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Abstract

Detection of heart disease using a stethoscope requires significant skill and time, making
it expensive and impractical for widespread screening in low-resource environments.
Machine learning analysis of heart sound recordings can improve upon the accessibility
and accuracy of diagnoses, but existing approaches require further validation on larger
and more representative clinical datasets. For many previous algorithms, segmenting the
signal into its individual sound components is a key first step. However, segmentation
algorithms often struggle to find S1 or S2 sounds in the presence of strong murmurs or
noise that significantly alter or mask the expected sound. Segmentation errors then
propagate to the subsequent disease classifier steps. We propose a novel recurrent neural
network and hidden semi-Markov model (HSMM) algorithm that can both segment the
signal and detect a heart murmur, removing the need for a two-stage algorithm. This
algorithm formed the ‘CUED Acoustics’ entry to the 2022 George B. Moody PhysioNet
challenge, where it won the first prize in both the challenge tasks. The algorithm’s
performance exceeded that of many end-to-end deep learning approaches that struggled
to generalise to new test data. As our approach both segments the heart sound and
detects a murmur, it can provide interpretable predictions for a clinician. The model
also estimates the signal quality of the recording, which may be useful for a screening
environment where non-experts are using a stethoscope. These properties make the
algorithm a promising tool for screening of abnormal heart murmurs.

Author summary

The use of machine learning algorithms to detect heart disease from sound recordings
has great potential to enable widespread and low-skill screening, improving early
detection and treatment. The area has seen increasing interest in recent years, with
many novel algorithms inspired by deep learning advancements in other fields. However,
the size of heart sound datasets remains small, making deep learning models
particularly susceptible to overfitting. In addition, the performance of these algorithms
has rarely been directly compared on unseen data. We describe a novel lightweight
algorithm to detect and classify murmurs in heart sound recordings. This algorithm was
the winning entry into the George B. Moody PhysioNet 2022 challenge, beating many
complex deep-learning approaches. Our approach both detects and localises the
murmur, providing an interpretable result for a clinician.
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Introduction 1

Cardiovascular disease is the leading cause of mortality worldwide, with 18 million 2

deaths every year [1]. However, compared to other serious diseases, awareness of many 3

types of heart disease remains low and many are critically underdiagnosed [2]. In young 4

people, rheumatic valvular heart disease is the most common cardiovascular disease, 5

with an estimated global burden of 41 million cases, primarily in developing countries [3]. 6

More than a quarter of patients with rheumatic disease present to a clinician at a late 7

stage with heart failure [4]. There is a clear need for widespread early detection, to 8

improve early treatment of the disease and prevent long-lasting morbidity [1]. 9

Many heart diseases, such as rheumatic valve disease, cause structural changes in the 10

heart that lead to abnormal sounds, such as heart murmurs [5]. The only tool currently 11

available to detect these sounds in primary care is a stethoscope. Listening to the chest 12

with a stethoscope (auscultation) is a quick and non-invasive test. However, auscultation 13

proficiency varies widely amongst clinicians. The sensitivity of an experienced general 14

practitioner in detecting valvular heart disease can be as low as 44% [6]. Enabling 15

low-cost screening of the disease, especially in resource-constrained areas, will require a 16

test that can be quickly and accurately performed by non-specialist clinicians. 17

Automated analysis of heart sound recordings (phonocardiograms) is a promising 18

solution to improve the accuracy and accessibility of auscultation. A number of novel 19

methods have been proposed in recent years, driven by an increased amount of 20

open-access datasets and renewed interest in machine learning and AI [7]. However, 21

many of these algorithms suffer from issues such as overfitting and poor generalisation 22

to new data. The George B. Moody PhysioNet 2022 challenge [8] tasked participants to 23

design novel algorithms to detect and classify heart murmurs in a new paediatric 24

dataset, enabling an independent comparison of approaches that is representative of a 25

real-world clinical environment. 26

In this paper, we describe a novel algorithm that won the First Prize in both tasks 27

in the challenge [9, 10]. The algorithm is inspired by takeaways from the earlier 2016 28

PhysioNet challenge [7, 11] and, in contrast to many other approaches, does not use an 29

end-to-end deep learning model. We also explore the results of the challenge and 30

compare the algorithm’s efficacy on the two distinct tasks. 31

Materials and methods 32

Availability of data 33

An ongoing limitation of research into automated analysis of heart sound recordings 34

(also known as phonocardiograms, PCGs) is the availability of high-quality labelled data. 35

Whilst electronic stethoscopes have received regulatory approval and are available to 36

purchase, the vast majority of stethoscopes in clinical practice are analogue. Therefore, 37

heart sounds are rarely recorded and stored with patient records, unlike other cardiac 38

tools such as electrocardiography (ECG) and echocardiography. The creation of heart 39

sound datasets therefore requires bespoke clinical research studies that are expensive 40

and time-consuming, especially in resource-strained cardiology units. 41

Due to these constraints, open-access data has proved a valuable resource for 42

advancing algorithm design. These datasets include the 2016 PhysioNet/Computing in 43

Cardiology dataset [12] and the PASCAL Challenge dataset [13]. However, these 44

datasets are limited by a lack of detailed information on the recording environment, 45

murmur assessments, and patient outcomes. The 2016 PhysioNet challenge included a 46

withheld test set to assess the generalisation of algorithms [7]. However, this test set 47

was never made public after the challenge. Research using this dataset since 2016 has 48
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created new test sets by applying varying cross-validation and splitting strategies to the 49

training set. These varied strategies have made direct comparisons between approaches 50

challenging. The 2016 PhysioNet dataset also used recordings from multiple different 51

devices, with its largest dataset using different devices to record abnormal and normal 52

patients [12]. This unintentionally prompted machine learning algorithms to overfit to 53

the dataset by learning to distinguish device characteristics rather than diagnostic 54

sounds [11]. 55

The George B. Moody PhysioNet Challenge 2022 56

To address the challenges of data availability and algorithm comparison, The George B. 57

Moody PhysioNet Challenge 2022 [8] tasked participants to design algorithms to detect 58

heart murmurs and predict clinical outcomes in the new CirCOR paediatric dataset [14]. 59

As described by Oliveira et al. [14], the dataset was gathered as a part of two 60

screening programs in Brazil in 2014 and 2015. Approval for the study protocol was 61

granted by the 5192-Complexo Hospitalar HUOC/PROCAPE Institutional Review 62

Board under the request of the Real Hospital Português de Beneficiência em 63

Pernambuco. Written consent was obtained for all participants, with parental consent 64

where appropriate. 65

A total of 5268 phonocardiogram recordings were collected from 1452 patients. Some 66

patients were recruited more than once, giving 1568 unique patient encounters. 67

Recordings were made using the Littmann 3200 electronic stethoscope at up to four of 68

the standard auscultation sites on the chest (aortic, pulmonic, tricuspid, mitral). 69

For the challenge, 60% of the data was released publicly, with the remaining 40% 70

split between a validation (10%) and a final test set (30%) [10]. Participants were able 71

to submit their algorithms to the validation set throughout the challenge to assess their 72

performance, whilst the challenge organisers ran each entry only once on the test set to 73

determine the final ranking [10]. 74

In this work, we train and analyse algorithms using the PhysioNet 2022 dataset, 75

reporting results on both the training and withheld test sets. This dataset is publicly 76

available at the Challenge website [15]. 77

Previous Work 78

Whilst the PhysioNet 2022 dataset is a significant addition to the size of open-access 79

PCG data, it is still small compared to many machine learning domains where deep 80

learning algorithms dominate performance. Feature extraction is a beneficial step to 81

reduce the complexity of the audio data and hence the complexity required of 82

subsequent classifiers, making it easier to train them to identify diagnostic features. A 83

key conclusion of the 2016 PhysioNet challenge was that feature extraction was the 84

most ‘crucial and important’ part of algorithms [7]. 85

The nature of heart sounds is well-understood from a clinical perspective [5]. A 86

phonocardiogram is a non-stationary signal consisting of a generally periodic set of S1 87

(lub) and S2 (dub) sounds corresponding to closures of the atrioventricular and 88

semilunar valves respectively [5]. Abnormal murmurs can appear in the systolic and 89

diastolic regions of the signal, depending on the particular valve pathology of the 90

patient. Other abnormal sounds, such as S3 and S4, may also appear, giving distinctive 91

rhythms in the signal. Due to this periodic structure, a common first step in classifiers 92

is segmentation, where the individual heart sound states (S1, S2, systole, diastole) are 93

labelled in time. This allows subsequent algorithm stages to focus on diagnostically 94

relevant areas of the recording and apply ensemble averaging to segments to reduce 95

noise. 96
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In the 2016 challenge, a segmentation algorithm designed by Springer et al. [16] was 97

provided to participants to aid their design [7]. This model used a hybrid structure, 98

where a logistic regression provided observations for a hidden semi-Markov model 99

(HSMM). It was considered state-of-the-art at the time [7]. However, the algorithm 100

assumes a healthy heart cycle which makes it susceptible to errors when loud murmurs 101

or noise overwhelm weaker S1 or S2 sounds [17]. 102

Kay [17] observed this limitation and designed a segmentation algorithm that 103

directly models the heart sound state. He calculates a series of band-pass-filtered 104

homomorphic envelopes and power spectral densities (PSDs) to give a feature set that 105

can distinguish murmurs from healthy sounds. He then replaces the logistic regression of 106

Springer with a fully connected neural network, giving greater non-linear discrimination 107

between states. Noting that the algorithm of Springer struggles to distinguish S1 from 108

S2 and systole from diastole, Kay’s algorithm predicts only three states: murmur, major 109

heart sound, and silence. These neural network predictions are used as observations for 110

two hidden semi-Markov models, one of which assumes the murmur state appears in 111

systole and one that assumes a healthy heart sound with silence in systole. The most 112

confident segmentation produced by the HSMM gives a murmur diagnosis. We provide 113

more detail on this HSMM approach in the Methods section of this paper. 114

One limitation of the approaches of Springer [16] and Kay [17] is that the 115

discriminative classifiers providing observation probabilities predict on a per-frame basis 116

and do not model dependencies between adjacent time frames. When inspecting a 117

phonocardiogram, a skilled clinician will identify the S1 and S2 sounds by assessing the 118

timing of the sounds. The models of Springer and Kay cannot do this as they view each 119

frame independently, and so rely on the HSMM to provide this timing information. In 120

this work, we deploy a recurrent neural network (RNN) to model this time dependency. 121

RNNs have been applied for heart sound segmentation [18], offering improved predictive 122

power compared to logistic regressions. However, the models deployed in previous work 123

neglect to predict a murmur state and assume that only a healthy heart sound cycle is 124

present. 125

Method 126

The algorithm we describe in the following sections is an improvement over Kay’s 127

work [17] and has been optimised for the 2022 PhysioNet challenge. The algorithm, as 128

shown in Fig 1, consists of four distinct stages: (i) feature extraction, (ii) neural 129

network prediction, (iii) segmentation, and (iv) final classification through a comparison 130

of segmentation confidences. 131

We define a time-series heart sound recording with N samples as r1:N . All the 132

recordings in the challenge dataset were made using the Littmann 3200 electronic 133

stethoscope, which has a fixed sampling frequency of 4000 Hz. In feature extraction, the 134

time-series recording is converted into a time-frequency series with T time windows, 135

x1:T . Four parallel HSMM models (ω1, . . . , ω4), are then applied to produce four 136

distinct segmentations q
(ω)
1:T . The confidence in these segmentations is then compared to 137

produce a final segmentation and classification. 138

The following subsections describe each step of the algorithm in more detail. All 139

computation was conducted in Python 3 using PyTorch 1.11, NumPy 1.21, and SciPy 140

1.7. The code to train these models and generate results is available on a public 141

repository [19]. The corresponding datasets are available at the PhysioNet 2022 142

challenge website [15,20]. 143
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Fig 1. Parallel HSMM algorithm structure. A heart sound recording is transformed into log-spectrogram features,
which are then input to an RNN. The RNN probabilities are then used to produce four segmentations using four parallel
HSMMs. The confidence in these segmentations is then compared to give the most probable segmentation, murmur
prediction, and a signal quality estimate.

Feature Extraction 144

The amplitude of the PCG is first normalised by removing its mean and dividing by the 145

resulting peak amplitude. The absolute amplitude of a PCG is an unreliable feature as 146

it varies significantly depending on the application pressure of the stethoscope and the 147

particular patient [21]. 148

The homomorphic envelope and PSD features of Kay [17] allow discrimination of 149

energy in high and low frequencies but there is significant redundancy and extra 150

computation in computing both the band-pass-filtered envelopes and the PSDs. Instead, 151

in this work we compute a log-spectrogram using a Hann window of length 50 ms and 152

step 20 ms. A larger window length enables a higher frequency resolution at the cost of 153

a lower time resolution. The time duration of S1 and S2 sounds is approximately 154

100 ms, so a 50 ms window was chosen to enable precise identification of the major 155

heart sounds whilst maintaining an effective frequency resolution of 20 Hz. A secondary 156

advantage of this approach is that spectrograms provide an interpretable 2D 157

visualisation of the time-frequency energy in the recording, as shown in Fig 2. 158

Although the Nyquist frequency of the recordings is 2000 Hz, we further limit the 159

spectrogram to 0-800 Hz to remove higher frequencies that contain no heart sound 160

information. This reduces the risk of the subsequent neural network stages learning to 161

overfit to irrelevant high-frequency noise such as speech and background sounds. 162

As a key final step, each frequency row in the spectrogram is z-score normalised by 163

subtracting its mean and dividing by its variance. Murmurs commonly contain much 164

less time-frequency energy than S1 and S2 sounds, and this normalisation reduces the 165

dynamic range [11]. 166

Recurrent Neural Network 167

A recurrent neural network with knowledge of the timing of heart sounds should be able 168

to discriminate S1, S2 and murmur sounds without relying on a subsequent HSMM. We 169

therefore define a ground-truth segmentation q1:T of five distinct heart sound states 170

ξi ∈ {S1, S2, systole, diastole, murmur}. The challenge dataset includes segmented 171

locations for the S1, S2, systole and diastole sounds but does not explicitly localise 172

murmurs. However, the additional labels provided by the challenge include a prediction 173

of the ‘murmur timing’ annotated by a clinician [14]. We use these labels to 174

approximately annotate the location of the murmur in the ground-truth segmentation. 175
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Fig 2. Neural network prediction of per-time heart sound categories. The
heart sound recording (top) is transformed to a normalised spectrogram (middle) that is
then passed to a RNN that predicts the state corresponding to each time window
(bottom). The RNN is able to use the spectrogram to correctly distinguish between S1,
S2, and the systolic murmur. The RNN also predicts systolic and diastolic states which
are omitted from the bottom figure for clarity.

If the recording is labelled to contain an early-systolic murmur, the first 50% of each 176

systolic period is annotated as ‘murmur’. If ‘mid-systolic’, the middle 50% is murmur. If 177

‘holosystolic’, the entire systole portion is annotated as a murmur. 178

We note that one limitation of this analysis is that diastolic murmurs are not 179

considered. Diastolic murmurs are much less prevalent than systolic murmurs in clinical 180

practice, and only 5 patients in the dataset have diastolic sounds. A future 181

improvement, given more diastolic examples, would be to replicate this labelling 182

approach for diastolic murmur signals. 183

Using this modified ground-truth segmentation, we train a bidirectional RNN with 184

parameters θ to predict the state qt at each time instance using the log-spectrogram 185

features x1:T , giving posterior probabilities P (qt = ξi|x1:T , θ). An example of the 186

outputs of the RNN is shown in Fig 2. The RNN is confidently able to distinguish S1 187

and S2, verifying the five-state segmentation model. 188

The RNN structure and hyperparameters are optimised through cross-validation on 189

the training dataset. The final model consists of a three-layer bidirectional RNN with 190

Gated Recurrent Unit (GRU) [22] cells with a hidden layer size of 60. The concatenated 191

forward and backward outputs of the RNN are passed to a two-layer fully connected 192

neural network with Tanh activations and hidden sizes of 60 and 40. This fully 193

connected network and a subsequent softmax layer reduce the RNN output to the 194

five-dimensional output of the segmentation labels. Dropout with probability 0.1 is 195

applied between the GRU and fully connected layers to reduce overfitting. 196
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The model is trained using a cross-entropy loss with the Adam optimiser [23]. Some 197

states in the segmentation (e.g. diastole) are much more prevalent than others (e.g. 198

murmur), so to avoid models learning to favour one class the loss function is inversely 199

weighted by the frequency of each class label in the overall dataset. 200

Parallel Hidden Semi-Markov Models 201

Given posterior probabilities from the RNN, the simplest method to produce a 202

segmentation would be to ‘greedily’ pick the state with the maximum probability at 203

each time instance: 204

qt = max
ξi

P
(
qt = ξi|x1:T , θ

)
(1)

A murmur could then be predicted if the greedy segmentation ever contains a 205

murmur state. However, in practice, this approach is very prone to false positive 206

murmur predictions because higher-frequency signal noise can cause occasional spurious 207

predictions. Additionally, the heart is physiologically constrained to generate sounds in 208

the order S1, systole, S2, diastole but the RNN is not similarly bound. This means that 209

physically impossible state transitions are possible (e.g. S2 to systole) in the greedy 210

segmentation. 211

To generate a globally optimum and physically valid segmentation we use the RNN 212

probabilities as observations for hidden semi-Markov models, following the hybrid 213

structure used in Springer [16] and Kay [17]. 214

As described by Springer et al. [16], the HSMM is an extension to a traditional 215

hidden Markov model that uses an explicit model for the duration of each state. This is 216

particularly useful for physiological signals, such as phonocardiograms, where states 217

have reasonably well-defined durations due to physical constraints. 218

The expected durations of states (particularly systole and diastole) significantly vary 219

between patients due to the wide range of resting heart rates in the dataset. Springer et 220

al. [16] therefore does not use one global model for the state durations, instead 221

fine-tuning Gaussian distributions by scaling their means by an estimate of the heart 222

rate. Their approach follows the work of Schmidt et al. [24] and estimates the heart rate 223

by computing the autocorrelation of a smoothed homomorphic envelope of the heart 224

sound signal. They then search for the highest peak in the autocorrelation in the 500 to 225

2000 ms range, corresponding to heart rates between 30 bpm and 120 bpm. This search 226

range requires modification for paediatric use as approximately 20% of the dataset has a 227

heart rate above 120 bpm. 228

In this work, we improve upon this estimate of the heart rate by noting that the 229

posterior probabilities from the RNN are a filtered version of the original signal from 230

which a period can be estimated. The homomorphic envelope Springer uses can 231

therefore be replaced with the RNN posteriors to get an autocorrelation that is much 232

smoother and less affected by noise spikes. See S1 Fig for more information. 233

Kay uses two HSMMs, one assuming a healthy sound and the other assuming a 234

holosystolic murmur [17]. However, many of the murmurs in this dataset are early 235

systolic [14]. In this work, we improve upon these assumptions by using four HSMMs 236

that each make different assumptions about the underlying signal and hence generate a 237

different segmentation. The state durations are shared between each HSMM but the 238

observation probabilities and transition matrix differ: 239

ω1 A normal signal with no murmur. A four-state segmentation model is used with the 240

murmur posterior from the RNN discarded. 241

ω2 A holosystolic murmur signal. A four-state segmentation model is used, where the 242

murmur posterior replaces every systole posterior. 243
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ω3 An early-systolic murmur signal. A five-state segmentation model is used, with a 244

transition matrix that forces the S1 state to transition to the murmur state and 245

then to the systolic state. 246

ω4 A mid-systolic murmur signal. A five-state segmentation model as above, but with a 247

transition matrix that forces the S1 state to go to systole first. 248

A predicted segmentation q̂(ω) is calculated using each HSMM model above, giving 249

four distinct interpretations of the signal. We then calculate a confidence measure of the 250

segmentation C(ω) by tracing the predicted segmentation path back through the RNN 251

posterior probabilities: 252

C(ω) =
1

T

T∑
t=1

P
(
qt = q̂

(ω)
t |x1:T , θ

)
(2)

The final model, ω̂, is chosen as the HSMM with the largest confidence: 253

ω̂ = argmax
ω

(
C(ω)

)
(3)

This selects a final predicted segmentation of the signal, q̂
(ω̂)
1:T , and a final classification 254

of the type and location of any systolic murmur. The confidence of the chosen model, 255

C(ω̂), can be used as a measure of the signal quality. The four-class model can easily be 256

reduced to a binary murmur detector; if the chosen model is a murmur HSMM model 257

(ω̂ ∈ {ω2, ω3, ω4}) then a murmur is predicted. For the binary case, we can also 258

calculate an overall confidence of the murmur, C(M), vs no murmur, C(N) decision: 259

C(M) = max
(
C(ω2), C(ω3), C(ω4)

)
(4)

260

C(N) = C(ω1) (5)

The difference between these two confidences can then be used as a measure of the 261

separability of the murmur and no murmur outcomes: 262

C(M−N) = C(M) − C(N) (6)

The above method produces a per-recording prediction of the presence of a murmur. To 263

get a per-patient prediction in the format required by the challenge, we apply a simple 264

common-sense criterion. If a murmur is detected in any of the recordings, the patient is 265

predicted to have a murmur. If this is not true, the confidence of the chosen model C(ω̂)
266

is examined: if this is below a threshold (0.65), the patient is classified as ‘unknown’. 267

Otherwise, the patient is predicted to be ‘no murmur’. 268

Prediction of Clinical Outcome 269

The second task of the challenge was to predict the final clinical outcome of the patient. 270

A skilled clinician will auscultate each location of the chest and weigh the strength and 271

characteristics of the sounds at each site when trying to predict clinical significance [5]. 272

They may also consider general patient biometrics such as age, and sex, along with the 273

recorded patient history. 274

The dataset provided in the challenge does not include detailed patient biomarkers 275

or risk factors but does include basic biometrics such as age. To incorporate this 276

information alongside the heart sound recordings, we apply a CatBoost gradient 277

boosted decision tree [25] as shown in Fig 3. For each recording, we use the parallel 278

HSMM method above to calculate the murmur likelihood, C(M−N). We also compute 279

the maximum confidence, C(ω̂), so that the decision tree can reject poor-quality signals. 280
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Fig 3. CatBoost algorithm structure to predict clinical outcome. The parallel HSMM algorithm described in Fig 1 is
applied to each recording to generate murmur likelihood C(M−N) and signal quality C(ω̂) metrics. These metrics are then
combined with additional patient information and input to a CatBoost decision tree to predict the patient’s final clinical
outcome.

In situations where a patient has multiple recordings from the same chest location, the 281

values are averaged before input to the CatBoost model. Added to the feature set are 282

the patient’s age, pregnancy status, and the overall number of recordings made. 283

The CatBoost model is trained with a cross-entropy loss and optimised through a 284

five-fold cross-validation strategy alongside the RNN model. A class weight of 1.8 is 285

used for the abnormal examples and 1 for the normal examples because the challenge 286

cost function prioritises sensitivity. The chosen decision tree has a depth of 9. The final 287

threshold probability to decide an abnormal result (0.4738) is chosen to minimise the 288

challenge cost function. 289

Results and Discussion 290

Official PhysioNet challenge results 291

Table 1 provides the official results of our algorithm on both challenge tasks [10]. A 292

total of 40 teams competed in the competition and received official scores. The 293

algorithm achieved the second-highest score in the murmur detection task, with an 294

accuracy just 0.004 below the top score. In the clinical outcomes task, the algorithm 295

achieved the top score. Some teams’ entries failed subsequent tests to their code which 296

made them ineligible for final prizes [10]. The described algorithm therefore won the 297

First Prize in both tasks. 298

The ranking of entries changed significantly between the validation and test sets. 299

The final scores (Table 1) also showed a significant difference between the validation 300

and other sets. The validation set (10% of the data) was smaller than the training set 301

(30%) and teams were allowed up to 10 submissions to the validation set. Teams, 302

therefore, optimised their algorithm for best performance on the validation set, which, 303

given the relatively small total dataset, was not entirely representative of the final test 304
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Table 1. Official challenge results [15] for parallel HSMM algorithm.

Task Training Validation Test Final Rank
Murmur detection accuracy 0.817 0.758 0.776 2/40
Clinical outcome score 10565 9257 11144 1/40

The metric for murmur detection is an accuracy that is weighted to penalise false
negatives. The score for the clinical outcomes task is a custom loss function for the
challenge, where lower scores are better.

set. In particular, the prevalence of the ‘abnormal outcome’ in the validation set (0.383) 305

was significantly lower than in the test set (0.507) [10]. 306

Cross-validated results 307

The test set was not made available to teams after the challenge. This means only a 308

limited set of result metrics can be computed. For an in-depth exploration of the 309

algorithm, we additionally report additional metrics evaluated on the public training set. 310

These results are evaluated via a 5-fold cross-validation procedure. 311

Murmur detection 312

Fig 4 shows a plot of the HSMM confidence values for every recording in the training 313

dataset. Using the HSMM confidences allows for a strong separation of murmur and 314

normal signals, whilst producing an estimate of signal quality. Fig 5 shows a reliability 315

diagram for murmur detection, where the murmur likelihood (C(M−N)) is plotted 316

against the relative frequency of murmurs. The approximately directly proportional 317

relationship shows that the murmur likelihood provides a calibrated estimate of the 318

confidence in the decision. A low threshold of C(M−N) = 0 was chosen for the challenge 319

because of the weighted accuracy penalising false negatives. However, a higher threshold 320

could be picked for future applications, such as population screening, where a high 321

specificity is essential to minimise false positive referrals. 322

One limitation of this dataset is that the murmur labels were annotated by a single 323

clinician rather than a board of reviewers [10]. The labelling of a heart murmur depends 324

heavily on the annotator’s skill, hearing acuity, and headphones. Therefore, it is not as 325

repeatable a ground-truth as other cardiac tests such as electrocardiography and 326

echocardiogram and some disagreements between the algorithm and the clinician label 327

are to be expected. Future work should investigate recordings where a large majority of 328

challenge teams disagree with the clinician label, as this may be indicative of mislabels. 329

Table 2 shows the per-class performance of the algorithm in terms of sensitivity and 330

positive predictive value (PPV). The algorithm at its current operating point is 92.7% 331

sensitive to murmurs, which leads to a high challenge weighted accuracy because of the 332

heavy penalty applied to false negatives. As expected, the sensitivity of the algorithm 333

increases with the patient’s reported murmur grade. For grade 1 (quiet) murmurs, 334

87.5% of cases are detected. This rises to 100% for grades 2 (moderate) and 3 (loud). 335

The algorithm also has a high precision for the ‘murmur absent’ class, which would be 336

important for use as a rule-out device where patients must be confidently rejected as 337

having a murmur. The performance at predicting the ‘unknown’ class is poor. This 338

class was used if the annotator was unable to confidently predict the presence of a 339

murmur [14]. However, this extra label is subjective and highly dependent on how the 340

recordings were listened to and annotated. The definition of a poor-quality signal from 341

an algorithmic and human perspective is likely very different. It is possible that the 342

algorithm can confidently predict cases that a human cannot, due to analysis of 343
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Fig 4. Separation of murmur, normal, and poor signal quality signals using
HSMM confidences. The difference between the normal HSMM confidence, C(N),
and the most confident murmur HSMM, C(M), is used to predict murmur likelihood
C(M−N), whilst the most confident overall HSMM C(ω̂)is used as an indication of signal
quality. The horizontal and vertical lines show thresholds that have been chosen to
separate the different classes, optimised for the challenge task. The marker type
indicates the ground-truth labels.

lower-frequency inaudible energy or greater resilience to noise. Fig 6d shows an example 344

of one of these recordings, which does contain some noise and is marked unknown by 345

the clinician, but still has audible heart sounds and is confidently segmented by the 346

algorithm and predicted as ‘Murmur absent’. 347

Table 2. Per-class results for the murmur detection task.

Class Cases Sensitivity (%) PPV (%) F1 score
Murmur present 179 92.7 55.0 0.692
Unknown 68 30.9 34.4 0.328
Murmur absent 695 77.6 93.1 0.848

Results are evaluated via 5-fold cross-validation of the training dataset. Shown are
sensitivity (also known as recall), positive predictive value (PPV, also known as
precision), and their combined F1 mean.

Clinical outcome 348

A novel part of the 2022 challenge was the use of a custom cost function for the binary 349

clinical outcome task. The challenge organisers argue that traditional metrics for binary 350

December 22, 2023 11/18

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2023. ; https://doi.org/10.1101/2023.12.26.23300540doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.26.23300540
http://creativecommons.org/licenses/by/4.0/


Fig 5. Reliability diagram for prediction of murmurs using HSMM
confidence difference. As the confidence difference C(M−N) increases, so does the
relative frequency of murmurs with an almost directly proportional relationship (dashed
line). This suggests good calibration of the murmur likelihood output.

Fig 6. Four example recordings analysed by the algorithm. Three-second
windows are shown for each recording, with their database ID shown in the top right.
Recording (a) contains a strong systolic murmur that is confidently detected by the
algorithm (C(M−N) = 0.25). (b) is a healthy signal that is correctly identified (
C(M−N) = −0.10). (c) contains significant talking and other noise, and is marked as
‘Unknown’ by the clinician. The algorithm correspondingly rejects the signal with a low
confidence of C(ω̂) = 0.49. (d) contains a lower amplitude signal with some noise that is
marked as ‘Unknown’ by the clinician, but is segmented by the algorithm with a very
high confidence of C(ω̂) = 0.91.

classifiers, such as area under the receiver operating characteristic curve, weigh all 351

examples equally and are not optimised for particular clinical contexts [26]. The 2022 352

cost function was designed to represent the key issues in the deployment of an algorithm 353
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in low-cost screening environments [10]. However, one potential limitation of solely 354

using a custom loss function is that results from the challenge cannot be easily 355

compared to other studies applying machine learning to PCG analysis. The cost value 356

can also mask whether the algorithms are actually identifying diagnostic features. 357

Approximately half of the challenge teams (19) achieved a worse performance on the 358

test set than a random classifier. An optimum random model that achieves a sensitivity 359

of 80% and a specificity of 20% (thus lying on the diagonal line of a receiver operating 360

characteristic, ROC, graph) on the test set would achieve a challenge cost score of 13168. 361

In Fig 7, we compare the training and test scores for all the official challenge entries. 362

Fig 7. Training and test performance of all the official entries on the clinical
outcomes task. A lower score is better. Many algorithms had significantly better
performance on the training set, indicating overfitting has taken place. The diagonal
line shows ideal performance where training and test performance are equal. The
parallel HSMM algorithm achieves the best score and shows little evidence of overfitting.
For context, the performance of a random classifier at an optimal operating point is also
shown.

Fig 7 also shows that shows that many algorithms overfit to the training set with far 363

worse performance on the final testing set. Many teams used deep learning algorithms 364

commonly deployed in other areas such as speech recognition. However, the small size of 365

the dataset makes training generalisable models a challenge. Although an RNN is used 366

in this work, it is constrained to perform a specific task within the segmentation model 367

and does not generate the final prediction of clinical outcome. Unlike many other teams, 368

our approach does not re-train a completely new model to predict clinical outcome. The 369

CatBoost model was designed to leverage the murmur predictions from the parallel 370

HSMM and combine them with limited patient biometrics. Therefore, it had a limited 371

feature set to train on and the risk of overfitting was low. However, one limitation of 372

this approach is that the murmur detector algorithm is only trained to detect audible 373

abnormal sounds. It is possible that some of the abnormal examples contain inaudible 374

time-frequency features that would be missed by the murmur detection algorithm and 375
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hence the CatBoost model. A model trained directly to predict clinical outcome could 376

detect these features. 377

For a fixed prevalence and dataset size, the cost function can be plotted as a 378

function of sensitivity and specificity as shown in Fig 8. This shows that the overall 379

effect of the cost function is to heavily prioritise sensitivity over specificity. All data on 380

this graph is evaluated on the training set. The graph shows the performance of the 381

clinician murmur ground-truth used to predict abnormal clinical outcome, assuming all 382

‘Unknown’ cases are referred on as positives. Although the clinician is very specific, the 383

sensitivity is very poor (42%), indicating that many of the patients have heart disease 384

that does not produce an audible signature. The result is a challenge score of 16083. 385

The murmur detection algorithm trades off improved sensitivity for worse specificity but 386

achieves a better score of 13681. However, both of these scores are worse than a random 387

classifier on the random diagonal line of the ROC, which achieves a score of 12579 on 388

the training set. 389

Fig 8. Performance of algorithms and clinician on clinical outcomes task. A
receiver operating characteristic (ROC) curve for the CatBoost algorithm at predicting
clinical outcome is shown. Also shown are operating points for the clinician (using the
murmur label) and the parallel HSMM murmur detection algorithm. The colourmap
shows how sensitivity and specificity relate to the PhysioNet challenge cost score. On
the training set, an optimum random classifier can achieve a cost score of 12579.

Fig 8 also plots an ROC curve for the performance of our CatBoost algorithm at 390

predicting clinical outcome, with the operating point used in the challenge marked. A 391

score of 11040 is achieved, closely matching the test score of 11144 that won first place. 392

This is an improvement over the optimum random classifier, however, the ROC curve 393

illustrates that the main effect of the CatBoost algorithm has been to shift the operating 394

point from a specific area (i.e. the murmur detection performance) to a sensitive area. 395
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This is highly beneficial to lower the challenge cost function, but may not be practical 396

for widespread screening. Many population-level screening programs prioritise a high 397

specificity over sensitivity [27], because this is crucial to maintaining a high positive 398

predictive value when operating over a low prevalence population. An algorithm with 399

low specificity could lead to a very large number of false positive referrals which would 400

overwhelm secondary care cardiac services, such as echocardiography. 401

The challenge dataset only provides a binary label of disease and does not provide 402

additional labels on its nature or severity [10]. Given the low sensitivity of clinical 403

auscultation, it is likely that many of the patients recruited have a disease that does not 404

produce audible murmurs or other abnormal sounds. Phonocardiography is a useful tool 405

to detect many structural heart diseases but should be combined with non-invasive 406

cardiac screening tests (e.g. electrocardiography) to provide a more sensitive test for 407

heart dysfunction. It may therefore be beneficial to focus algorithm designs on disease 408

which is known to produce abnormal sounds (e.g. valvular heart disease, septal defects) 409

rather than training models to predict a general abnormality. 410

Conclusion 411

We present a novel algorithm to detect and classify heart murmurs that was the winning 412

entry in the 2022 PhysioNet challenge. The model uses a hybrid approach combining a 413

recurrent neural network with parallel hidden semi-Markov models to accurately 414

segment and classify signals, even in the presence of noise and murmurs. Compared to 415

many other algorithms described in the literature and used in the challenge, our model 416

is lightweight and can easily be interpreted by a clinician. 417

On the murmur detection task, the model won the first prize in the challenge with a 418

sensitivity of 92.7% and 77.6% for the ‘murmur present’ and ‘murmur absent’ classes 419

respectively. The algorithm also won the first prize in the clinical outcome task. 420

However, its accuracy was reduced compared to the murmur detection task because 421

many of the abnormal patients did not have audible pathological sounds. More specific 422

labels of disease were not available, and future work could investigate the accuracy of 423

these approaches on a per-disease basis. 424

The algorithm additionally predicts signal quality, so a user can be asked to make a 425

repeat recording if their stethoscope was incorrectly held or if there is substantial bodily 426

or environmental noise. However, the algorithm’s predictions often disagreed with the 427

signal quality label assigned by the clinician. For widespread and low-cost screening, it 428

is essential that heart sound data can be reliably gathered by an unskilled operator. 429

Future studies should explore the usability of electronic stethoscopes and investigate if 430

automatic signal quality assessment can aid this process. 431

December 22, 2023 15/18

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2023. ; https://doi.org/10.1101/2023.12.26.23300540doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.26.23300540
http://creativecommons.org/licenses/by/4.0/


Supporting information 432

433

S1 Fig. Improved estimate of heart rate using RNN output. Compared here are the methods of Schmidt et al. [24] 434

(left column) and our approach (right column). Schmidt et al. take a homomorphic envelope (middle left) of the signal and 435

then compute its autocorrelation (bottom left). They then search for a peak in a specified range to estimate the heart rate. 436

We use a range of 30-180 bpm for both methods in this dataset because of the faster paediatric sounds. However, this 437

example heart sound (top left) has significant noise which corrupts the envelope and therefore gives a noisy autocorrelation 438

where the correct peak is difficult to find. Our approach instead uses the output of the RNN to create a signal that shows the 439

probability the signal is not in diastole, P (qt ̸= diastole|x1:T , θ), (i.e. the summed probability of the S1, S2, systole, and 440

systolic murmur states, middle right). This is a much cleaner signal than the homomorphic envelope, so its autocorrelation 441

(bottom right) is much clearer and the correct peak corresponding to the signal period is easy to find. 442
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