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Abstract 

Background: Increasingly large samples in genome-wide association studies (GWAS) for 

alcohol use behaviors (AUBs) have led to an influx of implicated genes, yet the clinical and 

functional understanding of these associations remains low. This is, in part, because most 

GWASs do not account for complex and varied manifestations of AUBs. This study applied a 

multidimensional framework to investigate the latent genetic structure underlying 

heterogeneous dimensions of AUBs.  

Methods: Multi-modal assessments (self-report, interview, electronic health records) were 

obtained from approximately 400,000 UK Biobank participants. GWAS was conducted for 

18 distinct AUBs, including consumption, drinking patterns, alcohol problems, and clinical 

sequelae. Latent genetic factors were identified and carried forward to GWAS using genomic 

structural equation modeling, followed by functional annotation, genetic correlation, and 

enrichment analyses to interpret the genetic associations. 

Results: Four latent factors were identified: Problems, Consumption, BeerPref (declining 

alcohol consumption with a preference for drinking beer), and AtypicalPref (drinking 

fortified wine and spirits). The latent factors were moderately correlated (rg= .12-.57) and 

had distinct patterns of associations, with BeerPref in particular implicating many novel 

genomic regions. Patterns of regional and cell type specific gene expression in the brain also 

differed between the latent factors. 

Conclusion: Deep phenotyping and multi-modal assessment is an important next step to 

improve understanding of the genetic etiology of AUBs, in addition to increasing sample 

size. Further effort is required to uncover the genetic heterogeneity underlying AUBs using 

methods that account for their complex, multidimensional nature. 

Keywords: alcohol, GWAS, item-level, genomic structural equation modelling, heterogeneity 
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Introduction 

Alcohol use behaviors (AUBs) encompass a broad spectrum of normative and 

problematic activities related to the consumption of alcohol which, collectively, have an 

enormous impact on human health and well-being (World Health Organization, 2018). While 

drinking is a clear prerequisite for developing alcohol-related problems, there are important 

distinctions between different dimensions of AUBs, such as quantity and patterns of 

consumption, acute episodic (binge) drinking, and problematic alcohol use (PAU). PAU itself 

describes a variety of risky or maladaptive drinking behaviors that may merit a clinical 

diagnosis of alcohol use disorder (AUD).  

Although AUBs have varying clinical and epidemiological correlates (Gunn, Finn, 

Endres, Gerst, & Spinola, 2013; Savage & Dick, 2023; Smith, Shevlin, Murphy, & Houston, 

2010), all of its diverse forms have a substantial heritable component, with twin studies 

suggesting that genetics account for approximately 40-60% of individual differences (Dick, 

Meyers, Rose, Kaprio, & Kendler, 2011; Verhulst, Neale, & Kendler, 2015). Large-scale 

genome-wide association studies (GWASs) have begun to yield success in identifying the 

specific genes underlying the heritability of AUBs (Deak & Johnson, 2021), particularly for 

normative drinking (Liu et al., 2019; Mallard et al., 2022) and PAU (Zhou et al., 2023; Zhou 

et al., 2020).  

In recent years, the foremost strategy for GWAS has centered on increasing sample 

sizes to boost statistical power, aiming to detect genetic variants with subtle effects. This 

perspective has often prompted researchers to prioritize studying phenotypes that have been 

measured in large samples, even if the available phenotypic measures are shallow or 

unidimensional. This strategy has proven successful at increasing the number of variants and 

genomic loci associated with AUBs (Gelernter et al., 2019; Kranzler et al., 2019; Liu et al., 

2019; Sanchez-Roige et al., 2019; Walters et al., 2018; Zhou et al., 2023; Zhou et al., 2020), 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.23300537doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.26.23300537
http://creativecommons.org/licenses/by-nc-nd/4.0/


GENETIC DIMENSIONS OF ALCOHOL USE BEHAVIORS  6

but it has proven challenging to advance clinical or functional understanding of these 

statistical associations. For example, in comparison with the single significant locus found in 

a GWAS of alcohol dependence (AD) in approximately 50,000 individuals (Walters et al., 

2018), a GWAS of PAU in over 400,000 individuals (Zhou et al., 2020) increased the number 

of associated risk loci to 29. However, the increase in accuracy of out-of-sample prediction of 

AD/AUD was only modest (0.5% - 1.7% from Walters et al. versus 0.8% - 2% from Zhou et 

al.). Further increasing the PAU sample size to over 1 million individuals resulted in 110 

associated loci (Zhou et al., 2023), but this gain did not translate into improved predictive 

accuracy (0.15%) or immediately actionable biological insights.  

 These findings point to diminishing returns on ever-larger sample size investments for 

the unidimensional AUBs typically studied with GWAS (i.e., binary AUD diagnostic status 

or overall consumption quantity). While the reasoning for focusing on such phenotypes can 

be understood through the lens of increasing statistical power, numerous twin and molecular 

studies have provided evidence for a distinct genetic architecture both within and between 

dimensions of AUBs (Dick et al., 2011; Kendler, Aggen, Prescott, Crabbe, & Neale, 2012; 

Sanchez-Roige et al., 2019). It is plausible that when genetically heterogeneous measures are 

combined together, the association of individual variants becomes diluted, leading to smaller 

and more uncertain effect sizes (which can be identified with sufficient statistical power) and 

less accurate individual-level prediction. Approaches to account for heterogeneity, such as 

item-level genetic analysis, have demonstrated that gene identification and interpretation can 

be improved by sharpening the resolution of the AUB outcomes under investigation (Mallard 

et al., 2022). However, few well-powered studies have applied such approaches to the diverse 

spectrum of AUBs, particularly for measures of alcohol-related problems that are of most 

clinical relevance. In the current study, we carried out a multimodal, multidimensional 

analysis of a broad set of AUBs derived from a large biobank sample, most of which have not 
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been targeted in prior GWAS investigations. We used structural equation modeling and 

bioinformatic tools to carve out the boundaries of the genetic architecture underlying 

numerous AUBs and to characterize the shared and unique genetic influences across these 

dimensions.   

Methods 

Sample 

Data was drawn from the UK Biobank (UKB) (Bycroft et al., 2018), a population-

based sample of approximately 500,000 adults from the UK with self-report surveys, linked 

electronic health records from the national health registry databases (accessed April 19, 

2022), and genotypic data from imputed genome-wide microarrays. The National Research 

Ethics Service Committee North West–Haydock ethically approved this initiative (reference 

11/NW/0382) and participants provided informed written consent. Data were accessed under 

application #16406.  

Univariate GWAS of AUBs 

Catalogs of all available data were searched manually to identify fields related to 

alcohol use (e.g., consumption habits), problems (e.g., AUD diagnoses), and alcohol-related 

sequelae (e.g., cirrhosis). A total of 36 phenotypes was obtained after extracting the data and 

combining clinical (ICD/READ) diagnostic codes for similar domains, as summarized in 

Table S1. Univariate GWAS was conducted on each phenotype in up to 386,971 unrelated 

individuals of European (EUR) ancestry (Table 1), using either linear or logistic regression in 

PLINK v2.00 (Chang et al., 2015). Self-reported biological sex, age, genotyping array, and 

20 within-ancestry principal components were included as covariates. Full details of the 

genotyping, quality control, and analysis pipeline have been described previously (Savage et 

al., 2018). We used linkage disequilibrium score regression (LDSCv1.0.1) (Bulik-Sullivan et 

al., 2015) to estimate heritability (h2
SNP) and calculate genetic correlations (rg) between 
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phenotypes. We used default software settings for LDSC analyses and included individuals of 

matching ancestry from the 1000 Genomes Consortium phase 3v5 (1000 Genomes Project 

Consortium et al., 2015) as an LD reference panel. Phenotypes with non-calculable or low 

h2
SNP (Z-score < 3) were excluded from further analysis (Table S2), resulting in a final set of 

18 AUBs, summarized in Table 1. 

Structural equation modelling 

To empirically model the genetic structure of AUBs, we conducted genomic structural 

equation modelling (gSEM) on the genetic correlations between the 18 phenotypes using the 

GenomicSEM package v0.0.5 (Grotzinger et al., 2019) in R v4.2.2 (R Core Team, 2017). The 

sampling covariance matrix was smoothed using the nearPD function with a tolerance of 1e-

08. We used the psych package (Revelle, 2022) to conduct exploratory factor analysis (EFA) 

with varimax rotation and the GenomicSEM package to conduct confirmatory factor analysis 

(CFA) based on the EFA results. In the CFA models, indicators were retained for each factor 

with a loading ≥ 0.4, or for the factor with the highest loading if loadings were < 0.4 on all 

factors. The best CFA model was chosen based on interpretability and fit statistics of 1- to 5-

class factor solutions, including the comparative fit index (CFI; values > .9 indicating good 

fit) and the standardized root mean square residual (SRMR; values < .08 indicating good fit).  

Genetic correlations 

 gSEM was also used to provide external validation of the latent factors by examining 

their genetic correlation with a variety of psychiatric, neurocognitive, physiological, and 

socioeconomic phenotypes from previous well-powered GWASs. The best-fitting gSEM 

model was modified to include each external phenotype as a predictor of the latent factors. 

Consistency of the genetic correlation was tested by constraining the coefficient to equality 

across latent factors and comparing the change in model χ2. Heterogeneity (QTrait) tests were 
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used to test whether the observed genetic correlations were consistent across factor 

indicators. 

Multivariate latent factor GWAS  

 GWAS of each of the latent factors from the best-fitting model was conducted with 

gSEM, which uses the genetic covariance between items to identify the effects of single 

nucleotide polymorphisms (SNPs) on the latent factor(s). Heterogeneity (QSNP) tests were 

performed to investigate whether each SNP showed a consistent effect across all indicators of 

a latent trait, and gene-based tests of the QSNP statistics indicated whether heterogeneous 

effects clustered within genes. We used multiple downstream in silico approaches to interpret 

the GWAS results of each of the AUB latent factors, including FUMA (Watanabe, Taskesen, 

van Bochoven, & Posthuma, 2017) to define the associated genomic loci and prioritize 

implicated genes, MAGMA (de Leeuw, Mooij, Heskes, & Posthuma, 2015) to aggregate the 

association statistics for individual SNPs into tests of enrichment within protein-coding 

genes, and a combination of FUMA, MAGMA, and CELLECT (Timshel, Thompson, & Pers, 

2020) to test enrichment of association in specific tissues and brain cell types. Full details of 

these analyses are in the Supplementary Methods. 

Trans-ancestry extension 

 To examine the generalizability of the EUR latent factor model, we extended the 

latent factor gSEM model to the UKB African (AFR; n=7,827) and South Asian (SAS; 

n=9,645) ancestry subgroups. We ran the same univariate GWASs and genetic correlations in 

unrelated individuals from each ancestral group, using the corresponding 1000 Genomes 

ancestry reference panel. We applied gSEM as above, but using the best-fitting EUR model 

to designate the number of factors and sets of items loading on each factor. Although sample 

sizes for these groups are small, trans-ancestry analyses are sorely lacking in the psychiatric 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.23300537doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.26.23300537
http://creativecommons.org/licenses/by-nc-nd/4.0/


GENETIC DIMENSIONS OF ALCOHOL USE BEHAVIORS  10

genetics field and there is a critical need to determine the extent to which genetic findings 

(primarily in EUR samples) are generalizable across population groups. 

Out-of-sample predictions 

 We derived polygenic scores (PGS) for the latent AUB factors using PRS-CS “auto” 

version (Ge, Chen, Ni, Feng, & Smoller, 2019) in three independent samples: 7,353 

individuals from the Collaborative Study on the Genetics of Alcoholism (COGA) study 

(Begleiter & Reich, 1995), and individuals from two hospital-based biobanks in the US, 

Vanderbilt University Medical Center (BioVU, n=72,824) and Mass General Brigham 

(MGBB, n=30,201). PGSs were used individually to predict AUD diagnoses and severity, 

and in a phenome-wide association (PheWAS) to broadly characterize their association with 

an array of medical conditions (Supplementary Methods).  

Results 

Univariate GWAS 

Univariate GWASs were conducted on 18 AUBs (Table 1; Table S1). Virtually all 

traits showed significant associations with ethanol metabolizing enzyme genes on 

chromosome 4 (Figure S1). All traits had significant h2
SNP estimates, ranging from 0.5% to 

14.8%, with mean χ2 statistics of 1.037-1.633 (Table S2). The LD score regression intercepts 

(1.004 – 1.095) indicated that inflation is attributable to polygenicity rather than spurious 

confounding. The genetic correlations varied among traits (rg = -.826 to .887; Table S3). 

Structural equation modelling 

 EFA was performed on the genetic correlation matrix with 1- to 5-factor solutions 

(Table S4). Comparison indices of the CFA (Table 2) showed that a 4-factor solution 

provided the best fit, with 77% of the variance explained in the EFA. Although the EFA 

indicated an orthogonal solution, allowing for correlations between the latent factors 

improved the fit and the 4-factor oblique model produced acceptable fit indices (CFI = 0.982, 
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SRMR = 0.088). In the 5-factor EFA, the variance explained did not increase beyond 77% 

and only a single item loaded onto the fifth factor, with the CFA failing to converge due to 

the sparsity of indicators. For these reasons, we selected the 4-factor model (Figure 1, Table 

S5). Although some factor loadings dropped below 0.4, removing these indicators 

substantially decreased fit (CFI = 0.843, SRMR = 0.263), so they were retained in the final 

model. 

 Factor 1 (Problems) seemed to capture alcohol-related problems, with strong loadings 

for items related to misuse: binge drinking and problematic consequences of alcohol use as 

measured via self-reported questionnaires (AUDIT problems scale scores; AUDIT-P) and 

clinical diagnoses. Factor 2 (BeerPref) reflected a pattern of drinking without meals and 

drinking beer, specifically, but not other types of alcohol. This factor also indexed some 

alcohol-related problems, such as receiving advice from a doctor to reduce drinking and 

experiencing clinically significant consequences, but these went in hand with a pattern of 

decreasing drinking in the past 10 years. Factor 3 (Consumption) primarily represented 

consumption, with strong loadings on AUDIT consumption scale scores (AUDIT-C), overall 

frequency and quantity of both wine and beer, and weak loadings on binge drinking and 

AUDIT-P. Finally, Factor 4 (AtypicalPref) captured drinking uncommon types of alcohol, 

such as fortified wine and spirits, with a weaker loading on AUDIT-C. 

Genetic correlations 

 Genetic correlations between the four factors and an array of external phenotypes are 

presented in Figure 2 and Table S6. As expected, the strongest correlations were observed 

for measures of alcohol use or problems, which were consistently positively genetically 

correlated with Problems (rg > .65) but varied across other factors. For example, the 

magnitude of the genetic correlation with AD was significantly (P < 5.55 × 10-49) higher for 

BeerPref (rg = .56) than for Consumption and AtypicalPref (rg = .17-.29), while the 
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magnitude of genetic correlation with AUDIT total scores was significantly (P < 8.85 × 10-20) 

higher for Consumption (rg = .85) than all other factors (rg = .09-.62). Problems, BeerPref, 

and AtypicalPref had similar general patterns of correlations with most neuropsychiatric and 

anthropometric phenotypes, but BeerPref showed the strongest correlations with cognitive 

ability, body size measures, smoking behaviors, and neuropsychiatric outcomes like ADHD 

and insomnia. For most phenotypes, Consumption displayed a pattern of correlations opposite 

that of the other factors, generally being correlated with better physical and mental health. 

QTrait analyses (Table S6) indicated that, despite the high factor loadings, there was 

heterogeneity across the factor indicators in the genetic correlations with approximately one-

third of the external phenotypes for AtypicalPref, half for Problems and Consumption, and 

nearly all external phenotypes for BeerPref. 

Multivariate latent factor GWAS  

 Manhattan plots from the GWASs of these four latent factors are shown in Figure 3. 

Genome-wide independent loci (r2 < .6) are described in Table S7 and the genes implicated 

by the GWAS results are in Table S8 and S9. A total of 95 distinct loci were found, which 

partially overlapped across factors (Figure S2). Of those, 50 loci did not overlap regions 

previously associated with unidimensional AUBs (Supplementary Methods).  

Definition and comparison of genomic risk loci 

 For Problems, there were 11 significant loci (Figure 3a), including one novel locus 

on chromosome 1 containing the gene RASAL2 (chr1:178037791-178449842, P = 4.55 × 10-

8). The strongest signals came from the ADH1B (P = 7.99 × 10-47) and KLB (P = 5.47 × 10-16) 

gene regions on chromosome 4 (Table S7). Heterogeneity (QSNP) analyses (Figure S3) 

identified ten genomic regions in which the SNP effects were indicator-specific, most 

strongly the ADH1B locus on chromosome 4 (rs1229984; P = 5.19 × 10-35), and a variant 

downstream of SERTAD2 on chromosome 2 (rs7574806; P = 4.49 × 10-53). MAGMA gene-
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based tests indicated that only the gene CNTNAP5 showed aggregate evidence of 

heterogeneity in SNP effects between Problems-related AUBs (Figure S4). 

 For BeerPref, there were 45 significant loci (Figure 3b, Table S7), of which 32 were 

novel and 6 overlapped the other factors (Figure S2). Surprisingly, SNPs in the ADH and 

KLB gene regions on chromosome 4 did not show evidence of association. Instead, novel loci 

included genes such as BARHL2 (BarH like homeobox 2) and TTLL11 (tubulin tyrosine 

ligase like 11), and strong signal was found in previously identified AUB loci containing 

calmodulin-related genes (CAMKV, CAMKMT). QSNP tests showed evidence of heterogeneity 

at 167 loci, most strongly ADH1B (Figure S3), as well as other genes with strong links to 

AUBs in the current and previous studies, such as CADM2, KLB, STH, FTO, FUT2, and 

GCKR (Figure S4). 

 For Consumption, there were 54 significant loci (Figure 3c; Table S7), 18 of which 

were novel and 12 overlapped with other factors (Figure S2). The strongest signals were 

overlapping the ADH1B (P = 6.19 × 10-69) and KLB (P = 3.48 × 10-47) genes on chromosome 

4 and the GCKR gene on chromosome 2 (P = 2.23 × 10-47). Top novel loci included an 

intergenic region on chromosome 6 (P = 1.40 × 10-14) and a region including NPC1 on 

chromosome 18 (P = 3.33 × 10-17), an intracellular cholesterol transporter that was also 

identified in a recent GWAS of multidimensional AUB patterns in the UK Biobank (Thijssen 

et al., 2023), but not consumption/PAU. QSNP tests showed extensive heterogeneity of SNP 

associations across the genome (Figure S3), particularly in genes that were prioritized as top 

candidates for BeerPref, such as CAMKV, CAMKMT, ELOVL7, and TRAIP (Figure S4).   

 For AtypicalPref, there was one significant locus on chromosome 3 (chr3:48564209-

50552866, Figure 3d, Table S7), which overlapped numerous genes and was also associated 

with BeerPref, Consumption, and PAU (Zhou et al., 2023). Previous alcohol-related loci such 

as the ADH gene cluster were not significant, although the overall GWAS association signal 
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was low. QSNP analyses showed heterogeneity within ADH1B and one locus on chromosome 

8 overlapping the genes TSNARE and BAI1. 

Gene prioritization 

Combining four gene-mapping strategies (SNP-based positional, eQTL, and 

chromatin interaction mapping, and a significant gene-based association; Tables S8-S9), 

there were 19 prioritized genes for Problems, 54 for BeerPref, 88 for Consumption, and 22 

for AtypicalPref (Table S10). These sets of prioritized genes were enriched in numerous 

previously reported GWAS catalog associations (Table S11). For Problems, these included 

neuropsychiatric phenotypes such as PAU, neuroticism and Alzheimer’s disease, as well as 

anthropometric measures. Prioritized genes for BeerPref, Consumption, and AtypicalPref 

were enriched for association with phenotypes related to cognition, anthropometrics, brain 

volume, sleep habits, and social habits (Table S11), as well as autoimmune disorders such as 

ulcerative colitis and Crohn’s disease for AtypicalPref. Prioritized genes for Consumption 

also were enriched for expression in the left ventricle of the heart (P = 1.32 × 10-4) and in 

middle adulthood (P = .004). No other tissue, developmental stage, or gene ontology set was 

significantly enriched for the other factors.  

Gene-set enrichment 

Gene-set analysis was also conducted to investigate enrichment of the SNP-based 

GWAS association signal in aggregate. For Problems there was a significant enrichment in 

genes highly expressed in the cerebellum and cerebellar hemisphere, and genes with specific 

expression in the putamen and caudate (Table S12, Figure S5). For BeerPref, there was 

broad enrichment in genes expressed across all 13 brain regions (P < 2.47 × 10-5), although 

not in genes whose expression was specific to any brain region. For Consumption, there was 

enrichment in genes with both high average and region-specific expression in 5 brain regions 

(cerebellum, cerebellar hemisphere, cortex, frontal cortex, anterior cingulate cortex), in 
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addition to genes with high but not specific expression in the nucleus accumbens, amygdala, 

caudate, hippocampus, and hypothalamus. For AtypicalPref, there was enrichment in genes 

highly expressed in the cerebellar hemisphere, cerebellum, anterior cingulate cortex, 

hypothalamus, frontal cortex, caudate, and cortex, and in genes specific to the anterior 

cingulate and frontal cortex. Overall, the associations from the four latent factor GWASs 

pointed to genes with functions throughout the brain, and specific regions seem important for 

all factors except BeerPref (cortical regions for Consumption and AtypicalPref, subcortical 

for Problems). 

Gene-set analysis of developmental stage-specific gene expression indicated that, for 

BeerPref, there was enrichment of association signal in genes expressed in early-/mid-

prenatal development (P = .003) (Table S12). There was no significant enrichment in 

developmental stages for any of the other factors, or in any gene ontology sets. 

Cell type-specific enrichment 

Cell type-specific analysis (Supplementary Methods) showed a reliable enrichment 

of SNP association signal for Problems in genes expressed in excitatory and inhibitory 

neurons, particularly upper-layer intratelencephalic neurons in the cortex and medium spiny 

neurons in the cerebral nuclei (Table S13, Figure S6). No specific cell types were identified 

for BeerPref. For Consumption, excitatory neurons (deep and upper layer interatelencephalic, 

upper rhombic lip, and amygdala) were reliably enriched for GWAS association signal, as 

were upper layer intratelencephalic excitatory neurons for AtypicalPref. 

Trans-ancestry extension 

 Factor models within two ancestral groups (AFR, SAS) of the same cohort showed a 

poor fit to the data (AFR: CFI = .680, SMR = .349; SAS: CFI = .910, SRMR = .261; Table 

S14). The sample sizes for these ancestry groups were small and, consequently, the estimates 

of the genetic correlations were unreliable.  
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Out-of-sample validation 

PGS analyses in COGA (N = 7,353; mean age [SD] = 37.4 [14.5]; 52.7% female, 

Table S15) demonstrated that each of the latent factors captured genetic risk relevant to 

clinically diagnosed AUD (Figure 4a, left). The four factors captured 1.8%, 1.5%, 0.9%, and 

0.3% of the variance in AUD, respectively (3.0% in total). AtypicalPref failed to capture 

significant variance in AUD status after accounting for the other factors (Figure 4a, center). 

PGS of Problems, BeerPref, and Consumption significantly predicted AUD even after 

accounting for PGS based on a previous AUD GWAS (Figure 4a, right), indicating that these 

multimodal/multidimensional measures capture relevant genetic risk that is partially 

independent of unidimensional measures such as AUD. BeerPref and Consumption were 

predictive of the full spectrum of AUD severity (mild, moderate, severe), while Problems 

was better able to discriminate severe AUD (Figure 4b).  

In the PheWAS analysis in BioVU (Table S15, Figure S7), PGS of Problems was 

most predictive of alcohol and other substance use disorders as well as mood and anxiety 

disorders, while BeerPref and AtypicalPref most strongly predicted tobacco use and 

respiratory disorders. Consumption was associated with lower risk for cardiovascular 

disorders, diabetes, and obesity. In the MGBB PheWAS (Table S16, Figure S8), all factor 

PGSs were associated with higher risk of alcohol, substance use, mood, anxiety, and 

respiratory disorders. BeerPref showed particularly strong associations with tobacco use 

disorder and PTSD, while Consumption did not predict lower risk of health conditions in this 

sample. 

Discussion 

 In this study we demonstrated that by increasing the resolution of alcohol-related 

phenotypes, we can improve power for gene discovery and uncover previously unobserved 

genetic signal relevant to clinical alcohol outcomes. Structural equation modelling and 
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multimodal, multivariate GWAS in a large, population-based sample revealed four latent 

genetic factors underlying different dimensions of AUBs. These factors in turn were 

associated with overlapping as well as partially distinct regions of the genome, including 50 

that were not identified in prior GWAS of unidimensional AUBs, and which were linked to 

different profiles of genes, tissues, and cell types.  

The structure of the four-factor model is consistent with previous item-level analyses 

demonstrating a genetic distinction between alcohol problems and alcohol consumption 

(Kranzler et al., 2019; Mallard et al., 2022; Sanchez-Roige, Palmer, & Clarke, 2020; 

Sanchez-Roige et al., 2019; Zhou et al., 2020). These two dimensions appeared to be indexed 

by the latent factors of Problems and Consumption, respectively, with Consumption also 

replicating a known pattern of genetic correlations between higher consumption and better 

health outcomes that is likely confounded by socioeconomic status. This may also reflect 

specific characteristics of this sample such as the known healthy volunteer bias present 

among participants (Fry et al., 2017), “non-healthy” volunteer bias found in hospital-based 

biobanks (Feng et al., 2023), as well as possible misreport bias (Xue et al., 2021). Although 

this confounding was attenuated in previous item-level analyses by separating the unique 

genetic influences on drinking frequency from drinking quantity (Mallard et al., 2022), the 

current results suggest that other facets of drinking behaviors, such as the quantity of specific 

types of alcohol, are influenced by similar confounding processes.  

By modeling understudied AUBs, we found evidence of two additional latent factors 

not seen in previous genetic studies. BeerPref appeared to index a number of alcohol-related 

problems, a pattern of drinking with a specific preference for beer and drinking without 

meals, alongside (responding to) a doctor’s advice to reduce drinking. The negative genetic 

correlation between BeerPref and Consumption, despite both being positively correlated with 

measures of alcohol use and problems, suggests that these may be capturing distinct risk 
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trajectories with different environmental and sociocultural influences on AUBs. BeerPref 

may also represent genetic risk that is more malleable to intervention, given that it was 

associated with both receiving advice from a health care practitioner to reduce drinking and a 

self-reported decrease in recent drinking habits (although the causality between the two 

cannot be established here). This factor may capture genetic risk for recovering and/or 

subthreshold AUD – for example, individuals who may have met diagnostic criteria earlier in 

life but did receive a diagnosis at the time, or who experience related health problems that 

spur a reduction in drinking (Dao et al., 2021). Genetic risk for such individuals may not be 

adequately captured in consumption GWASs as current levels of consumption may be lower 

than during problematic drinking period(s) at other life stages. This issue highlights the need 

for longitudinal measurement collection to capture dynamic lifelong patterns of AUB, 

especially given the potential for such changes to bias genetic associations (Xue et al., 2021). 

Finally, the AtypicalPref factor seemed to index consumption of atypical alcoholic beverages 

such as spirits and fortified wine but was not a very genetically informative factor, likely due 

to the low prevalence of endorsement of these phenotypes in this cohort. 

 The extent to which these factors, or individual phenotypes from them, can be used in 

personalized medicine requires further investigation. There is some support from previous 

studies that a preference for drinking beer and/or spirits is associated with AUD and overall 

poorer health outcomes (Niemelä et al., 2022; Smart, 1996). However, these patterns of 

beverage preferences are extremely difficult to disentangle from confounding socioeconomic 

and lifestyle factors (Paschall & Lipton, 2005; Sluik, van Lee, Geelen, & Feskens, 2014). 

Still, the differential pattern of genetic associations and correlations displayed by the latent 

factors suggests that beverage preference and habitual patterns of use may be useful indices 

to identify individuals with different types of risk, even if the causal processes underlying 

those differences are not yet fully understood. We note that the relevance of different AUBs 
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may be specific to the particular sociocultural context within the UKB European ancestry 

sample, and other behaviors besides beverage preference may be more relevant to genetic 

studies in different contexts. 

 These results suggest that partially distinct genetic factors underlie different AUB 

dimensions. Although there was moderate genetic overlap across factors, the Problems and 

Consumption GWASs largely identified genomic loci with known associations, whereas the 

BeerPref factor identified primarily novel loci. Including more diverse measures of alcohol 

use/misuse did also boost gene discovery, as novel loci were also identified for both 

Problems and Consumption. Notably, one novel locus for Problems overlaps the gene 

RASAL2, which is also the only gene in this locus mapped by all 4 methods. RASAL2’s 

protein contains a domain of GTPase-activating proteins which activate Ras, and this gene is 

involved in response to glucose and has previously been linked to body size and body fat 

measures, asthma, and the AUDIT item of experiencing memory loss due to drinking 

(Watanabe et al., 2019). These results highlight RASAL2 as a candidate for alcohol problems 

that is not shared with other dimensions of AUBs.  

Although further experimental investigations are needed, results indicate that some 

tissues and cell types (cerebellum, cortex, excitatory neurons) are broadly involved across 

multiple dimensions of AUBs, while others are more specific in their associations (e.g., 

caudate, putamen, and inhibitory neurons in alcohol problems). The distinct pattern of 

enrichment seen for BeerPref, with broad associations in brain tissues but no specific regions 

or cell types, suggests that this latent factor differs qualitatively from other AUBs and merits 

further investigation. QSNP and QTrait analyses indicate substantial heterogeneity across 

specific measures, especially within BeerPref and Consumption factors, which may also be 

relevant to individual risk and resilience.  
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In summary, we have identified multiple distinct genetic factors underlying AUBs, 

which are both correlated with and predictive of clinically relevant alcohol outcomes. Our 

analyses provide a large set of prioritized candidate genes for functional follow-up, as well as 

insight into the genetic architecture of different dimensions of AUBs. Although future 

research is needed to derive further insight into the biological interpretation of these 

dimensions, particularly across diverse ancestral groups, our results highlight the promise of 

deep phenotyping and multimodal, multidimensional assessment to aid our understanding of 

the etiology of alcohol use behaviors.  
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Tables 

Table 1. Summary of univariate AUB GWAS phenotypes included in the genetic factor 
models. 

Item 
N (Ncase / 
Ncontrol)  Brief description h2

SNP 
abuse 6,673 / 380,288 Harmful/risky use or non-dependent abuse 0.008 

advice 34,834 / 35,2137 Received counseling or advice from medical 
practitioner about alcohol use 

0.004 

anyclin 50,290 / 336,671 Any clinically significant medical event/code 
related to alcohol misuse  

0.011 

auditc_ln 45,435 AUDIT-C sum score from medical records (ln+1 
transformed) 

0.035 

broad_aud 8,106 / 378,855 Broad AUD definition from medical records + self-
report of addiction  

0.013 

decreasedrink 163,592 / 140,368 Drinking has decreased over the past 10 years 0.040 

drink_w_meals 135,440 / 62,320 Typically consume alcohol with meals vs. not 0.100 

drinkfreq 360,728 Typical number of drinking days per month 0.080 

increasedrink 60,522 / 141,228 Drinking has increased over the past 10 years 0.028 

mh_auditp 126,731 AUDIT-P sum score from mental health survey  0.045 

mh_binge_ln 120,422 Typical number of binge drinking days per month 
(ln+1 transformed) 

0.055 

pershistory 54,253 / 332,708 Personal history of alcoholism 0.032 

quant_ts_gp 333,063 Typical quantity (gm EtOH) consumed per month 0.073 

quantbeer 303,569 Typical quantity of beer per month 0.057 

quantfwine 303,536 Typical quantity of fortified wine per month 0.012 

quantrwine 303,004 Typical quantity of red wine per month 0.064 

quantspirit 302,588 Typical quantity of spirits per month 0.032 

quantwwine 302,776 Typical quantity of white wine per month 0.036 

Note: Full descriptions of the phenotypes can be found in Tables S1 and S2. h2
SNP is 

presented on the observed scale. 
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Table 2. Comparison of model fit indices from confirmatory factor analysis of the genetic 
correlation structure of alcohol-related items. 
 
Factors Chi-square df P AIC CFI SRMR Factor Correlation 

1 244107.20 135 <.0001 244179.20 0.545 0.253 n/a 

2 28165.26 128 <.0001 28251.26 0.948 0.133 Oblique 

2 36863.94 129 <.0001 36947.94 0.932 0.137 Orthogonal 

3 13120.84 125 <.0001 13212.84 0.976 0.137 Oblique 

3 44967.81 112 <.0001 45049.81 0.750 0.204 Orthogonal 

4 9507.76 120 <.0001 9609.76 0.982 0.088 Oblique 

4 69439.97 126 <.0001 69529.97 0.871 0.212 Orthogonal 

Note: *Results from the 5-factor model are not shown because this model was not identified due to the 
single item loading on factor 5. 
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Figures 
 
Figure 1. Genetic factor structure of alcohol use behavior phenotypes from the best-fitting 
model. 
 

 
Note: Standardized factor loadings are presented. Correlations between latent factors shown in the 
inset. Full model results shown in Table S5. 
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Figure 2. Genetic correlations between the latent factors and external phenotypes. 
 

 
Note: Results are shown only for significant correlations after correction for 46 correlated 
phenotypes (p < .001). 
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Figure 3. Manhattan plots of the latent factor genome-wide association (GWAS) results. 

 
Note: Results are shown for the four factors represented in Figure 1: a) Problems, b) BeerPref, c) Consumption, and d) AtypicalPref. The dashed line shows 
the Bonferroni-corrected level of significance (p < 5 × 10-8) and the nearest gene is shown for the top locus on each chromosome. Novel loci not identified in 
previous GWAS of alcohol-related phenotypes are shown in green.  
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Figure 4. Polygenic score (PGS) prediction of alcohol use disorder (AUD) in an independent 
sample. 
 

 
 
Note: Polygenic scores were derived from the four latent genetic factors represented in Figure 1, as 
well as a separate GWAS of unidimensional AUD diagnoses (Zhou et al., 2020). (a) Odds ratios 
(ORs) shown for independent and joint prediction of AUD case/control status by the 5 PGSs. (b) ORs 
shown for the joint prediction of AUD severity by the 4 latent genetic factor PGSs. 
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