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Abstract

This article includes a literature review and a case study of artificial intelligence (AI)
heart murmur detection models to analyse the opportunities and challenges in deploying
AI in cardiovascular healthcare in low- or medium-income countries (LMICs). This
study has two parallel components:

(1) The literature review assesses the capacity of AI to aid in addressing the
observed disparity in healthcare between high- and low-income countries. Reasons for
the limited deployment of machine learning models are discussed, as well as model
generalisation. Moreover, the literature review discusses how emerging human-centred
deployment research is a promising avenue for overcoming deployment barriers.

(2) A predictive AI screening model is developed and tested in a case study on heart
murmur detection in rural Brazil. Our binary Bayesian ResNet model leverages
overlapping log mel spectrograms of patient heart sound recordings and integrates
demographic data and signal features via XGBoost to optimise performance. This is
followed by a discussion of the model’s limitations, its robustness, and the obstacles
preventing its practical application. The difficulty with which this model, and other
state-of-the-art models, generalise to out-of-distribution data is also discussed.

By integrating the results of the case study with those of the literature review, the
NASSS framework was applied to evaluate the key challenges in deploying AI-supported
heart murmur detection in low-income settings.

The research accentuates the transformative potential of AI-enabled healthcare,
particularly for affordable point-of-care screening systems in low-income settings. It also
emphasises the necessity of effective implementation and integration strategies to
guarantee the successful deployment of these technologies.

Author Summary

This study explores the potential and limitations of artificial intelligence (AI) in
healthcare, focusing on its role in addressing global health inequities.
Non-communicable diseases, especially cardiovascular disorders, are a leading global
cause of death, exacerbated in low-income settings due to restricted healthcare access.
This research has two components: a narrative literature summary that discusses the
gap between AI research and real-world applications, and a case study on heart murmur
detection in rural Brazil. The case study introduces an AI model tailored for low-income
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environments, which efficiently analyses heart sound recordings for diagnostic insights.
Both parts highlight the challenges of model generalisation to out-of-distribution data.

The findings accentuate the capacity of AI to revolutionise point-of-care screening in
resource-limited settings. However, they also highlight the critical importance of
effective implementation and conscientious design for the successful deployment of these
technologies. By leveraging AI, this work contributes to the broader objective of
fostering global health equity, while emphasising the need for thoughtful application and
integration strategies.

1 Introduction 1

This paper begins with an introduction to cardiovascular diseases and the PhysioNet 2

Challenge 2022, which forms the basis of the case study. This is followed by an overview 3

of related work and author contributions. As part of an extended introduction, Section 4

2 offers a narrative literature overview of the opportunities and challenges of AI in 5

healthcare, disparities between income settings, and deployment considerations. 6

1.1 Background: Cardiovascular Diseases 7

Non-communicable diseases are the leading cause of mortality globally. Among the 55 8

million deaths in 2019, 74% were from non-communicable diseases, as opposed to 18% 9

from communicable diseases and 8% from injuries [1]. Cardiovascular diseases (which 10

form a subset of non-communicable diseases) accounted for 17.9 million (or 32%) of 11

global deaths [1, 2]. These figures are more pronounced in low- and middle-income 12

countries, where over three-quarters of these deaths occur due to limited access to early 13

detection and effective treatment measures [1–3]. 14

Cardiovascular diseases comprise various heart and vessel disorders, such as coronary 15

artery disease, valvular heart disease, and congenital heart disease [4]. Although 16

coronary artery disease is more common in developed nations, congenital and valvular 17

heart diseases are more prevalent in developing countries due to limited prenatal 18

screening and healthcare access. Annually, rheumatic heart diseases account for over 68 19

million cases and approximately 1.4 million deaths, primarily affecting children and 20

young adults [4]. Early identification of these diseases is important as lifestyle changes 21

can prevent a substantial number of cases. However, the lack of robust primary 22

healthcare often leads to late detection and premature deaths. 23

By 2030, the World Health Organisation (WHO) aims to reduce the probability that 24

people aged between 30 and 69 years will die from non-communicable diseases to 12.3% 25

(from 17.8% in 2019) [1]. The WHO’s strategies include risk factor reduction and 26

improved disease detection. To this end, the WHO has set international objectives, such 27

as lowering the incidence of elevated blood pressure and ensuring 80% availability of 28

affordable basic technologies and medicines for cardiovascular diseases [2]. Achieving 29

these goals necessitates significant investments in health systems, especially in low- to 30

medium-income countries. Thus, cost-effective point-of-care technologies are crucial for 31

heart disease screening in these settings. Encouragingly, initial results indicate a 27% 32

decline in the individual risk for cardiovascular diseases from 2000-2019 [1]. 33

Anomalies in the early stages of heart structure development can lead to congenital 34

heart disease. While most murmurs do not indicate serious disease, the detection of 35

heart murmurs may serve as an indicator of these structural defects. Early-life heart 36

sound signal analysis could act as a rapid, non-invasive screening method for cardiac 37

structural anomalies, facilitating prompt diagnosis and treatment [5]. Cardiac 38

auscultation and phonocardiography analysis offer straightforward methods for 39

diagnosing heart conditions by identifying abnormal sound waves and heart murmurs in 40
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heart sound recordings [5]. The initial stages of heart murmur screening can be relatively 41

straightforward with proper guidance [4]. Nurses can be trained to use a stethoscope 42

effectively and to record heart sounds with technological support. However, interpreting 43

these sounds requires professionals with years of experience, who may not always be 44

readily available. In such scenarios, AI-assisted pre-screening could serve as a viable 45

solution which could aid in the referral of patients to specialised treatment facilities. 46

1.2 Case Study Context: PhysioNet Challenge 47

In the context of the PhysioNet Challenge 2022 [6], this research builds upon a prior 48

competition submission made by the authors [7]. However, several adjustments were 49

made to align outcomes with the necessities of point-of-care devices in 50

resource-constrained environments and to enhance the models. 51

The objective of the challenge was to “identify the presence, absence, or unclear 52

cases of murmurs and the normal vs. abnormal clinical outcomes from heart sound 53

recordings” [6]. The scoring mechanism employed a weighted accuracy for the 54

three-class murmur categorisation and a cost function for outcomes classification. The 55

three categories of murmur were: present, uncertain, and absent. The cost function for 56

the outcome classification incorporated: (a) an expert capacity factor, which conveyed 57

the costs associated with patient screening (i.e., when classified as abnormal), (b) 58

significant costs, if a patient exhibited abnormal heart sounds but did not receive 59

treatment, and (c) additional costs, patient treatment [6]. 60

This paper aims to broaden research on this topic by (a) comparing the model using 61

out-of-distribution data in a zero-shot fashion and (b) investigating in more detail 62

underdiagnosis issues. 63

1.3 Related Work 64

Recent reviews have revealed that most current approaches in the classification of heart 65

sounds focus on a binary problem: categorising heart sounds as either normal or 66

abnormal. This emphasis largely stems from the scarcity of available heart sound data 67

which might otherwise facilitate more nuanced classifications [8]. While many studies 68

report accuracies exceeding 90% for heart sound classification tasks (cf. Section 5.2), 69

depending on the task and dataset [9], recent reviews highlight the need to establish 70

robust methods. In terms of deployment and robustness, the reviews identify several 71

challenges [8, 9]. First, the complex, non-stationary nature of heart sound signals 72

complicates their extraction and analysis. Second, the introduction of noise and 73

interference during the acquisition process exacerbates these challenges. Third, the 74

reviews indicate that existing algorithms exhibit limited capabilities and inconsistent 75

accuracy rates, suggesting that they are not yet sufficiently robust for practical, clinical 76

applications. Importantly, these reviews stress the necessity for evaluation using 77

standardised databases for more accurate comparisons of algorithmic performance [9]. 78

1.4 Contributions 79

In this study, the deployment challenges of healthcare technologies are evaluated using a 80

narrative literature review and a case study. A predictive AI model is tailored for heart 81

murmur detection, focusing on resource-constrained environments in rural areas of 82

low-income countries. Additionally, the model’s real-world limitations and robustness 83

are assessed, and barriers to practical deployment are discussed. 84

This paper expands upon a previous work [7], which focused on heart murmur 85

classification and received recognition in the 2022 George B. Moody PhysioNet 86

Challenge [6], securing fourth place. The ultimate objective remains the same: to create 87
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an open-source algorithm for accurate classification of heart murmurs using heart sound 88

recordings. 89

In alignment with the overarching research question—How can AI technologies be 90

effectively deployed to bridge healthcare disparities between high-income and low-income 91

countries, and what are the opportunities and challenges in achieving this goal?—the 92

novel contributions of this research are as follows: 93

• Findings from a literature review and the case study are summarised. The review 94

focuses on the identification of challenges and barriers to deploying AI models for 95

pre-screening in low-income settings. The findings are discussed thoroughly, and 96

challenges are assessed using the NASSS framework [10]. 97

• Expanding upon the contributions of Walker et al. [7], the deep learning model is 98

improved by incorporating multimodal data to extend its generalisability. 99

Two-dimensional spectrograms derived from heart sound recordings are used for 100

the classification of heart murmurs. The improved model is compared to other 101

architectures, including baseline Residual Networks (ResNets) without a Bayesian 102

component. 103

• A multi-site validation of the refined model and a robustness evaluation are 104

performed, and gaps requiring attention (in order for successful real-world 105

deployment to occur) are identified. 106

2 Review of AI Deployment in Healthcare 107

2.1 Opportunities and Challenges Presented by AI in 108

Healthcare 109

Opportunities. AI offers an opportunity to enhance areas of healthcare such as 110

diagnostics, treatment planning, and overall patient outcomes, particularly as healthcare 111

demand and costs increase [11, 12]. The capabilities of AI have expanded across various 112

healthcare applications in recent years. For instance, image reconstruction and analysis 113

in radiology have substantially improved due to the integration of deep neural 114

networks [13]. AI-aided detection and diagnosis have the potential to assist healthcare 115

professionals by improving efficiency and accuracy [14,15]. Furthermore, algorithms 116

that identify areas of interest during image screening have proven effective in supporting 117

clinicians, enhancing diagnostics without supplanting human expertise [14]. 118

Challenges. However, the incorporation of AI into healthcare is obstructed by 119

numerous obstacles. These include regulatory hurdles, data privacy concerns, data 120

quality issues, ethical considerations, clinical validation, and funding shortfalls [16]. 121

From a technical standpoint, it is important that models are robust, adaptable, and 122

accurately convey their uncertainty [17]. 123

Way forward. Beyond developing a more realistic model evaluation and approaches 124

for better generalisation [18], addressing the challenges mentioned above requires 125

education, collaboration among healthcare providers and industry stakeholders, as well 126

as ongoing evaluation and refinement of AI systems [19]. To foster acceptance among 127

end-users, early integration of users into development is crucial and sufficient training 128

on the correct use of the technology [16,20]. Beyond performance expectations, it is 129

essential to meet expectations regarding required effort, social impact of the systems 130

(e.g., on communication or decision-making), and other facilitating conditions such as 131

infrastructure and legal frameworks [20]. 132
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2.2 Generalisability Challenges 133

Challenges. Model reliability on out-of-distribution data (which were unseen during 134

training) is a large concern in medical imagining and medical AI research. The data 135

distribution of medical images can change, for example, due to the variations in imaging 136

equipment, the use of different protocols, or changes in the patient populations across 137

locations and time [18]. This phenomenon, known as feature shift, can significantly 138

impact model performance. Recently, special interest has been directed to population 139

shifts and the ability of models to perform well across different patient subgroups, to 140

ensure fairness and address biases that often stem from unbalanced training 141

data [21,22]. Additionally, label shift, where the distribution of the labels changes 142

across different datasets, poses another challenge. For instance, in heart sound 143

recordings, the definition of what constitutes an abnormal or normal recording could 144

change over time. Furthermore, variability in human annotations used for training 145

further complicates the issue. Different raters may provide inconsistent labels for the 146

same data (this is known as inter-rater variability), and the same rater may provide 147

inconsistent labels at different times (this is known as intra-rater variability). 148

Way forward. Studies have begun to address these issues in more detail, focusing on 149

a model’s ability to function accurately despite out-of-distribution shifts. For example, 150

some researchers evaluate model performance across various datasets [23] and others 151

examine specific data changes, such as temporal variations [24]. Furthermore, extensive 152

studies have been performed on diabetic retinopathy in India [25,26] and their 153

transferability from HICs to LMICs. For instance, an AI model trained to detect 154

diabetic retinopathy on data collected in Singapore has been shown to maintain its 155

effectiveness when evaluated on data collected in Zambia. This demonstrates that a 156

well-developed AI can be a valuable resource even across sites [27]. To evaluate the 157

generalisability of models, a wide set of metrics must be considered [17], especially 158

metrics that are clinically applicable. This involves considering the impact of varying 159

error rates beyond a narrow set of fairness metrics and acknowledging additional factors 160

like absolute welfare or priority. This is important to prevent Pareto inefficient 161

outcomes, a situation in which enhancements in model performance for one group could 162

still be realised without negatively impacting other groups, as described by Mittelstadt 163

et al. [21]. 164

Gap. Despite its importance, research indicates that 72% of recent clinical machine 165

learning studies do not include multi-site evaluation [28]. This suggests a considerable 166

gap in the current approach to AI deployment in healthcare. Many AI models in the 167

literature initially appear to outperform human practitioners but failed to maintain 168

their superiority under more variable testing across multiple sites. The gold standard in 169

testing AI models is the use of randomised controlled trials. However, these trials have 170

only been conducted in a few dozen studies [29]. One study, for example, used a 171

randomised trial to investigate performance, costs, and treatment time for 172

HIV-Tuberculosis screening in Malawi [30]. While many studies only involve small 173

cohorts, their increased instance is a positive step forward. 174

Contribution. This study tests a heart murmur model across multiple sites using 175

publicly available data. As illustrated in Table 1, not many databases exist which are 176

comparable in size to the 2022 Challenge data. Available databases do not all contain 177

multimodal data and often only have short and clean recordings available. Given that 178

the PhysioNet/CinC Challenge 2016 database is the largest available resource with 179

multimodal data, it was selected for our multi-site evaluation. As most databases 180

primarily contain labels for normal/abnormal classification, we focused on this outcome 181

classification during the multi-site assessment. 182
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Name Rec. [#] Freq. [Hz] Durat. [sec] Labels Patients [#] Location Demographics

PhysioNet 22 [4] 5272 4000 5 - 80

Murmur:
Present
Absent

Unknown
Outcome:
Normal

Abnormal

1568 Available Available

PhysioNet 16 [31] 3153 2000 5 - 120
Normal

Abnormal
764 Partially Partially

Yaseen [32] 1000 8000 1 - 4

Normal
Aortic Stenosis
Mitral Stenosis
Mitral Regur.
Mitral Prolapse

na na na

Pascal B [33] 656 4000 1 - 25
Normal
Murmur

Extrasystole
na na na

Table 1. Overview of publicly available heart sound databases with more than 500 recordings.

2.3 Healthcare AI in Low-Income Settings 183

Motivation. Despite considerable strides toward achieving the health-related sustainable 184

development goals set by the WHO [1], a pronounced discrepancy still exists between 185

the health outcomes and available health resources in high-income countries (HICs) and 186

their low- or medium-income countries (LMICs). For instance, in 2020, a global 187

shortfall of 15 million health workers was reported [1], a gap that is notably wider in 188

LMICs than in HICs. The disparity is stark: Europe reported an average of 36.6 189

medical doctors per 10,000 citizens, whereas there are only 2.9 in Africa and 7.7 in 190

South-East Asia. Such disparities highlight the diverse needs and potential applications 191

of AI technologies across different resource settings. In developed nations, a major use 192

case of AI is the improvement of individualisation and efficiency of healthcare. By 193

contrast, in low-income settings, a major use of AI is to bridge healthcare delivery gaps. 194

For example, while citizens in HICs may have immediate access to medical professionals, 195

a pressing need exists for simplified pre-screening systems in LMICs, which can be 196

administered by frontline healthcare workers. AI can facilitate task shifting, enabling 197

community health workers to deliver more services [34]. Technologies like AI-driven 198

heart sound interpretation can offer initial pre-screening for cardiac conditions in areas 199

where doctors are scarce. Consequently, AI has the potential to significantly enhance 200

both the quality and quantity of healthcare in LMICs [27,35–37]. 201

Recent development. A myriad of machine learning models for healthcare have been 202

developed recently, many of which are intended to aid LMICs. The typical objectives of 203

many recent technologies for LMICs are either to assist frontline healthcare workers [38] 204

(e.g., with user-friendly screening tools) or to aid non-specialist clinicians (e.g., 205

non-radiologists) in the analysis of X-rays. For instance, recent work by Rajpurkar et 206

al. [39] shows that an AI system for chest radiograph interpretation, when combined 207

with input from a non-radiology resident, achieved performance metrics comparable to 208

those of board-certified radiologists. Examples of other studies include COVID-19 209

forecast models in Iran [40] and India [41], Ebola forecast models for Africa [42], and 210

automated malaria diagnostic models in Uganda [43]. Various tuberculosis prediction 211

studies in Brazil [44], South Africa [45], and Peru [46] have also been conducted. And 212

despite the mixed performance of an AI COVID CT diagnosis tool in Ecuador, it 213
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remained in use due to the absence of alternatives [47]. 214

2.4 Deployment in Low-Income Settings 215

Deployment research. Recent research efforts have begun to assess the deployment of AI 216

technologies in LMICs. Studies by Okolo [48] and Ismail et al. [38] have examined AI 217

usage among frontline healthcare workers in India, highlighting key design 218

considerations for future applications. Another pilot study considered frontline 219

healthcare workers in Mexico, performing tasks such as triaging palpable breast lumps 220

using an AI-based computer-assisted diagnosis tool with a low-cost portable ultrasound 221

system [49]. A study by Kisling et al. [50] considered automated radiation planning in 222

South Africa to reduce maximum dosage in cervical cancer treatment. 223

Open challenges. The deployment of point-of-care (POC) screening technologies 224

(such as heart murmur detection) in low-income settings presents numerous challenges. 225

Reports indicate inconsistent reliability, varied effects on operational processes, a 226

deficiency in user-centred design, and incompatibility with regional particularities as 227

frequent issues [35,36,51]. Limited resources pose pronounced challenges in regions 228

where infrastructure is inadequate, including electricity and internet availability, which 229

are both essential for the operation of POC devices [37]. The effective implementation 230

of POC technologies relies heavily on the availability of a well-maintained supply chain, 231

which is often lacking in low-income settings. Moreover, even with a robust supply 232

chain, the logistical challenges of maintaining and updating complex technological 233

systems in these settings can be formidable. For the development, barriers include 234

constraints in data accessibility, demonstrable financial non-viability [37,52], as well as 235

concerns surrounding the openness of the data and computation methods involved in 236

training AI tools [51]. 237

Way forward. An evidence-based approach is crucial for the successful deployment of 238

POC technologies in low-income settings [37]. This includes conducting thorough risk 239

assessments, considering the unique challenges and limitations of each setting, and 240

prioritising sustainable, long-term solutions that can be integrated into existing systems. 241

Ethical considerations, such as the fair and secure use of AI applications, must also be 242

at the forefront of these efforts [16,51,53]. Solutions should focus on integrating 243

intelligence into existing systems and institutions rather than attempting to replace 244

them or build from scratch [37]. Training local healthcare workers and technicians to 245

use and maintain the technology can enhance sustainability and acceptance, fostering a 246

sense of ownership and capability within the community [16,20]. These strategies help 247

to ensure that the deployment of POC technologies is both effective and enduring. 248

Human-centred development. Most recent research tends to emphasise 249

human-centred development. Research shows that the early integration of the end-users 250

can foster a wider acceptance of the technology [20, 48, 54]. This involves engaging with 251

local communities to understand their specific needs and constraints, ensuring that 252

technologies are user-friendly and culturally appropriate. Notable projects such as 253

Google’s automated retinal disease assessment in Thailand and India [54,55] are 254

examples of this. This project, in collaboration with various clinics, included a 255

human-centred observational study to examine the consequences of the algorithm’s 256

implementation on clinical processes, and to identify factors influencing the performance 257

of the system’s algorithm. By 2023, it had screened more than 200,000 people, revealing 258

challenges in data quality, workflow integration, and post-deployment monitoring when 259

shifting into the real world. 260

Data-centric development. AI models trained on global data often require local 261

fine-tuning. This places further burdens on limited local resources and raises questions 262

about the inclusivity and fairness of these technologies in regions with limited data 263

availability [16,53]. Ensuring standardised data collection in low-income settings is 264
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challenging but not impossible. With strategic investments and innovative approaches, 265

such as mobile data collection tools and community engagement, it is feasible to 266

improve data quality. Partnerships with local institutions and the use of scalable 267

technologies can also help standardise data collection processes in these regions. 268

Conclusion. A collaborative ecosystem is important for the success of AI 269

applications in health, including a regulatory framework that provides principles and 270

standards for data governance and a sustainable financing. Open source frameworks 271

present an important step to lower barriers [56]. One of the biggest barriers currently is 272

that data collection and storage are too fragmented and inaccessible [35], which are 273

problems that HIC and LMIC share. Evidence has shown that a human-centred 274

approach is important for the success of tools [48,55]. A development process in which 275

all stakeholders are considered, and ethnographic fieldwork is conducted (which includes 276

front-line healthcare workers, such as community health workers) is important [48]. 277

2.5 Commercial Examples of Healthcare AI in Low-Income 278

Settings 279

As Okolo [48] has noted, many studies are steered by large tech companies, such as the 280

Google studies [54,55]. However, an increasing number of smaller companies are 281

currently working to deploy AI technologies. 282

Several enterprises and organisations are collaborating with researchers to deploy AI 283

technologies in LMICs. These include Wadhwani AI [57] an Indian company developing 284

AI tools to reduce morbidity and mortality among mothers and children), as well as 285

other eHealth, dermatology, and ophthalmology tools. Aidoc [58], based in Israel and 286

the US, is developing AI tools for cardiovascular and neuroscience diseases with a focus 287

on radiology, care coordination, patient management, and clinical trial enrolment. 288

Ubenwa AI [59], a Nigeria and Canada based company, is developing a computer-aided 289

diagnostics tool for perinatal asphyxia using infant cry sounds. Other organisations, 290

such as OpenMRS [60] and DHIS2 [61], provide medical record systems to countries 291

worldwide. 292

RAD-AID is a non-profit committed to enhancing radiology resources in low-income 293

environments [62] and its developers are working to overcome issues associated with AI 294

implementation for medical imaging in resource-scarce settings. This non-profit has 295

tackled the shortage of equipment, professional expertise, and infrastructure which 296

typically exist, and has defined data-rights policies. Moreover, RAD-AID has directed 297

attention to addressing the trustworthiness of AI underpinned by a lack of data 298

diversity and the opacity of algorithms. RAD-AID has introduced a triad strategy of 299

clinical radiology education, infrastructure development, and staggered AI deployment. 300

The organisation highlights that AI implementation in LMIC necessitates a strategy 301

that is distinct from that in HICs due to variations in resources and clinical scenarios. 302

More research is necessary to ensure real-life diagnostic accuracy of commercially 303

available tools. Lind et al. [63] provide some insight, analysing the performance of four 304

chest radiography AI tools on 2,040 patients. Their findings indicate that tools are 305

designed to behave conservatively. While the authors report moderate to high 306

sensitivity, more false-positive findings were indicated than in comparable radiology 307

reports. They also found that there was decreasing performance for smaller targets and 308

for cases with multiple findings. This highlights the opportunities for AI based 309

screening methods but emphasises the necessity of a careful deployment. 310
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3 Materials and Methods 311

3.1 Training Data 312

The main training data used in this research were collected by Oliveira et al. [4]. The 313

heart sound recordings were gathered using a Littmann 3200 stethoscope (an online 314

search revealed that this stethoscope is priced between £250 and £300 in the UK [64]) 315

and tablet-based GUI software named DigiScope Collector. This software provides a 316

user-friendly interface for collecting patient metadata and offers clear guidance on the 317

process of recording heart sounds. The heart sound recordings of 1,568 individuals were 318

obtained from an initial pool of 2,061 participants (participants were filtered based on 319

eligibility criteria as stated in the study) during two screening campaigns in 2014 and 320

2015. These campaigns, known as ‘Caravana do Coração’, took place in the state of 321

Paráıba in northern Brazil. Mobile teams travelled across the state during the 322

campaigns, collecting data predominantly from a paediatric population. Notably, 63% 323

of the participants were children, and 20% were infants [4]. From the original 1,568 324

patients, 53.2% were referred for a follow-up, while 36.7% were discharged entirely. The 325

remaining 10.1% either needed additional testing (27 patients), were indicated for 326

surgery or intervention (35 patients), or had no information recorded on their cases (97 327

patients). 328

The dataset includes heart sound recordings ranging from 5 to 80 seconds in length, 329

along with demographic information such as age groups, gender, height, weight, and 330

pregnancy status. From the 1,568 patients, 60% (942 individuals) of the recordings were 331

provided for training. A patient could have heart sound recordings from up to six 332

different recording locations, with a total of 5,272 recordings in the dataset. The 333

possible locations of the heart sound recordings were the pulmonary valve, aortic valve, 334

mitral valve, tricuspid valve, or an unspecified location. Furthermore, each patient was 335

assigned two tags, one indicating the presence, absence, or uncertainty of heart murmurs, 336

and the other indicating whether the recordings contain normal or abnormal heart 337

sound recordings. About 13% of the data contained missing values in the metadata, 338

which most commonly occurred concurrently in the age, height, and weight categories. 339

The recordings were methodically sampled by Oliveira et al. [4] using various 340

algorithms to detect and define the primary heart sounds and their respective 341

boundaries. Labels were assigned to sections of the data that cardiac physiologists 342

deemed to be representative, high-quality segments. The remaining data may comprise 343

both low and high-quality data. In their research, Oliveira et al. [4] sampled signals at 344

4KHz, because oversampling notably beyond the Nyquist limit (double the highest 345

frequency of the intended signal) offers no extra insights about the signal [4]. Moreover, 346

the heart sound signals were normalised within the range [-1, 1]. 347

3.2 Model Evaluation 348

For the in-distribution evaluation, a ten-fold cross-validation was used. As evaluating 349

models in a multi-site context is important in ensuring their safe and effective 350

implementation in real-world settings, as discussed in Section 2.2, the PhysioNet 2016 351

Challenge database [31] was used for an out-of-distribution evaluation. The database’s 352

heart sound recordings were procured from numerous contributors worldwide, collected 353

in both clinical and non-clinical environments from healthy individuals and patients with 354

heart diseases. The challenge’s training set includes a total of 3,153 recordings, each 355

lasting between 5 and 120 seconds. The records correspond to different body locations, 356

typically the aortic, pulmonic, tricuspid, and mitral areas. They are categorised as 357

either normal (79%) or abnormal (21%), with abnormal recordings coming from 358

patients with confirmed cardiac diagnoses, including heart valve defects and coronary 359
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artery disease. These recordings involve both children and adults, with each subject 360

contributing between one and six heart sound recordings. All recordings were 361

re-sampled to 2,000Hz and are in .wav format. Regrettably, the database does not allow 362

for the linking of multiple locations to a single patient. Subject identifiers are available 363

only for 490 recordings out of 3,153. Hence each recording was treated as an individual 364

patient with one recording. For zero-shot performance the whole dataset was used for 365

evaluation and for the fine-tuned evaluation a split (of 70% and 30%, respectively) was 366

used. To be able to train on a balanced dataset, we sub-sampled the training data. 367

3.3 Data Preparation 368

The data preparation of Walker et al. [7] was built upon and extended. A short-time, 369

windowed Fourier transformation was used to derive the frequency and phase 370

component of segments of a signal as it changes over time [65]. These features were 371

represented with a spectrogram, which is an image depicting the change in amplitude 372

(or power) of various frequency components over time. Owing to its effectiveness in a 373

range of recent audio classification tasks, the spectrograms have a logarithmic mel scale 374

for the frequency. This is intended to preserve the distance between pitches perceived by 375

humans (cf. Figure 1) [6, 66]. The extraction was performed using the scipy and 376

librosa Python libraries. The recordings were segmented into overlapping sections 377

using a window of 4 seconds and a stride of 1 second. The spectrogram of each section 378

was computed using a Fast Fourier Transform with a periodic Hanning window of 25 379

milliseconds, a stride of 10 milliseconds, a minimum frequency of 10Hz, and a maximum 380

frequency of 2000Hz. 381

The demographic data were processed following the guidelines set by the organisers 382

of the challenge [6]. This processing step included converting age categories to their 383

approximate equivalent in months, applying one-hot encoding to gender data, and 384

transforming pregnancy status into a binary format. Missing data were addressed using 385

mean imputation. The features extracted from the signals encompassed summary 386

characteristics in the time and frequency domains, along with summary measures for 387

spectral centroid, roll-off, and bandwidth. 388

3.4 Models 389

3.4.1 Pipeline Architecture 390

Figure 2 presents a stylised representation of the data and model pipeline. This includes 391

a classification of the individual spectrograms relative to location, aggregation of these 392

classifications across locations, and a multimodal integration of the demographic data 393

and signal features via XGBoost [67]. The classifications of individual spectrograms 394

were aggregated using the arithmetic mean. 395

3.4.2 Bayesian Neural Network 396

For the spectrogram classification, two versions of the deep learning model were 397

explored. The first was a standard ResNet50 [68], which has been shown to be very 398

effective in audio-related tasks [69]. This model acted as the baseline. The second 399

model was an approximate Bayesian neural network (BNN) with the same architecture 400

as the baseline model. The second model is referred to as a binary Bayesian ResNet 401

(BBR) model. Both models were initialised using weights obtained from pre-training the 402

ResNet50 on the ImageNet dataset [70]. 403

The parameters of a BNN are distributions instead of fixed values. This means the 404

same input can produce diverse outputs, due to randomness in the model parameters. 405
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Fig 1. “Example heart sound recordings (top row) for a patient with present murmur
recorded at the aortic valve (left column) and mitral valve (right column). The bottom
row shows the log mel spectrogram, as parameterised in the code. The dash-dotted lines
show how the data were partitioned into 4 second two-dimensional inputs.” From
Walker et al. [7].
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Fig 2. A schematic diagram of the data and model pipeline. Key: Blue: Data, Yellow:
Fixed methods, Red: Trainable models, Green: Output.
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BNNs are built on the work of stochastic neural networks, which use either stochastic 406

activations or weights to essentially create an ensemble of models. This provides a 407

distribution over outputs and a measure of uncertainty [71]. Research shows that BNNs 408

can reduce overfitting, which is especially beneficial for small datasets like the one 409

examined in the challenge [71]. However, given that this approach does not consistently 410

outperform deterministic counterparts (as discussed by Kiskin [72]), this research 411

scrutinised the specific impact of this approach within the study. 412

Constructing a complete BNN requires modelling the prior distribution over all 413

model parameters, a task that can be computationally demanding [73]. However, 414

research has shown that including dropout layers during training and inference is a 415

viable approximation to a complete BNN [71,73]. Dropout layers are a common 416

component of modern neural networks, which choose a random subset of the neurons to 417

be disabled during each forward pass. Typically, the dropout layers are removed during 418

inference. Inspired by Gal et al. [73], dropout layers were added to various segments of 419

the ResNet50 architecture, particularly to the BasicBlock() and Bottleneck() 420

modules, as per the ResNet implementation in Kiskin [72]. This can be interpreted as a 421

Monte Carlo approximation to BNNs. The term ‘Monte Carlo’ signifies the use of 422

random sampling to generate numerical outcomes, specifically creating diverse neural 423

network configurations via the selective deactivation of neurons. (This approach does 424

not strictly approximate BNNs but should still assist in combating overfitting. Further 425

details on the specifics of this approximation are discussed by Gal et al. [73].) 426

3.5 NASSS Evaluation Framework 427

To indicate the prospects for scaling up automated heart murmur detection, the NASSS 428

framework was used. The NASSS framework [10] was developed to investigate the 429

challenges associated with the implementation of technologies in healthcare, focusing on 430

the risks of Nonadoption, Abandonment, Scale-up, Spread, and Sustainability. It 431

includes a qualitative guide comprising 19 questions, each of which can be categorised as 432

either simple, complicated, or complex. These questions span seven dimensions: the 433

condition or illness, the technology itself, the value proposition, the system of adopters, 434

the organisational setting, the broader context, and the process of embedding and 435

adaptation over time. 436

In addition to presenting the findings, this study contextualises them by comparing 437

them with other digital healthcare technologies. Various studies have applied the 438

NASSS framework across different contexts [74]. However, in LMICs the framework has 439

predominantly been used for qualitative evaluation (such as in a study of wearable 440

health monitors in Cambodia [75]), omitting quantitative assessment (simple, 441

complicated, complex). To ensure clarity and avoid ambiguities in the analysis, studies 442

were selected if they included a quantitative dimension. Short of matching studies to 443

ours, the examples include the assessment of telehealth consultations in Australia [76], 444

the adoption of digital twins in healthcare [77], and the implementation of in-hospital 445

malnutrition screening systems [78], which were all drawn from varied healthcare 446

settings. 447

4 Case Study Results 448

4.1 Training Data Analysis 449

The 2022 Challenge dataset [4] is predominantly comprised of paediatric cases and 450

reveals a noteworthy imbalance for the murmur labels. As shown in Table 2 and 3, 74% 451

of the patients manifested no heart murmurs, compared to 19% who did. In a minor 452
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portion (7%) of the instances, the murmur status remained ambiguous. The outcome 453

label was relatively balanced, with 52% of the samples being labelled normal and 48% 454

being labelled abnormal. As shown in Figure 3, the distributions of age, weight, and 455

height generally conform to expected patterns, with a few outliers (cf. Figure 3). 456

Table 2 shows a correlation between the occurrence of heart murmurs and abnormal 457

clinical outcomes. However, not all instances of abnormal outcomes can be attributed to 458

heart murmurs, suggesting that other factors also contribute. 459

BMI age 2-8

BMI age 8-14 BMI age 14-20

Fig 3. Distribution of age, weight, and height among patients in the training data
(n=942). Age groups include Neonate (from birth to 27 days); Infant (from 28 days to 1
year); Child (from 1 to 11 years); and Adolescent (from 12 to 18 years). Black lines
indicate height-to-weight combinations corresponding to the medians of the median
body mass indices (BMI) as proxy for a healthy BMI, within the 10th to 90th percentile
weight range for the three age groups [2,8), [8,14), [14,20]. Data are derived from US
sources as cited in Fryar et al. [79], owing to its availability.
Height[m] =

√
Weight[kg]/BMI.

Table 2. Murmur labels by outcome labels [n (% of column)].

Absent Unknown Present Sum

Normal 432 (62.2) 25 (36.8) 29 (16.2) 486 (51.6)
Abnormal 263 (37.8) 43 (63.2) 150 (83.4) 456 (48.4)
Sum 695 68 179 942

Table 3. Murmur labels by age [n (% of 942)].

Absent Unknown Present Sum

Neonate 4 (0.4) 1 (0.1) 1 (0.1) 6 (0.6)
Infant 76 (8.1) 25 (2.7) 25 (2.7) 126 (13.4)
Child 495 (52.6) 37 (3.9) 132 (14.0) 664 (70.5)
Adolescent 53 (5.6) 3 (0.3) 16 (1.7) 72 (7.6)
Missing 67 (7.1) 2 (0.2) 5 (0.5) 74 (7.9)
Sum 695 (73.8) 68 (7.2) 179 (19.0) 942 (100)
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4.2 Test Data Analysis 460

The multi-site evaluation used the PhysioNet 2016 Challenge data as the 461

out-of-distribution data [31,80]. The dataset is unbalanced; out of the total 3,153 462

records, only 665 (21%) are classified as abnormal, with the rest (79%) being classified 463

as normal. Gender information is available for 2,689 individuals, 8% of whom are 464

female. Age is present for 2,199 individuals, and ranges from 10 to 90 years, with an 465

average age of 30. However, only 31 records include both height and weight data. 466

Additional demographic information, such as Body Mass Index (BMI), smoking status, 467

and disease severity, are available for distinct subgroups of patients. Data on the 468

location of the recording, the patient’s condition, and diagnosed diseases are also 469

occasionally available. As shown in Figure 4, ‘Abnormal’ recordings are on average 470

significantly (p < 0.001) longer (the average length being 25.6 sec) than ‘Normal’ 471

recordings (the length of which is 21.7 sec). 472

0 20 40 60 80 100
Recording duration [sec]

0

100

200

300

400

C
ou

nt

label
Abnormal
Normal

Fig 4. Distribution of recording lengths by findings in the 2016 Challenge data
(Normal: n = 2488, average recording length = 21.7 sec; Abnormal: n = 665, average
recording length = 25.6 sec).

4.3 Model Performance Analysis 473

Table 4 and 5 present an overview of the performance metrics for the various models 474

examined in this paper. 475

For comparison, the initial model (designed for three-class murmur classification and 476

named DBRes) produced a weighted accuracy of 77.1% (placing it in 4th position) on 477

the hidden test set provided by PhysioNet. It produced only a slightly higher accuracy 478

of 78.0% when evaluated on a locally held-out, stratified subset of the data. The 479

similarity between the murmur challenge scores, obtained from the reserved portion of 480

the training set, and those of the hidden test set from PhysioNet, indicates that the test 481

approach performs consistently with similar screening campaigns. 482

When the Bayesian approximation model (BBRes) was compared with a pure 483

ResNet model (Res), a clear improvement across all reported metrics was observed (see 484

Table 4). To isolate the effect of adding dropout layers during training from that of 485

retaining them during inference in the Bayesian approach, the results were also 486

compared with a ResNet model where dropout layers were active only during training 487

(Res with dropout). The results indicate that the Bayesian approach still outperforms 488
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the approach with only dropouts. (Due to the large standard deviation across splits, 489

none of the differences proved to be statistically significant with a threshold of p<0.01.) 490

The binary models used consistently demonstrate accuracies and AUC values above 491

80% for the murmur classification. However, the performance of the outcome model is 492

markedly subpar, with an overall accuracy that fails to surpass 60% (see Table 5). For 493

context, the top ten teams in the Challenge achieved an average accuracy of 56.6% on 494

the hidden test data for the outcome task, with a standard deviation of 1.59%. 495

As illustrated in Table 6 and Table 7, both prediction tasks exhibit substantial error 496

rates, with a pronounced inclination toward false-negative assessments for the presence 497

of abnormalities. 498

Table 4. Average performance and standard deviation on ten-fold cross-validation subsets of the training set for various
murmur models. In bold best performing model. BBRes refers to binary Bayesian ResNet as described in Section 3.4. DBRes
was the original, multi-class model. Res is the counterpart of BBRes without the Bayesian adjustments.

Murmur models Acc. Present/Unknown Acc. Absent Overall Accuracy AUC

DBRes binary of multiclass prediction 0.7030 (0.1821) 0.7947 (0.0717) 0.7770 (0.0743) 0.8180 (0.1236)
Res 0.4395 (0.1739) 0.9466 (0.0714) 0.8151 (0.0749) 0.8195 (0.1194)
Res with dropout during training 0.4556 (0.2662) 0.9233 (0.0626) 0.8197 (0.0332) 0.8303 (0.0699)
BBRes 0.5033 (0.1823) 0.9563 (0.0488) 0.8408 (0.0614) 0.8430 (0.1381)
BBRes with XGBoost 0.5185 (0.1914) 0.9490 (0.0438) 0.8398 (0.0592) 0.8379 (0.0540)
BBRes with XGBoost, weighted 0.6268 (0.0838) 0.9526 (0.0199) 0.8594 (0.0239) 0.8436 (0.0426)

Table 5. Average performance and standard deviation on ten-fold cross-validation subsets of the training set for the outcome
model. BBRes refers to binary Bayesian ResNet as described in Section 3.4.

Outcome models Acc. Abnormal Acc. Normal Overall Accuracy AUC

BBRes Outcome 0.4403 (0.1042) 0.7525 (0.0893) 0.5976 (0.0653) 0.6536 (0.1041)

Table 6. Confusion matrix of the best recordings only model (BBRes), with a decision
threshold of 0.5, evaluated on one randomly selected 10% held-out set. AUC=0.915,
FNR=0.32.

True present + True unknown True absent

Pred. Present/Unknown 17 0
Pred. Absent 8 70

Table 7. Confusion matrix of the best performing, unbalanced model for the outcome
label task, using recordings only (BBRes Outcome), with a decision threshold of 0.5,
evaluated on one randomly selected 10% held-out set. AUC=0.728, FNR=0.468.

True Abnormal True Normal

Pred. Abnormal 25 10
Pred. Normal 22 38

4.4 Model Generalisability: Multi-Site Evaluation 499

Implementing a model in a practical setting requires establishing a decision threshold 500

and formulating rules based on this threshold. As demonstrated in Figure 5, the models 501

exhibit a high sensitivity to decision thresholds. Determining an optimal action point 502

(such as issuing a warning for a follow-up screening) presents a complex challenge. 503
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Striking a judicious balance among various types of errors is essential to ensure the 504

model’s reliability and effectiveness in real-world applications. (An alternative approach 505

based on ranking all predictions, rather than using a threshold, could entail directing 506

patients with the highest scores to further screenings. However, this strategy would 507

neither be fair to patients nor represent an efficient allocation of resources.) 508
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Fig 5. Accuracy, false-positive-rate (FPR), and false-negative-rate (FNR) of ‘Present’
label for different decision thresholds of the best performing binary model. We show the
negative FPR and FNR rates such that for both, the rates and the accuracy, the top of
the diagram shows the more desired output.

To investigate the stability of the model on out-of-distribution cases, the model’s 509

performance on the outcome task was evaluated with multi-site data from the 2016 510

PhysioNet Challenge [31] and the Yaseen dataset [32]. First, we trained the model on 511

the 2022 data and tested it on the 2016 data and vice versa, in a zero-shot fashion. 512

(The 2016 Challenge’s leading teams [31] reported accuracies of over 80% with 513

sensitivities and specificities of over 94% and 77% [81].) The findings, displayed in 514

Table 8, show a significant decline in performance when the models were applied to 515

out-of-distribution data, as they almost always assume them to be abnormal. While the 516

results warrant cautious interpretation as the model did not exhibit strong performance 517

on in-distribution data (cf. Table 5) and the data were sourced from different 518

populations, the findings indicate that the deployment of pre-trained models in isolation 519

is unfeasible. To achieve robust performance, one must either standardise the data 520

collection procedure or develop more resilient models, potentially through strategies 521

such as improved feature extraction. 522

Second, as the Yaseen dataset [32] is often cited for models with accuracy rates 523

exceeding 99%, we also trained and tested our model on the Yaseen dataset, resulting in 524

an accuracy of 99%. Notably, this result was achieved without any hyperparameter 525

tuning or model adjustments; it was simply trained and tested on Yaseen splits. As the 526

Yaseen data are very clean and short, this results shows the strong data dependency of 527

models. 528

4.5 Deployment Challenges - NASSS Evaluation 529

By integrating the results of the case study with those of the literature review, the 530

NASSS framework [10] was applied to evaluate the key challenges in deploying 531
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Table 8. Average accuracy overall, for abnormal class and for normal class of ten-fold
cross-validation subsets for the outcome label task, using recordings only, with a
decision threshold of 0.5. We balanced the 2016 training data by sub-sampling.

Training \Test set 2016 unbalanced 2022

2016 balanced 0.850, 0.749, 0.878 0.516, 0.979, 0.062
2022 0.238, 0.778, 0.087 0.5976, 0.4403, 0.7525

AI-supported heart murmur detection in low-income settings. Although a complete 532

evaluation of dimensions 5-7 (organisation, context, and adaptation over time) is not 533

feasible without specific knowledge of the target organisation, Figure 6 indicates that 534

the challenges in the first four dimensions are not highly complex. Regarding the first 535

dimension of NASSS (1A-B), the condition itself (cf. Section 3.5), heart murmurs 536

represent a well-understood medical condition (as described in Section 1) albeit with 537

variations in occurrence, diagnosis, and treatment across different income settings. 538

Concerning the technology (2A-D) and its adoption (4A-C), Oliveira et al. [4] 539

demonstrated that the system can function as a straightforward plug-and-play model 540

requiring minimal staff training. The primary risk identified in this study pertains to 541

the technology’s dependability across different sites, operators, and systems. Ensuring 542

standardised data collection through training and quality checks is critical. 543

Furthermore, while the technology is desirable for patients, its financial viability hinges 544

on the specific healthcare organisation within the target country (3A-B). 545

For comparison, results from other studies are presented (cf. Figure 7). These results 546

must be interpreted with caution due to differences in settings. However, they suggest 547

that although a study may be assessed as relatively straightforward in the initial 548

dimensions, it can encounter complex and complicated challenges related to the adopter 549

and the organisational system. 550

In summary, the implementation of AI-supported heart murmur detection is feasible 551

under three main conditions: the predictive models must be robust, the organisational 552

framework must facilitate a sustainable and scalable roll-out (including follow-up care 553

options for patients), and secure funding must be in place. 554

Oxford Internet Institute 5

NASSS
NASSS

1

2

3

1A 1B 2A 2B 2C 2D 3A 3B 4A 4B 4C 5A 5B 5C 5D 5E 6A 7A 7B
No evaluation possible without organisation

Condition of 
illness

Technology Value 
proposition

Adopter 
system

Organisation Adaptation 
over time

Context

Simple

Compli-
cated

Complex

Fig 6. Indicative NASSS evaluation for the deployment of heart sound recordings in
low-resource settings. (More detailed information is available in Table 9 in the
Supporting Information Section.)
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Fig 7. NASSS evaluation for various examples found in the literature from HIC
settings. Red: Digital twins in cardiovascular medicine (a direct matching to the
sub-categories was not possible) [77]; Brown: In-hospital malnutrition screening [78];
Orange: Telehealth consultation [76].

5 Discussion 555

5.1 Cardiac Auscultation 556

Cardiac auscultation offers important opportunities for cardiovascular disease screening. 557

It is a non-invasive, cost-effective, and widely accessible tool that enables primary care 558

physicians to detect abnormal heart sounds (such as murmurs) indicating conditions like 559

valve disorders or hypertrophic cardiomyopathy. This can lead to early intervention and 560

reduced morbidity and mortality. However, its limitations are notable. Accurate 561

interpretation requires considerable expertise, and even experienced practitioners may 562

struggle to differentiate between benign and pathological murmurs. Auscultation has 563

limited sensitivity and specificity compared to advanced imaging techniques like 564

echocardiography. Background noise, patient body habitus, and variations in heart 565

sounds further complicate its accuracy. Therefore, while valuable for initial screening, 566

auscultation findings often require confirmation with more sophisticated diagnostics for 567

precise diagnosis and treatment. 568

5.2 Automated Screening 569

Model summary. In this research, a deep learning technique for identifying murmurs and 570

general irregularities through the analysis of heart sound recordings and demographic 571

information was presented and evaluated. The primary approach, referred to as BBRes 572

(originally named DBRes, or Dual-Bayesian-ResNet, in previous work [7]), employed a 573

binary Bayesian ResNet50 architecture to classify murmurs based on segmented 574

spectrograms of heart audio recordings. This Bayesian model showed marked 575

improvement over a standard ResNet architecture. The extended approach integrates 576

results from BBRes with additional attributes derived from audio signals and patient 577

demographics, using XGBoost for classification. Table 4 demonstrates that 578

spectrograms are an effective data representation and, in combination with ResNet, 579

contribute significantly to predictive performance. The inclusion of demographic 580

information and signal features further improves overall accuracy. 581

Opportunities. The findings of this study underscore the potential of deep neural 582

networks to improve cardiovascular disease research by enhancing the specificity of 583

heart murmur categorisation. This advancement could significantly improve early 584

detection and diagnosis of congenital heart disease, leading to better patient outcomes. 585
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Moreover, the development of computational screening methods based on these models 586

promises to streamline diagnostic processes, reduce the need for invasive procedures, 587

and facilitate timely interventions, thereby contributing to more efficient and effective 588

healthcare delivery in cardiology. 589

Challenges. As highlighted in Section 4.3, the performance of our model, as well as 590

that of most challenge models, exhibits low accuracy in the outcome task. This 591

discrepancy is particularly striking when contrasted with results presented in recent 592

literature (cf. Section 1.3). However, the findings from existing studies [8, 9, 82] are not 593

directly comparable to the 2022 challenge. For example, the Yaseen dataset [32] (often 594

cited for models with accuracy rates exceeding 99%) features extremely short (<4 sec) 595

and clean recordings. By contrast, the challenge data include a variety of noises and 596

longer recordings. To investigate these observations further, our model was tested with 597

the Yaseen dataset, resulting in an accuracy of 99%. Notably, this result was achieved 598

without any hyperparameter tuning or model adjustments; it was simply trained and 599

tested on Yaseen splits. In a reverse experiment, the Yaseen model from Nguyen et 600

al. [82] was also tested with the challenge data. The analysis highlighted the challenges 601

in transferring AI models across different datasets in healthcare: although the model 602

from [82] exhibited exceptional performance on the Yaseen dataset, its efficacy 603

significantly diminished when applied to the 2016 challenge data. This observation is 604

critical in understanding the limitations of AI models in healthcare, where data 605

heterogeneity is common. 606

Conclusion. Consequently, the findings indicate the necessity of enhanced focus on 607

data pre-processing, cleaning, robust feature extraction, and standardisation in future 608

research. Incorporating signal quality assessment into the classification pipeline could 609

mitigate these issues. This could prove instrumental in augmenting the cross-site 610

applicability of AI models, ensuring more robust and generalisable healthcare solutions. 611

5.3 Limitations and Future Research 612

Generalisability. There were two major limitations in this research: A) The models were 613

trained exclusively on children’s data, while the out-of-distribution evaluation set 614

predominantly features adult data. B) As demonstrated throughout this paper, 615

developing a model without considering its practical deployment proves unproductive. 616

The choice of the correct loss function for optimisation is highly contingent on the 617

deployment setting, and various loss functions warrant investigation [83]. Nevertheless, 618

the insights gained from this work will likely assist in the identification of areas 619

requiring attention for successful model deployment. 620

Feature engineering. Moreover, this research adopted a methodology focused on 621

directly predicting the target variable using deep learners. This strategy yielded success 622

in the murmur task challenge by emulating the complexities of the weighted, multiclass 623

problem. However, the approach has considerable limitations, notably in model 624

robustness and interpretability. Alternative methodologies based on robust feature 625

engineering, such as segmentation, have been explored by other leading teams [84]. Such 626

robust feature engineering approaches offer potential improvements in interpretability 627

and may enhance model resilience to overfitting [85]. 628

Multimodality. Future research could investigate strategies to integrate patient 629

demographic information, signal characteristics, and BBRes outputs more effectively. 630

Additionally, multiple fusion techniques may improve model performance [86]. In this 631

research, features were fused at a relatively late stage. However, an earlier feature fusion 632

could better align with how clinicians use demographic information when interpreting 633

charts [85]. Forthcoming research will consider the types of information that steer the 634

classifier output in multimodal models and will deepen the analysis of unclear cases to 635

determine which cases benefit from specific types of information. 636
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Model improvements. Beyond multimodal approaches, there are many other possible 637

paths to explore to increase model robustness. Unsupervised Prediction Alignment 638

(UPA) can assist in maintaining model performance despite variations in data 639

acquisition conditions [87]. UPA uses ‘linear piecewise cumulative distribution 640

matching’ [87] to align model predictions with reference distributions, ensuring 641

consistent sensitivity and specificity. This approach, adapted from image processing, 642

involves matching cumulative distributions through linear interpolation. It enhances the 643

feasibility of AI model deployment in low-resource settings. The evaluation of 644

foundation models in healthcare applications remains an open area of research [88]. 645

Medical foundation models like BiomedGPT [89] and Med-PaLM M [90] have yet to be 646

tested for tasks similar to ours. Another avenue worth exploring is the replacement of 647

the Fourier method in spectrogram creation with a signature-based approach [91]. The 648

application of self-supervised learning to incorporate more domain-specific data shows 649

promise, as evidenced by a recent paper that introduced HeartBEiT, a vision-based 650

transformer model for ECG analysis [92]. HeartBEiT demonstrated significantly 651

superior performance at lower sample sizes compared to standard CNNs. For an 652

extensive overview of recent developments in heart sound analysis, the work by Ren et 653

al. [93] offers valuable insights. 654

Interpretability. Interpretable machine learning approaches to heart sound 655

classification are a promising and active area of research. One direction involves 656

techniques that highlight the most influential features of heart sound recordings in the 657

decision-making process. Examples include saliency maps [94], SHAP (SHapley 658

Additive exPlanations) values [95], and LIME (Local Interpretable Model-agnostic 659

Explanations) [96]. These techniques have shown promise in rendering AI systems more 660

transparent and understandable, thereby facilitating their adoption in cardiac 661

auscultation and other medical applications. A systematic review by Ayano et al. 662

(2022) discusses current state-of-the-art research. It highlights the importance of these 663

methods in building trust and providing evidence-based diagnoses [97]. 664

5.4 Outlook 665

For a widespread adoption of automated pre-screening technologies, such as the one 666

studied, several key factors require attention. 667

One is the implementation of a comprehensive data-mining pipeline (as shown in 668

Figure 8). Such a pipeline typically encompasses several steps: problem comprehension, 669

data understanding, data preparation, model training/fitting, evaluation, and 670

deployment (cf. CRISP-DM: [98]). The process should be regarded as cyclical rather 671

than linear to allow for continual refinement. During the initial stage of the problem 672

comprehension, an exhaustive risk assessment proves essential for successful integration 673

of deep learning into sensitive systems. This assessment must encompass the 674

identification of relevant subgroups and potential data correlations. Regular evaluations 675

and monitoring post-deployment contribute to risk minimisation and to successful 676

employment of deep learning applications in sensitive environments. 677

In addition to the aforementioned pipeline stages, there are several other key aspects 678

to consider: 679

A) The provision of a user-friendly tool that guarantees reliable data collection and 680

includes a quality check of the data, which is crucial for success (as indicated by 681

Oliveira et al. [4]). 682

B) The creation of a detailed plan for training operators to collect accurate data and 683

pre-screen patients for eligibility [4, 48]. This plan should specify the methods, 684

timing, and locations for screenings. 685
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C) The assessment of the tool’s adaptability to new environments without local 686

fine-tuning, as well as the validation of models on local, representative datasets 687

concerning population and data quality [55,99]. This should include adaptability 688

to variations in background noise and data collection devices [4]. 689

D) The establishment of a well-defined communication protocol for prediction 690

certainty [17]. 691

E) The implementation of continuous quality monitoring to facilitate timely 692

interventions should performance decline, along with the definition appropriate 693

metrics, which are fundamental for maintaining standards [13,93]. 694

F) Finally, the introduction of a clear action plan. This ensures that patients 695

understand subsequent steps and that follow-up support is assured. 696

Regarding point C, recent literature has begun to explore automated correction for 697

variations in data acquisition, such as when different hardware or software are used. 698

Unsupervised alignment methods are some of the proposed solutions to address this 699

issue [87]. 700

By synthesising the literature [16,17,35,93,100] and the findings presented above, 701

Figure 8 offers an overview of the considerations that are important for deployment. It is 702

crucial that these steps are considered not only during deployment but also throughout 703

the initial problem assessment and the entire process of data collection and modelling. 704

Data and code availability 705

The code used in this research is available in a GitHub repository [101]. The training 706

data are publicly available at 707

https://physionet.org/content/circor-heart-sound/1.0.3/ and the complete 708

collection process and data analysis of the whole dataset is described in [4]. The 2016’s 709

Challenge validation data are available under 710

https://physionet.org/content/challenge-2016/1.0.0/. 711
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Supporting Information

Table 9. Indicative NASSS evaluation for the deployment of heart sound recordings in low-resource settings (cf. [10]).

Domain Question Rating

Condition or
illness

What is the nature of the condition or ill-
ness?

1A 1 Well-characterized, well-understood, pre-
dictable

Condition or
illness

What are the relevant sociocultural factors
and comorbidities?

1B 2 Must be factored into care plan and ser-
vice model

Technology What are the key features of the technol-
ogy?

2A 2 Not yet developed or fully interoperable;
not 100% dependable

Technology What kind of knowledge does the technol-
ogy bring into play?

2B 1 Directly and transparently measures
[changes in] the condition

Technology What knowledge and/or support is required
to use the technology?

2C 1 None or a simple set of instructions

Technology What is the technology supply model? 2D 1 Generic, “plug and play” solutions requir-
ing minimal customization; easily substi-
tutable if supplier withdraws

Value proposi-
tion

What is the developer’s business case for
the technology (supply-side value)?

3A 2 Business case underdeveloped; potential
risk to investors

Value proposi-
tion

What is its desirability, efficacy, safety, and
cost effectiveness (demand-side value)?

3B 1 Technology is desirable for patients, effec-
tive, safe, and cost effective

Adopter sys-
tem

What changes in staff roles, practices, and
identities are implied?

4A 2 Existing staff must learn new skills and/or
new staff be appointed

Adopter sys-
tem

What is expected of the patient and is this
achievable by, and acceptable to them?

4B 1 Nothing

Adopter sys-
tem

What is assumed about the extended net-
work of lay caregivers?

4C 2 Assumes a caregiver will be available when
needed

Organization What is the organization’s capacity to in-
novate?

5A na na

Organization How ready is the organization for this
technology-supported change?

5B na na

Organization How easy will the adoption and funding
decision be?

5C na na

Organization What changes will be needed in team inter-
actions and routines?

5D na na

Organization What work is involved in implementation
and who will do it?

5E na na

Wider context What is the political, economic, regulatory,
professional (e.g., medicolegal), and socio-
cultural context for program rollout?

6A na na

Embedding
and adapta-
tion over time

How much scope is there for adapting and
coevolving the technology and the service
over time?

7A na na

Embedding
and adapta-
tion over time

How resilient is the organization to handling
critical events and adapting to unforeseen
eventualities?

7B na na
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