol, air-dried
at room temperature and solubilized in 87.5µL of DEPC-treated water (Invitrogen). Residual genomic DNA
was subsequently removed by in-solution digestion with 7U of RNase-free DNase I (Qiagen). The RNA was
then cleaned up by a second phenol-chloroform extraction step, and finally solubilized in 15µL DEPC-treated
water. Absence of genomic DNA was determined by 35 cycles of RT-qPCR, using the skeleton binding protein
1 (SBP1 ) as target gene. If Ct values were less than 32, DNase digestion and re-extraction was repeated. The
RNA was either used immediately or stored at -80oC.

4.7 Estimation of primer efficiency
Primers used for 3D7 var gene expression analysis were selected from previous studies [53, 3]. All primers were
synthesized by Eurofins Genomics at 0.01 µmole with HPSF purification. P. falciparum 3D7 genomic DNA
was serially diluted over 5-log concentrations and applied in a qPCR assay to determine primer amplification
efficiency, using the SensiFAST™ SYBR No-Rox kit (Bioline) and primers at 300nM concentration. PCR was
run with a LightCycler® 480 System (Roche). A two-step PCR was applied, with initial denaturation at 95oC
for 3 minutes, followed by 40 cycles of annealing and extension at 62oC ramping at 4.8o C/s. A melting curve
step was included to ascertain the specificity of the primers. Only primers with efficiencies between 1.8 and 2.2
were used for further analyses.

4.8 Real time (RT)-qPCR
cDNA was synthesized with the PrimeScript™ RT reagent Kit (Takara) using a combination of random hex-
amers (100µM) and oligo dT (50µM) primers in 20µL reaction volumes. cDNA was used in qPCR for the
quantification of var genes in each sample. RT-qPCR assays were run with the SensiFAST™ SYBR No-Rox kit
(Bioline) and primers at 300nM concentration on a LightCycler® 480 System (Roche). A two-step PCR was
used, with initial denaturation at 95oC for 3 minutes followed by 40 cycles of annealing and extension at 62oC
with 4.8oC/s ramp. Each assay included a 2.5µg genomic DNA positive control and no template (water) neg-
ative control. A melting curve step was included to ascertain the specificity of the primers. Four Plasmodium
genes; SBP1 (PF3D7_0501300), fructose-bisphosphate aldolase (PF3D7_1444800), arginyl-tRNA synthetase
(PF3D7_1218600) and seryl tRNA synthetase (PF3D7_0717700) were included as housekeeping genes (refer-
ences). Normalisation and calibration were done as previously described [3]. In brief, SBP1 was used as the
normalizer while 2.5ng genomic DNA was used for calibration. Relative quantification was calculated using
2−∆∆CT taking into consideration the individual primer amplification efficiencies [44].
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4.9 Estimating infection characteristics:
For comparing infection progression in-terms of growth rate, we calculated the PMR using a piece-wise log-linear
model with latency as an additional parameter, given by:

y(t) =

{
0 , t ≤ d
yd exp[m(t− d)] , t > d

where d is the latency period, i.e. the time during which parasitaemia is undetectable, and m is the intrinsic
growth rate of the parasite in each individual, y is the measured parasitaemia level, and yd is a small undetectable
parasitaemia value. In the model we approximate to zero the undetectable parasitaemia during latency and
consider that after latency the parasitaemia grows exponentially.

4.10 Estimating var gene expression changes:
var gene expression probabilities were estimated as frequencies, i.e. ratios of the number of specific reads to the
total number of reads. All probabilities less than a cut-off of 2% of the total var expression were considered as
vanishing. Because each parasite expresses only one var gene at a time, the expression probability of a gene
also represents the proportion of parasites expressing that gene.

To quantify the heterogeneity of the population of parasites in terms of quantity and type of var genes, we
used the above expression probabilities to compute a Shannon diversity index as follows:

S = −
∑
Pi ̸=0

Pi log(Pi),

where Pi represents the probability that the var gene i is expressed.
To model the change in var gene expression across time we considered a two state, continuous time 2 Markov

chain described by the diagram:

ON OFF

P−

P+

The two possible states for each variant are "ON" and "OFF" and P+ and P− are the probabilities of transition
from one state to the other. The state "ON" means that the variant is expressed in a given parasite. The ’OFF’
state corresponds to both events in which the parasite has switched away to expressing another gene, as well as
the parasite expressing the same gene was recognized and eliminated by the host immune system.

The probabilities of a gene being expressed at various times t + ∆t and at t are related by the following
expression:

PON
t+∆t = PON

t (1− P−(∆t)) + POFF
t P+(∆t) (1)

where P−(∆t), P+(∆t) are the finite time transition probabilities from OFF to ON and from ON to OFF,
respectively. Using Eq.1, we can find bounds for the finite time transition probabilities P−(∆t) and P+(∆t).
The probability bounds for P− can be given as:

max(0,
PON
t − PON

t+∆t

PON
t

) ≤ P−(∆t) ≤ min(
1− PON

t+∆t

PON
t

, 1). (2)

Similarly, the finite time transition probability from OFF to ON state satisfies:

max(0,
PON
t+∆t − PON

t

1− PON
t

) ≤ P+(∆t) ≤ min(
PON
t+∆t

1− PON
t

, 1). (3)

The finite time transition probabilities thus calculated depend on the time interval ∆t. To quantify the transition
probabilities independently of the time interval, we estimate the instantaneous transition rate (per unit time)
p− from ON to OFF, for each gene. Neglecting switching to events, instantaneous transition rate is related to
the finite-time transition probability, as described by the formula:

P−(∆t) = 1− exp(−p−∆t). (4)
2Even if one parasite switches the variant only at discrete times, multiples of the generation time, a continuous-time model is

appropriate for modeling a population of non-synchronized parasites.
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The finite time transition probability along a time ∆t equal to the generation time Tg is equivalent to the
rates derived previously in [27], using the discrete difference equations. Indeed, let us suppose that the gene
only changes from ON to OFF. Then, the changes of the proportion of parasites expressing a variant Pt over
successive generations, starting with a monoclonal population P0 = 1 to represent the experimental conditions
from [27], are described as:

Pt+1 = Pt − roffPt, (5)

where roff = 1− P 1/n
n . (6)

Comparing Eq. (1) with P+ = 0 to Eq. (5) we find the equivalence between P−(Tg) and the discrete model rate
roff:

roff = P−(Tg) = 1− exp(−p−Tg). (7)

To summarize, in this paper we use both instantaneous transition rates (measured in d−1) and finite time
transition probabilities (measured in % per generation) to estimate rates of changes of var gene expression.
The above definitions are general and apply to both in vivo turnover and to in vitro switching, even if the
mechanisms of gene population change are different. The definition of rates used in previous works [27], based
on discrete Markov chains models and concerning in-vitro switching, is the same as our definition of finite time
transition probabilities.

4.11 Modeling in vitro data
The analysed data consists of ten time series with up to six time points. The time series is multi-dimensional,
as for each time point one has the probability of expression of each of the 61 var genes.

First, the high-dimensional traces were projected onto a 3D space using Principal Component Analysis.
This can be modelled as a continuous time, four-state Markov chain. The number of states in the model is

obtained by using the following principles: i) each state corresponds to genes from the same group, ii) var gene
groups such as E and BA have very low probabilities at late times for all sero-low samples and most sero-high
samples (see Figure 5 g,h) and are therefore excluded from the analysis.

The var genes dynamics is described by a continuous time, four-state Markov chain model. The master
equation for this model reads:

dp

dt
= Qp, p(0) = p0, (8)

where p(t) = (p1(t), p2(t), p3(t), p4(t))
T and p0 are the time dependent and initial (t = 0) probabilities of the

four states (in order, var gene groups A, B, C, BC), respectively, Q is the adjoint transition-rate matrix (also
named adjoint infinitesimal generator matrix), satisfying Qii = −

∑
j ̸=i Qji (zero sum columnwise).

In this model, each state is a group of var genes. The element Qji, j ̸= i represents the instantaneous
transition rate from a state i to the state j. The instantaneous transition rates are estimated by optimisation
and correspond to the minimum of the objective function

O(Q) =
4∑

i=1

nk∑
j=1

10∑
k=1

|(pi(tjk;Q)− pobsi (tjk)|2, (9)

where pi(tij ;Q) are solutions of (8) with initial conditions p0 = pobs(0) and pobsi (tjk) are measured expression
probabilities; the index 1 ≤ k ≤ 10 designates the sample and nk ≤ 6 is the number of time points for the
sample k.

The instantaneous rates to switch away from each state are given by

q1 = −Q11 = Q21 +Q31 +Q41,

q2 = −Q22 = Q12 +Q32 +Q42,

q3 = −Q33 = Q13 +Q23 +Q43,

q4 = −Q44 = Q14 +Q24 +Q34. (10)

The finite time, per generation, probabilities to switch away can be computed from the diagonal elements of
the matrix exp(TgQ), where Tg is the generation time, namely

Q1 = 1− [exp(TgQ)]11,

Q2 = 1− [exp(TgQ)]22,

Q3 = 1− [exp(TgQ)]33,

Q4 = 1− [exp(TgQ)]44, (11)
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where exp(∗) represents the matrix exponential.
The inter-individual similarity of the large time var gene transcription profiles was tested using an AUC

criterion. For an arbitrarily chosen late time sample the var genes were sorted in decreasing order of their
expression values. Then a normalized rank was assigned to each var gene representing the rank in the particular
sample divided by the total number of var genes. For all genes that have ranks smaller than a given one and
for all samples, we computed the fraction of common genes that is the proportion of highly expressed var genes
that are common to all late time samples. The AUC index was defined as the area comprised between the
diagonal (fraction of common genes = normalized rank) and the fraction of common genes vs. normalised rank
curve, low AUC meaning large similarity.

4.12 Protein microarray
We developed a custom microarray featuring extensive coverage of the PfEMP1 domains in the reference genome
3D7 as previously described [60] as well as 79 protein fragments from PfEMP1s from the IT4, HB3, and
DD2 reference strains, as well as PfEMP1s sequenced from field isolates. PfEMP1 fragments were typically
expressed as consecutive constitutive domains [47], as we have previously done with the reference genome 3D7
[60]. Intracellular acidic terminal segments (ATS) of PfEMP1s were expressed as stand-alone fragments. The
microarray also included additional antigen malaria proteins, including the 3D7 variants of apical membrane
antigen 1, circumsporozoite protein, and merozoite surface protein-1. Three concentrations of tetanus toxin
were also included as positive controls. Construction of microarrays has been previously described elsewhere
[? 57, 6]. The microarray was probed with plasma from study participants as previously described and then
scanned [71]. Fluorescence intensity was defined as the raw signal intensity corrected by global median scaling
for no-DNA negative controls.

4.13 Protein microarray data analysis
All statistical analyses were carried out in python version 3.9. MFI-bkg values smaller than or equal to zero, were
replaced with the average value of blank responses (in this case with a value of 2 so that the log2FC value can
be computed) and log-transformed. Sero-recognition threshold for all domains was determined by the median
+ 2 S.D. response levels in naive North-American individuals (n=10). Each domain on the array corresponds
to a domain represented on the PfEMP1 protein encoded by the var genes. The random forest regressors and
classifiers to predict relationships between immune response and infection outcome were implemented using
scikit-learn 1.1.2. For data validation, we used responses against Tetanus antigens as control across naive
and semi-immune individuals. The classification of the volunteers for immune response was retained as per the
method described in the Epidemiological study design, based on another study, and later re-confirmed by several
of our analyses. A PfEMP1 was considered recognised in an individual even if only one domain corresponding to
the protein was recognised (in the event of multiple domains present per protein). The prediction of volunteer
sub-groups was carried out based on immune responses using a random-forest classifier with Bootstrapping
and Grid-Search to obtain optimal parameters for prediction of volunteers and a feature importance score
was calculated to distinguish domain types useful in prediction the outcome of infection. We also calculated
the change in breadth of response; as a cumulative total of domains recognised at different time-points in an
individual, as well as the fold change in responses to each antigenic domain, between the first and the last
time-point during the study.

4.14 Var expression and anti-PfEMP1 antibodies
A discretization method was used to compare inter-PfEMP1 responses throughout the CHMI. In this method,
we converted the quantitative Fluorescence Intensity values per PfEMP1 to discrete values across all individuals,
using quantile based classification. To discretize the domains, we used the following scheme: For each domain,
we had a distribution of data points from samples defined as: x1, x2, x3, . . . , xn, where n is the number of
individual samples per PfEMP1. We discretized the dataset into k+1 bins using quantiles, where the quantiles
are represented by q1, q2, . . . , qk. First, the quantile values q1, q2, . . . , qk were calculated based on the chosen
number of categories. These quantiles divide the data into k+1 intervals. Then each data point xi was assigned
to a specific interval based on its value. For instance, if xi falls in the interval (qj−1, qj ], it is assigned to the
j-th bin. Mathematically, this function can be represented as:

qcut(x, q) =



k if x > qk,

k − 1 if qk−1 < x ≤ qk,
...
1 if q1 < x ≤ q2,

0 if x ≤ q1,
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where x is a data point from the dataset, q = (q1, q2, . . . , qk), k is the number of quantiles.
We then grouped domains based on the PfEMP1 that they correspond to, and to each PfEMP1 group we

associate the maximum domain response. Finally, only the PfEMP1s for which there was data available for
both qPCR expression as well immune response were selected for the analysis.
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Supplementary figures

Figure S1: Developmental age of parasites by maximum likelihood estimated based on the captured transcrip-
tomes in vivo. (A) All isolates were estimated to be ring-stages. (B) No significant difference between sero-low
and sero-high derived isolates.

Figure S2: In vivo expression levels of variant surface antigens (VSA) from bulk RNA-seq.:Heatmap shows
Log2FPKM values in each isolate. (A) stevor genes., (B) rif genes. (C) var genes.
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Figure S3: In vitro var expression landscape across time for ten isolates derived from sero-low and sero-high
individuals. The heatmap is hierarchically clustered for relative expression of var genes at timepoints 6, 20 and
50 days in vitro after the in vivo infection timepoint. For CH020 (sero-low individual) there was an additional
timepoint at 100 days post in vivo. Relative expression of each gene is shown from low to high, between 0%
(yellow) to 30% (red). Var genes were grouped based on upstream sequence as A, B, C,E or intermediate groups
B/A and B/C. Individuals were clustered based on expression and stratified by infection outcome.
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Figure S4: Pearson correlation between the var expression times series of A) sero-high individuals during in
vitro culture and B) sero-low individuals. The color gradient is ordered from red (least) to green (highest).
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Figure S5: AUC method for testing the similarity of var genes distribution in all late time samples in vitro.
The normalised rank represent the rank divided by total number of var genes after sorting them with respect
to expression value in decreasing order. The fraction of common genes is the proportion of var genes that have
ranks smaller than a given one in all late time samples. The diagonal represents the perfect similarity. The
AUC index is defined as the area comprised between the diagonal and the curve, lower AUC meaning larger
similarity.
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Figure S6: Transition graph and instantaneous switching rates of the four states var genes model resulting from
fitting the model to the in vitro data. The gene groups E and BA where not included in this model because
they reach rapidly very low steady state probabilities (see Figure 5 g,h).
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Figure S7: Fitting the four-state model to the in vitro expression data. Dotted lines are the model predictions.
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Figure S8: Pre-infection breadth of immune response and parasite growth dynamics. A) Spearmann Rank
correlation between the number of 3D7 PfEMP1 domains recognized by the host at the beginning of the
infection and the latency period (days until patent parasitaemia). B) Sero-recognition at day 0 and peak of
parasitaemia: The log-peak of parasitaemia (Pf/ml) correlation with respect to the number of sero-recognized
domains at the start of infection in an individual. C) Spearmann Correlation plot for parasite multiplication
rate vs breadth of sero-recognition in each individual.

26

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.12.27.23300577doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.27.23300577
http://creativecommons.org/licenses/by-nc/4.0/


References
[1] Jane Achan, Isaie J Reuling, Xi Zen Yap, Edgard Dabira, Abdullahi Ahmad, Momodou Cox, Davis

Nwakanma, Kevin Tetteh, Lindsey Wu, Guido JH Bastiaens, et al. Serologic markers of previous malaria
exposure and functional antibodies inhibiting parasite growth are associated with parasite kinetics follow-
ing a plasmodium falciparum controlled human infection. Clinical Infectious Diseases, 70(12):2544–2552,
2020.

[2] Marion Avril, Abhai K Tripathi, Andrew J Brazier, Cheryl Andisi, Joel H Janes, Vijaya L Soma, David J
Sullivan Jr, Peter C Bull, Monique F Stins, and Joseph D Smith. A restricted subset of var genes mediates
adherence of plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proceedings of the
National Academy of Sciences, 109(26):E1782–E1790, 2012.

[3] Anna Bachmann, Ellen Bruske, Ralf Krumkamp, Louise Turner, J Stephan Wichers, Michaela Petter, Jana
Held, Michael F Duffy, B Kim Lee Sim, Stephen L Hoffman, et al. Controlled human malaria infection with
plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression.
PLoS pathogens, 15(7):e1007906, 2019.

[4] Anna Bachmann, Michaela Petter, Ralf Krumkamp, Meral Esen, Jana Held, Judith AM Scholz, Tao Li,
B Kim Lee Sim, Stephen L Hoffman, Peter G Kremsner, et al. Mosquito passage dramatically changes var
gene expression in controlled human plasmodium falciparum infections. PLoS pathogens, 12(4):e1005538,
2016.

[5] Johannes W Bagnoli, Christoph Ziegenhain, Aleksandar Janjic, Lucas E Wange, Beate Vieth, Swati Parekh,
Johanna Geuder, Ines Hellmann, and Wolfgang Enard. Sensitive and powerful single-cell rna sequencing
using mcscrb-seq. Nature communications, 9(1):2937, 2018.

[6] Jason A Bailey, Andrea A Berry, Mark A Travassos, Amed Ouattara, Sarah Boudova, Emmanuel Y Dotsey,
Andrew Pike, Christopher G Jacob, Matthew Adams, John C Tan, et al. Microarray analyses reveal strain-
specific antibody responses to plasmodium falciparum apical membrane antigen 1 variants following natural
infection and vaccination. Scientific reports, 10(1):3952, 2020.

[7] Alyssa E Barry, Aleksandra Leliwa-Sytek, Livingston Tavul, Heather Imrie, Florence Migot-Nabias, Stu-
art M Brown, Gilean A V McVean, and Karen P Day. Population genomics of the immune evasion (var)
genes of plasmodium falciparum. PLoS pathogens, 3(3):e34, 2007.

[8] Alyssa E Barry, Angela Trieu, Freya JI Fowkes, Jozelyn Pablo, Mina Kalantari-Dehaghi, Algis Jasinskas,
Xiaolin Tan, Matthew A Kayala, Livingstone Tavul, Peter M Siba, et al. The stability and complexity of
antibody responses to the major surface antigen of plasmodium falciparum are associated with age in a
malaria endemic area. Molecular & Cellular Proteomics, 10(11), 2011.

[9] Audrey C Brown, Christopher C Moore, and Jennifer L Guler. Cholesterol-dependent enrichment of
understudied erythrocytic stages of human plasmodium parasites. Scientific reports, 10(1):4591, 2020.

[10] Thibaut Brugat, Adam James Reid, Jing-wen Lin, Deirdre Cunningham, Irene Tumwine, Garikai Kushinga,
Sarah McLaughlin, Philip Spence, Ulrike Boehme, Mandy Sanders, et al. Antibody-independent mecha-
nisms regulate the establishment of chronic plasmodium infection. Nature microbiology, 2(4):1–9, 2017.

[11] Jo-Anne Chan, Michelle J Boyle, Kerryn A Moore, Linda Reiling, Zaw Lin, Wina Hasang, Marion Avril,
Laurens Manning, Ivo Mueller, Moses Laman, et al. Antibody targets on the surface of plasmodium
falciparum–infected erythrocytes that are associated with immunity to severe malaria in young children.
The Journal of infectious diseases, 219(5):819–828, 2019.

[12] Jo-Anne Chan, Katherine B Howell, Linda Reiling, Ricardo Ataide, Claire L Mackintosh, Freya JI Fowkes,
Michaela Petter, Joanne M Chesson, Christine Langer, George M Warimwe, et al. Targets of antibod-
ies against plasmodium falciparum–infected erythrocytes in malaria immunity. The Journal of clinical
investigation, 122(9):3227–3238, 2012.

[13] Ingrid Chen, Siân E Clarke, Roly Gosling, Busiku Hamainza, Gerry Killeen, Alan Magill, Wendy O’Meara,
Ric N Price, and Eleanor M Riley. “asymptomatic” malaria: a chronic and debilitating infection that should
be treated. PLoS medicine, 13(1):e1001942, 2016.

[14] Lauren M Childs and Caroline O Buckee. Dissecting the determinants of malaria chronicity: why
within-host models struggle to reproduce infection dynamics. Journal of The Royal Society Interface,
12(104):20141379, 2015.

27

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.12.27.23300577doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.27.23300577
http://creativecommons.org/licenses/by-nc/4.0/


[15] Antoine Claessens, William L Hamilton, Mihir Kekre, Thomas D Otto, Adnan Faizullabhoy, Julian C
Rayner, and Dominic Kwiatkowski. Generation of antigenic diversity in plasmodium falciparum by struc-
tured rearrangement of var genes during mitosis. PLoS genetics, 10(12):e1004812, 2014.

[16] Kirk W Deitsch, Amy del Pinal, and Thomas E Wellems. Intra-cluster recombination and var transcription
switches in the antigenic variation of plasmodium falciparum. Molecular and biochemical parasitology,
101(1-2):107–116, 1999.

[17] Kirk W Deitsch and Ron Dzikowski. Variant gene expression and antigenic variation by malaria parasites.
Annual review of microbiology, 71:625–641, 2017.

[18] Manoj T Duraisingh and David Horn. Epigenetic regulation of virulence gene expression in parasitic
protozoa. Cell host & microbe, 19(5):629–640, 2016.

[19] Beatriz Galatas, Quique Bassat, and Alfredo Mayor. Malaria parasites in the asymptomatic: looking for
the hay in the haystack. Trends in parasitology, 32(4):296–308, 2016.

[20] Michelle L Gatton, Jennifer M Peters, Elizabeth V Fowler, and Qin Cheng. Switching rates of plasmodium
falciparum var genes: faster than we thought? Trends in Parasitology, 19(5):202–208, 2003.

[21] Ashfaq Ghumra, Jean-Philippe Semblat, Ricardo Ataide, Carolyne Kifude, Yvonne Adams, Antoine
Claessens, Damian N Anong, Peter C Bull, Clare Fennell, Monica Arman, et al. Induction of strain-
transcending antibodies against group a pfemp1 surface antigens from virulent malaria parasites. PLoS
pathogens, 8(4):e1002665, 2012.

[22] Suchi Goel, Mia Palmkvist, Kirsten Moll, Nicolas Joannin, Patricia Lara, Reetesh R Akhouri, Nasim
Moradi, Karin Öjemalm, Mattias Westman, Davide Angeletti, et al. Rifins are adhesins implicated in
severe plasmodium falciparum malaria. Nature medicine, 21(4):314–317, 2015.

[23] Michael F Good and Stephanie K Yanow. Hiding in plain sight: an epitope-based strategy for a subunit
malaria vaccine. Trends in Parasitology, 2023.

[24] Sunetra Gupta, Robert W Snow, Christl A Donnelly, Kevin Marsh, and Chris Newbold. Immunity to
non-cerebral severe malaria is acquired after one or two infections. Nature medicine, 5(3):340–343, 1999.

[25] Michael Hagemann-Jensen, Christoph Ziegenhain, Ping Chen, Daniel Ramsköld, Gert-Jan Hendriks, An-
ton JM Larsson, Omid R Faridani, and Rickard Sandberg. Single-cell rna counting at allele and isoform
resolution using smart-seq3. Nature Biotechnology, 38(6):708–714, 2020.

[26] Regina Hoo, Ellen Bruske, Sandra Dimonte, Lei Zhu, Benjamin Mordmüller, B Kim Lee Sim, Peter G
Kremsner, Stephen L Hoffman, Zbynek Bozdech, Matthias Frank, et al. Transcriptome profiling reveals
functional variation in plasmodium falciparum parasites from controlled human malaria infection studies.
EBioMedicine, 48:442–452, 2019.

[27] Paul Horrocks, Robert Pinches, Zóe Christodoulou, Sue A Kyes, and Chris I Newbold. Variable var
transition rates underlie antigenic variation in malaria. Proceedings of the National Academy of Sciences,
101(30):11129–11134, 2004.

[28] Katherine E Jackson, Tobias Spielmann, Eric Hanssen, Akinola Adisa, Frances Separovic, Matthew WA
Dixon, Katharine R Trenholme, Paula L Hawthorne, Don L Gardiner, Tim Gilberger, et al. Selective per-
meabilization of the host cell membrane of plasmodium falciparum-infected red blood cells with streptolysin
o and equinatoxin ii. Biochemical Journal, 403(1):167–175, 2007.

[29] Daehwan Kim, Ben Langmead, and Steven L Salzberg. Hisat: a fast spliced aligner with low memory
requirements. Nature methods, 12(4):357–360, 2015.

[30] Hannah W Kimingi, Ann W Kinyua, Nicole A Achieng, Kennedy M Wambui, Shaban Mwangi, Roselyne
Nguti, Cheryl A Kivisi, Anja TR Jensen, Philip Bejon, Melisa C Kapulu, et al. Breadth of antibodies to
plasmodium falciparum variant surface antigens is associated with immunity in a controlled human malaria
infection study. Frontiers in Immunology, 13, 2022.

[31] Sue Kyes, Robert Pinches, Chris Newbold, et al. A simple rna analysis method shows var and rif multigene
family expression patterns in plasmodium falciparum. Molecular and biochemical parasitology, 105(2):311–
315, 2000.

[32] Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gentleman,
Martin T Morgan, and Vincent J Carey. Software for computing and annotating genomic ranges. PLoS
computational biology, 9(8):e1003118, 2013.

28

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.12.27.23300577doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.27.23300577
http://creativecommons.org/licenses/by-nc/4.0/


[33] Jacob E Lemieux, Natalia Gomez-Escobar, Avi Feller, Celine Carret, Alfred Amambua-Ngwa, Robert
Pinches, Felix Day, Sue A Kyes, David J Conway, Chris C Holmes, et al. Statistical estimation of cell-
cycle progression and lineage commitment in plasmodium falciparum reveals a homogeneous pattern of
transcription in ex vivo culture. Proceedings of the National Academy of Sciences, 106(18):7559–7564,
2009.

[34] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abeca-
sis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup. The sequence alignment/map
format and samtools. bioinformatics, 25(16):2078–2079, 2009.

[35] Kim A Lindblade, Laura Steinhardt, Aaron Samuels, S Patrick Kachur, and Laurence Slutsker. The
silent threat: asymptomatic parasitemia and malaria transmission. Expert review of anti-infective therapy,
11(6):623–639, 2013.

[36] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion
for rna-seq data with deseq2. Genome biology, 15(12):1–21, 2014.

[37] Rui Ma, Tengfei Lian, Rick Huang, Jonathan P Renn, Jennifer D Petersen, Joshua Zimmerberg, Patrick E
Duffy, and Niraj H Tolia. Structural basis for placental malaria mediated by plasmodium falciparum
var2csa. Nature microbiology, 6(3):380–391, 2021.

[38] Kathryn Milne, Alasdair Ivens, Adam J Reid, Magda E Lotkowska, Aine O’Toole, Geetha Sankara-
narayanan, Diana Munoz Sandoval, Wiebke Nahrendorf, Clement Regnault, Nick J Edwards, et al. Map-
ping immune variation and var gene switching in naive hosts infected with plasmodium falciparum. Elife,
10:e62800, 2021.

[39] Bernina Naissant, Florian Dupuy, Yoann Duffier, Audrey Lorthiois, Julien Duez, Judith Scholz, Pierre
Buffet, Anais Merckx, Anna Bachmann, and Catherine Lavazec. Plasmodium falciparum stevor phos-
phorylation regulates host erythrocyte deformability enabling malaria parasite transmission. Blood, The
Journal of the American Society of Hematology, 127(24):e42–e53, 2016.

[40] Makhtar Niang, Amy Kristine Bei, Kripa Gopal Madnani, Shaaretha Pelly, Selasi Dankwa, Usheer Kanjee,
Karthigayan Gunalan, Anburaj Amaladoss, Kim Pin Yeo, Ndeye Sakha Bob, et al. Stevor is a plasmodium
falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell host & microbe,
16(1):81–93, 2014.

[41] Sofia Nunes-Silva, Sébastien Dechavanne, Azizath Moussiliou, Natalia Pstrąg, Jean-Philippe Semblat,
Stéphane Gangnard, Nicaise Tuikue-Ndam, Philippe Deloron, Arnaud Chêne, and Benoît Gamain. Beni-
nese children with cerebral malaria do not develop humoral immunity against the it4-var19-dc8 pfemp1
variant linked to epcr and brain endothelial binding. Malaria journal, 14(1):1–15, 2015.

[42] Jennifer Peters, Elizabeth Fowler, Michelle Gatton, Nanhua Chen, Allan Saul, and Qin Cheng. High
diversity and rapid changeover of expressed var genes during the acute phase of plasmodium falciparum
infections in human volunteers. Proceedings of the National Academy of Sciences, 99(16):10689–10694,
2002.

[43] Michaela Petter, Malin Haeggström, Ayman Khattab, Victor Fernandez, Mo-Quen Klinkert, and Mats
Wahlgren. Variant proteins of the plasmodium falciparum rifin family show distinct subcellular localization
and developmental expression patterns. Molecular and biochemical parasitology, 156(1):51–61, 2007.

[44] Michael W Pfaffl. A new mathematical model for relative quantification in real-time rt–pcr. Nucleic acids
research, 29(9):e45–e45, 2001.

[45] Anastasia K Pickford, Lucas Michel-Todó, Florian Dupuy, Alfredo Mayor, Pedro L Alonso, Catherine
Lavazec, and Alfred Cortés. Expression patterns of plasmodium falciparum clonally variant genes at the
onset of a blood infection in malaria-naive humans. Mbio, 12(4):10–1128, 2021.

[46] Sai Sundar Rajan Raghavan, Louise Turner, Rasmus W Jensen, Nicolai Tidemand Johansen, Daniel Skjold
Jensen, Pontus Gourdon, Jinqiu Zhang, Yong Wang, Thor Grundtvig Theander, Kaituo Wang, et al.
Endothelial protein c receptor binding induces conformational changes to severe malaria-associated group
a pfemp1. Structure, 31(10):1174–1183, 2023.

[47] Thomas S Rask, Daniel A Hansen, Thor G Theander, Anders Gorm Pedersen, and Thomas Lavstsen.
Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes–divide and conquer.
PLoS computational biology, 6(9):e1000933, 2010.

29

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.12.27.23300577doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.27.23300577
http://creativecommons.org/licenses/by-nc/4.0/


[48] Mario Recker, Caroline O Buckee, Andrew Serazin, Sue Kyes, Robert Pinches, Zóe Christodoulou, Amy L
Springer, Sunetra Gupta, and Chris I Newbold. Antigenic variation in plasmodium falciparum malaria
involves a highly structured switching pattern. PLoS Pathogens, 7(3):e1001306, 2011.

[49] Mario Recker, Sean Nee, Peter C Bull, Sam Kinyanjui, Kevin Marsh, Chris Newbold, and Sunetra
Gupta. Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Na-
ture, 429(6991):555–558, 2004.

[50] Adam J Reid, Arthur M Talman, Hayley M Bennett, Ana R Gomes, Mandy J Sanders, Christopher JR
Illingworth, Oliver Billker, Matthew Berriman, and Mara KN Lawniczak. Single-cell rna-seq reveals hidden
transcriptional variation in malaria parasites. elife, 7:e33105, 2018.

[51] David J Roberts, Anthony R Berendt, Robert Pinches, Gerard Nash, Kevin Marsh, Christopher I Newbold,
et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature, 357(6380):689–692,
1992.

[52] Fumiji Saito, Kouyuki Hirayasu, Takeshi Satoh, Christian W Wang, John Lusingu, Takao Arimori, Kyoko
Shida, Nirianne Marie Q Palacpac, Sawako Itagaki, Shiroh Iwanaga, et al. Immune evasion of plasmodium
falciparum by rifin via inhibitory receptors. Nature, 552(7683):101–105, 2017.

[53] Ali Salanti, Trine Staalsoe, Thomas Lavstsen, Anja TR Jensen, MP Kordai Sowa, David E Arnot, Lars
Hviid, and Thor G Theander. Selective upregulation of a single distinctly structured var gene in chon-
droitin sulphate a-adhering plasmodium falciparum involved in pregnancy-associated malaria. Molecular
microbiology, 49(1):179–191, 2003.

[54] A Scherf, R Hernandez-Rivas, P Buffet, E Bottius, C Benatar, B Pouvelle, J Gysin, and M Lanzer. Antigenic
variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during
intra-erythrocytic development in plasmodium falciparum. The EMBO journal, 17(18):5418–5426, 1998.

[55] Danielle I Stanisic, James S McCarthy, and Michael F Good. Controlled human malaria infection: appli-
cations, advances, and challenges. Infection and immunity, 86(1):e00479–17, 2018.

[56] LB Stewart, O Diaz-Ingelmo, A Claessens, J Abugri, RD Pearson, S Goncalves, E Drury, DP Kwiatkowski,
GA Awandare, and DJ Conway. Intrinsic multiplication rate variation and plasticity of human blood stage
malaria parasites. commun biol 3: 624, 2020.

[57] Emily M Stucke, Antoine Dara, Ankit Dwivedi, Theresa Hodges, Drissa Coulibaly, Abdoulaye K Kone,
Karim Troaore, Boureima Guindo, Bourama Tangara, Amadou Niangaly, et al. Identification of expressed
vars in whole blood clinical samples with a custom capture array versus rna enrichment methods. In AMER-
ICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, volume 101, pages 498–498. AMER SOC
TROP MED & HYGIENE 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA, 2019.

[58] Sofonias K Tessema, Rie Nakajima, Algis Jasinskas, Stephanie L Monk, Lea Lekieffre, Enmoore Lin, Benson
Kiniboro, Carla Proietti, Peter Siba, Philip L Felgner, et al. Protective immunity against severe malaria
in children is associated with a limited repertoire of antibodies to conserved pfemp1 variants. Cell host &
microbe, 26(5):579–590, 2019.

[59] Richard Thomson-Luque, Lasse Votborg-Novél, Wanangwa Ndovie, Carolina M Andrade, Moussa Niangaly,
Charalampos Attipa, Nathalia F Lima, Drissa Coulibaly, Didier Doumtabe, Bouréima Guindo, et al. Plas-
modium falciparum transcription in different clinical presentations of malaria associates with circulation
time of infected erythrocytes. Nature Communications, 12(1):4711, 2021.

[60] Mark A Travassos, Amadou Niangaly, Jason A Bailey, Amed Ouattara, Drissa Coulibaly, Kirsten E Lyke,
Matthew B Laurens, Jozelyn Pablo, Algis Jasinskas, Rie Nakajima, et al. Children with cerebral malaria
or severe malarial anaemia lack immunity to distinct variant surface antigen subsets. Scientific reports,
8(1):6281, 2018.

[61] Noah T Ventimiglia, Emily M Stucke, Drissa Coulibaly, Andrea A Berry, Kirsten E Lyke, Matthew B
Laurens, Jason A Bailey, Matthew Adams, Amadou Niangaly, Abdoulaye K Kone, et al. Malian adults
maintain serologic responses to virulent pfemp1s amid seasonal patterns of fluctuation. Scientific Reports,
11(1):14401, 2021.

[62] Nicola K Viebig, Emily Levin, Sebastien Dechavanne, Stephen J Rogerson, Jürg Gysin, Joseph D Smith,
Artur Scherf, and Benoit Gamain. Disruption of var2csa gene impairs placental malaria associated adhesion
phenotype. PloS one, 2(9):e910, 2007.

30

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.12.27.23300577doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.27.23300577
http://creativecommons.org/licenses/by-nc/4.0/


[63] Mats Wahlgren, Suchi Goel, and Reetesh R Akhouri. Variant surface antigens of plasmodium falciparum
and their roles in severe malaria. Nature Reviews Microbiology, 15(8):479–491, 2017.

[64] Christopher P Ward, George T Clottey, Mark Dorris, Dar-Der Ji, and David E Arnot. Analysis of plasmod-
ium falciparum pfemp-1/var genes suggests that recombination rearranges constrained sequences. Molecular
and biochemical parasitology, 102(1):167–177, 1999.

[65] George M Warimwe, Gregory Fegan, Jennifer N Musyoki, Charles RJC Newton, Michael Opiyo, George
Githinji, Cheryl Andisi, Francis Menza, Barnes Kitsao, Kevin Marsh, et al. Prognostic indicators of life-
threatening malaria are associated with distinct parasite variant antigen profiles. Science translational
medicine, 4(129):129ra45–129ra45, 2012.

[66] George M Warimwe, Thomas M Keane, Gregory Fegan, Jennifer N Musyoki, Charles RJC Newton, Arnab
Pain, Matthew Berriman, Kevin Marsh, and Peter C Bull. Plasmodium falciparum var gene expression is
modified by host immunity. Proceedings of the National Academy of Sciences, 106(51):21801–21806, 2009.

[67] George M Warimwe, Mario Recker, Esther W Kiragu, Caroline O Buckee, Juliana Wambua, Jennifer N
Musyoki, Kevin Marsh, and Peter C Bull. Plasmodium falciparum var gene expression homogeneity as a
marker of the host-parasite relationship under different levels of naturally acquired immunity to malaria.
PLoS One, 8(7):e70467, 2013.

[68] JS Wichers, JAM Scholz, J Strauss, S Witt, A Lill, LI Ehnold, N Neupert, B Liffner, R Lühken, M Petter,
et al. Dissecting the gene expression, localization, membrane topology, and function of the plasmodium
falciparum stevor protein family. mbio 10: e01500-19. CAS PubMed PubMed Central Article, 2019.

[69] Jan Stephan Wichers-Misterek, Ralf Krumkamp, Jana Held, Heidrun von Thien, Irene Wittmann, Yan-
nick Daniel Höppner, Julia M Ruge, Kara Moser, Antoine Dara, Jan Strauss, et al. The exception that
proves the rule: Virulence gene expression at the onset of plasmodium falciparum blood stage infections.
PLoS Pathogens, 19(6):e1011468, 2023.

[70] Xu Zhang, Francesca Florini, Joseph E Visone, Irina Lionardi, Mackensie R Gross, Valay Patel, and Kirk W
Deitsch. A coordinated transcriptional switching network mediates antigenic variation of human malaria
parasites. Elife, 11:e83840, 2022.

[71] Albert E Zhou, Aarti Jain, Rie Nakajima, Biraj Shrestha, Emily M Stucke, Sudhaunshu Joshi, Kathy A
Strauss, Per N Hedde, Andrea A Berry, Philip L Felgner, et al. Protein microarrays as a tool to analyze
antibody responses to variant surface antigens expressed on the surface of plasmodium falciparum–infected
erythrocytes. In Malaria Immunology: Targeting the Surface of Infected Erythrocytes, pages 343–358.
Springer, 2022.

[72] Daniel Zucha, Peter Androvic, Mikael Kubista, and Lukas Valihrach. Performance comparison of reverse
transcriptases for single-cell studies. Clinical Chemistry, 66(1):217–228, 2020.

31

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.12.27.23300577doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.27.23300577
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	Pre-existing immunity determines infection outcome 
	VSAs are the main differentially expressed genes between sero-high and sero-low individuals:
	Var gene expression pattern is shaped by host-immunity:
	 In vivo var gene renewal rates are very high: 
	 In vitro var gene switching sustains a steady state with elevated entropy
	Immune responses against VSAs differ significantly between sero-high and sero-low individuals:
	Var expression is moderately associated with pre-existing specific immune response:
	The increase in antibody levels is not necessarily dependent on the intensity of PfEMP1 expression during the CHMI.

	Discussion
	Methods and Materials
	Epidemiological study design and sample collection
	Parasite enrichment and sorting
	Whole transcriptome amplification with SMARTseq2
	Whole transcriptome sequencing and data analysis
	Parasite culturing
	RNA extraction from samples stored in RNAprotect and cultured isolates
	Estimation of primer efficiency
	Real time (RT)-qPCR
	Estimating infection characteristics:
	Estimating var gene expression changes:
	Modeling in vitro data
	Protein microarray
	Protein microarray data analysis
	Var expression and anti-PfEMP1 antibodies


