Abstract
Detection of heart disease using a stethoscope requires significant skill and time, making it expensive and impractical for widespread screening in low-resource environments. Machine learning analysis of heart sound recordings can improve upon the accessibility and accuracy of diagnoses, but existing approaches require further validation on larger and more representative clinical datasets. For many previous algorithms, segmenting the signal into its individual sound components is a key first step. However, segmentation algorithms often struggle to find S1 or S2 sounds in the presence of strong murmurs or noise that significantly alter or mask the expected sound. Segmentation errors then propagate to the subsequent disease classifier steps. We propose a novel recurrent neural network and hidden semi-Markov model (HSMM) algorithm that can both segment the signal and detect a heart murmur, removing the need for a two-stage algorithm. This algorithm formed the ‘CUED Acoustics’ entry to the 2022 George B. Moody PhysioNet challenge, where it won the first prize in both the challenge tasks. The algorithm’s performance exceeded that of many end-to-end deep learning approaches that struggled to generalise to new test data. As our approach both segments the heart sound and detects a murmur, it can provide interpretable predictions for a clinician. The model also estimates the signal quality of the recording, which may be useful for a screening environment where non-experts are using a stethoscope. These properties make the algorithm a promising tool for screening of abnormal heart murmurs.
Author summary The use of machine learning algorithms to detect heart disease from sound recordings has great potential to enable widespread and low-skill screening, improving early detection and treatment. The area has seen increasing interest in recent years, with many novel algorithms inspired by deep learning advancements in other fields. However, the size of heart sound datasets remains small, making deep learning models particularly susceptible to overfitting. In addition, the performance of these algorithms has rarely been directly compared on unseen data. We describe a novel lightweight algorithm to detect and classify murmurs in heart sound recordings. This algorithm was the winning entry into the George B. Moody PhysioNet 2022 challenge, beating many complex deep-learning approaches. Our approach both detects and localises the murmur, providing an interpretable result for a clinician.
Competing Interest Statement
AM and AA are inventors on a patent application related to this work (WO2019171021A1).
Funding Statement
Yes
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Not Applicable
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Not Applicable
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Not Applicable
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Not Applicable
Data Availability
All heart sound recordings and clinical data used in this work is available publicly as part of the George B. Moody 2022 PhysioNet challenge (https://moody-challenge.physionet.org/2022/). All code to train and evaluate the algorithm is available in a public repository (https://github.com/am2234/parallel-hsmm-murmur).