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Abstract 

Neuroimaging and machine learning are opening up new opportunities in studying biological 
aging mechanisms. In this field, ‘brain age gap’ has emerged as promising MRI-based biomarker 
quantifying the deviation between an individual’s biological and chronological age of the brain 
– an indicator of accelerated/decelerated aging. Here, we investigated the genetic architecture 
of brain age gap and its relationships with over 1,000 health traits. Genome-wide analyses in 
32,634 UK Biobank individuals unveiled a 30% SNP-based heritability and highlighted 25 
associated loci. Of these, 23 showed sign-consistency and 16 replicated in another 7,259 
individuals. The leading locus encompasses MAPT, encoding the tau protein central to 
Alzheimer's disease. Genetic correlations revealed relationships with various mental health 
(depression), physical health (diabetes), and socioeconomic variables (education). Mendelian 
Randomization indicated a causal role of enhanced blood pressure on accelerated brain aging. 
This work refines our understanding of genetically modulated brain aging and its implications 
for human health. 
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Main 1 

Aging is an intricate biological phenomenon inherent to most living organisms.1–3 With extended 2 

human lifespans and the rapid pace of global demographic aging, age-related disabilities 3 

including neurodegenerative disorders such as dementia are on the rise.4 Understanding the 4 

biological mechanisms of aging is thus an urgent priority for health and social systems, to sustain 5 

longer lives with reduced periods of disability. 6 

The use of neuroimaging methods in conjunction with machine learning has become a 7 

promising avenue in biomedical research to capture an individual’s biological age, with particular 8 

emphasis put on ‘brain age’.5,6 Brain age is typically assessed by training an age prediction model 9 

on in-vivo MRI data from a normative lifespan sample. This model is then applied to MRI data 10 

of unseen individuals to predict their age. The discrepancy between an individual’s brain-11 

predicted and chronological age is termed ‘brain age gap’ (BAG), and is used to draw inferences 12 

on typical and atypical aging trajectories.6,7 13 

A positive BAG (interpreted as accelerated aging) has been linked to reduced mental and 14 

physical fitness;5 including weaker grip strength, higher blood pressure, diabetes, adverse 15 

drinking and smoking behavior, poorer cognitive abilities, and depressive symptoms.8–13 16 

Enhanced BAG is also evident in neurological and psychiatric disorders such as Alzheimer’s 17 

disease, schizophrenia, and bipolar disorder.14,15 While previous genetic studies suggest that BAG 18 

exhibits a substantial heritable component, only few studies have identified specific genetic 19 

variants that contribute to BAG.15–21 To refine the genetic architecture of BAG and identify 20 

potential therapeutic targets for healthy aging, further research is imperative. 21 

In this report, we present what is to our knowledge the largest genome-wide association 22 

study (GWAS) of BAG to date. We discover novel loci in a sample of 32,634 individuals of 23 

white-British ancestry, and replicate our findings in a cross-ancestry sample of 7,259 individuals. 24 

This constitutes a 34% increase in sample size (about 10,000 more) compared to the most recent 25 

study20 First, we prioritize genes using complementary fine-mapping, annotation, and co-26 

localization strategies that integrate information from multiple omics resources. Second, we 27 

replicate variant effects and calculate polygenic scores to estimate the present yield in variance 28 

explanation. Third, we compute genetic correlations with over 1,000 health traits. Fourth, we 29 

use Mendelian Randomization to test a potential causal role of several risk factors in BAG. 30 

Finally, we examine the degree of polygenicity and project discoveries to forthcoming studies. 31 

By these efforts, we unravel new biological mechanisms behind BAG, such as binding of small 32 

GTPases, i.e., evolutionary conserved proteins that act as biological timers of cellular processes.33 
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Results 34 

Our brain age estimation workflow adhered to a well-established approach that utilizes the 35 

CAT12 voxel-based morphometry pipeline and has been validated extensively over the past 36 

years.5,22	We used T1-weighed anatomical MRI scans and machine learning in a cross-validation 37 

manner to estimate brain age in a discovery sample of 32,634 white-British ancestry individuals 38 

of the UK Biobank (UKB) cohort (age range: 45-82 years).23 Since brain aging has been 39 

demonstrated to encompass biologically distinct modes of change, we performed tissue-specific 40 

analyses on grey and white matter segmentations to increase the yield of biologically meaningful 41 

markers.18 Machine learning was carried out using complementary algorithms: the sparse 42 

Bayesian relevance vector machine,24 and the extreme gradient boosting technique (XGBoost) 43 

applied with both a tree and linear booster.25 Trained models were stacked within and across 44 

tissue classes to enhance prediction accuracy. This revealed three brain-predicted age estimates 45 

per subject, representing the age prediction for grey matter, white matter, and combined grey 46 

and white matter. 47 

Table 1 Prediction accuracies of the stacked age estimation models stratified by tissue class 

 UKB discovery 
(n = 32,634; 45-82 years)  

UKB replication 
(n = 5,427; 44-83 years)  

LIFE replication 
(n = 1,833; 45-80 years) 

 r MAE ICCBAG  r MAE ICCBAG  r MAE 

Grey matter .827 3.372 .898  .851 3.631 .893  .828 3.990 

White matter .835 3.307 .919  .859 3.562 .911  .829 3.979 

Grey and white matter .857 3.089 .914  .879 3.299 .909  .862 3.557 
 

Note: Imaging data of the UKB discovery sample was released until January 2020 (release v1.7), while data of the 
UKB replication sample was released until September 2022 (release v1.9). r: product-moment correlation between 
brain-predicted age (without bias correction) and chronological age; MAE: mean absolute error of brain-predicted 
vs. chronological age; ICCBAG: intraclass correlation coefficient between test and re-test assessment of brain age 
gap. Brain age gap was bias-corrected for age, age2, sex, scanner site, and total intracranial volume. ICCs are 
based on a subset of 3,625 subjects in the UKB discovery and 376 subjects in the UKB replication sample. 

 48 

In the discovery sample, we observed excellent prediction accuracies of chronological age, 49 

with mean absolute errors (MAE) reaching MAE = 3.09 years and correlation coefficients 50 

attaining r = .86 (Fig. 1a, Table 1; details in suppl. Figure A1 and suppl. Table B1). Model 51 

performances were similar in two replication samples: a cross-ancestry UKB sample (n = 5,427; 52 

age range: 45-80 years), and a European ancestry sample drawn from the LIFE-Adult cohort 53 

(n = 1,833; age range: 45-80 years).26,27 Noteworthy, genetic association analyses were performed 54 

on brain age gap (BAG), i.e., the discrepancy between an individual’s brain-predicted and 55 

chronological age. These estimates – regressed on sex, age, age2, scanner site, and total 56 

intracranial volume – showed excellent test-retest reliabilities, with intra class correlation 57 

coefficients (ICC C,1)28 ranging from .89 to .92. 58 
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To validate our BAG estimates and examine phenotypic relationships with health-related 59 

traits, we conducted a cross-trait association analysis between BAG and 7,088 non-imaging-60 

derived phenotypes using PHESANT.29 A total of 210 associations reached the Bonferroni-61 

adjusted level of significance (p < 7.1e-06) for at least one of the three BAG traits (suppl. 62 

Fig. A2, suppl. Table B2). Fig. 1b shows the cross-trait association results for combined grey 63 

and white matter BAG.  64 

  65 

Fig. 1 Prediction accuracies and phenotypic associations for combined grey and white matter BAG. (a) Blue dots in 66 
the first three plots (from left to right) show brain-predicted age estimates plotted against chronological age in the UKB 67 
discovery sample (n = 32,634), UKB replication sample (n = 5,427), and LIFE-Adult replication sample (n = 1,883). 68 
To facilitate comparisons, results of the UKB discovery sample are also shown as grey dots in the background of the 69 
UKB replication and LIFE replication plots. At this stage, brain-predicted age estimates have not yet been bias-corrected 70 
for regression dilution as indicated by the linear regression line (solid) crossing the identity line (dashed). The fourth 71 
plot shows the test-retest reliabilities of brain age gap in a subset of the UKB discovery (grey dots, n = 3,625) and UKB 72 
replication sample (blue dots, n = 376). Brain age gap was bias-corrected for age, age2, sex, scanner site, and total 73 
intracranial volume. (b) Cross-trait association results between brain age gap and 7,088 UK Biobank phenotypes from 74 
different health domains (sex, age, age2, scanner site, total intracranial volume served as covariates). Horizontal lines 75 
indicate the Bonferroni-adjusted (solid) and FDR-adjusted (dashed) level of significance. The top associations per 76 
category have been annotated. (c) Surface plots showing the correlations between brain age gap and 220 FreeSurfer 77 
brain structure variables. Colors reflect the strength and direction of partial product-moment correlations (sex, age, age2, 78 
scanner site, total intracranial volume served as covariates). MAE: mean absolute error; rho: product-moment correlation 79 
coefficient. ICC: intraclass correlation coefficient (C,1).28 80 

The top associations for combined BAG (all p ≤ 1.8e-12) included ‘pack years of smoking’ 81 

(r = 0.091), ‘diastolic blood pressure, automated reading’ (r = 0.084), ‘number of symbol digit 82 

matches made correctly’ (r = -0.082), ‘diabetes diagnosed by doctor’ (r = 0.079), ‘amount of 83 
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alcohol drunk on a typical drinking day’ (r = 0.076), and self-reported ‘overall health rating’ 84 

(r = 0.039; higher ratings indicate poorer health). 85 

To explore how BAG is reflected in individual brain regions, we calculated BAG 86 

associations with FreeSurfer30 cortical surface measures and subcortical volumes (Fig. 1c, suppl. 87 

Fig. A3, suppl. Table B3). The strongest associations (all p ≤ 4.9e-146) were observed between 88 

BAG and volumes of the accumbentia (r = -0.31), lateral ventricles (r = 0.29), amygdalae 89 

(r = -0.25), and hippocampi (r = -0.22), as well as cortical thickness of the superior frontal 90 

(r = -0.16) and superior temporal cortex (r = -0.14). These results suggest that our models 91 

capture patterns of aging distributed throughout the brain, rather than being confined to specific 92 

brain areas. Moreover, results from cross-trait association analyses demonstrate relationships 93 

between BAG and multifaceted health traits, supporting the validity of BAG estimates. 94 

Discovery of 25 genomic loci 95 

To identify genetic loci associated with BAG, we conducted GWAS analyses based on 9,669,404 96 

Single Nucleotide Polymorphisms (SNPs) and insertion-deletions (INDELs) with MAF > 0.01 97 

and INFO > 0.80. We modelled additive genetic effects, and used sex, age, age2, total intra-98 

cranial volume, scanner site, type of genotyping array, and the first 20 genetic principal 99 

components as covariates. GWAS results for the three BAG traits are shown in Fig. 2. 100 

LD score regression (LDSC) intercepts did not indicate a bias of test statistics due to 101 

reasons other than polygenicity, suggesting no confounding inflation due to population 102 

stratification (intercept range: 1.0075-1.0142; suppl. Table B4).31 SNP-based heritability 103 

estimates derived from LDSC ranged between 26.2% (grey matter BAG) and 28.6% (white 104 

matter BAG). Estimates from GCTA-GREML32 were slightly higher, suggesting SNP-based 105 

heritabilities of 28.9% for grey matter, 32.7% for white matter, and 32.3% for combined grey 106 

and white matter BAG (SE: 1.3%). The bivariate genetic correlation between grey and white 107 

matter BAG reached rG = 0.703 (SE = 0.018), suggesting both shared and distinct genetic 108 

contributions. Stratified LDSC (suppl. Fig. A4, suppl. Table B5) revealed an enrichment of 109 

heritability (all FDR < 0.05) in regions evolutionary conserved across mammals (fold enrichment 110 

FE: 13.9) and primates (FE: 12.7). We also observed heritability enrichment in super enhancer 111 

(FE: 2.7), and epigenetically modified H3K27ac (FE: 2.0), H3K4me1 (FE: 1.9), and H3K9ac 112 

regions (FE: 2.9). 113 
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 114 

Fig. 2 Manhattan plots (a-c) and quantile-quantile plots (d-f) showing the results of the discovery 115 
genome-wide association analyses for the three brain age gap traits (N = 32,634 UK Biobank individuals). 116 
Manhattan plots show the p-values (-log10 scale) of the tested genetic variations on the y-axis and base-117 
pair positions along the chromosomes on the x-axis. The solid horizontal line indicates the threshold of 118 
genome-wide significance (p = 5E-8). Index variations are highlighted by circles and were annotated with 119 
those genes implicated by our gene prioritization analysis. Results of pseudoautosomal variations have been 120 
added to chromosome ‘X’. Quantile-quantile plots show the observed p-values from the association analysis 121 
vs. the expected p-values under the null hypothesis of no effect (-log10 scale). For illustrative reasons, the 122 
y-axis has been truncated at p = 1e-35. a,d grey matter brain age gap; b,e white matter brain age gap; 123 
c,f combined grey and white matter brain age gap. 124 

To identify independent genome-wide significant associations, we conducted stepwise 125 

conditional analyses using GCTA-COJO.32,33 This resulted in 12 independent discoveries for grey 126 

matter BAG, 16 for white matter BAG, and 13 for combined BAG (regional plots shown in 127 

suppl. Fig. A5-12). Across the three BAG traits, the total count of independent discoveries was 128 

25 (Table 1; suppl. Table B6), as determined through cross-trait LD clumping of index variations 129 

(R2 > 0.1; 10 Mbp window-size). These 25 loci represent distinct genomic regions with a physical 130 

distance larger than 2.5 Mbp. Among the 25 loci, 12 have previously been reported genome-wide 131 

significant for BAG,15,17–20 thus, 13 loci are novel findings. 132 
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Table 2 Independent loci discovered through GWAS analyses of brain age gap in N = 32,634 individuals 

Locus Cytoband Chr Position ID A1/A2 Freq Beta (SE) p Prioritized Gene Phenotype(s) Repl. Ref. 

             1 1p34.2 1  43,843,241 rs550778111 G/GT 0.414  0.149 (0.03) 1e-08 MED8 GWM F S 

2 1q25.3 1 180,956,936 rs35306826 T/A 0.408  0.223 (0.03) 4e-16 STX6 WM,GWM T S 

3 1q41 1 215,137,727 rs796226228 A/AT 0.375 -0.197 (0.03) 4e-12 KCNK2 GM T J 

4 2p22.3 2  33,759,129 rs7605981 C/A 0.157 -0.226 (0.04) 9e-10 RASGRP3 WM,GWM F * 

5 2q33.1 2 198,472,199 rs376899426 TAT/T 0.370 -0.157 (0.03) 3e-08 SF3B1 GM F * 

6 2q33.1 2 201,147,317 rs377158217 CA/C 0.482  0.192 (0.03) 2e-10 SPATS2L GM,GWM F * 

7 2q33.2 2 203,664,929 rs76122535 G/C 0.135 -0.236 (0.04) 5e-10 CARF GWM,WM,GM T * 

8 3q13.33 3 121,643,447 rs34567530 AT/A 0.477 -0.150 (0.03) 3e-08 SLC15A2 WM T * 

9 4p14 4  38,680,015 rs13132853 G/A 0.370  0.272 (0.03) 3e-24 KLF3-AS1 GWM,WM,GM T L,S 

10 5q14.3 5  90,567,689 5:90567689 TTA/T 0.065  0.331 (0.06) 2e-09 LUCAT1 GM T * 

11 6p21.1 6  45,428,508 rs35405209 TA/T 0.357 -0.203 (0.03) 2e-13 RUNX2 GWM,GM,WM T L,S,J 

12 8q23.3 8 116,635,942 rs2721939 C/T 0.402 -0.165 (0.03) 2e-09 TRPS1 WM T * 

13 10q24.33 10 105,459,116 rs4630220 A/G 0.285 -0.171 (0.03) 2e-08 NEURL1 GM F * 

14 10q26.3 10 134,573,767 rs12258248 G/A 0.250  0.241 (0.03) 1e-14 NKX6-2 WM,GWM T L 

15 11p11.2 11  47,606,865 rs12287076 G/C 0.294 -0.173 (0.03) 5e-09 SLC39A13 WM F * 

16 12p11.21 12  32,526,829 rs6488048 C/T 0.348 -0.183 (0.03) 7e-11 BICD1 WM F * 

17 12q23.3 12 106,476,805 rs12146713 C/T 0.095  0.257 (0.05) 2e-08 Lnc-NUAK1-1 WM T S 

18 14q31.3 14  88,438,448 rs4904408 G/C 0.493  0.147 (0.03) 5e-08 GALC WM T L 

19 15q23 15  71,162,906 15:71162906 CA/C 0.397 -0.173 (0.03) 3e-10 LARP6 WM,GWM F S 

20 17q21.31 17  44,276,431 rs111854640 TAG/T 0.227  0.494 (0.03) 2e-53 MAPT WM,GWM,GM T N,L,S,J 

21 17q25.1 17  73,872,969 rs3833085 AG/A 0.152  0.241 (0.04) 1e-10 TRIM47 GM,GWM T * 

22 20q11.21 20  30,291,296 20:30291296 G/GT 0.249 -0.224 (0.03) 5e-11 FOXS1 GM F S 

23 22q13.1 22  38,483,155 rs142739979 TTC/T 0.348 -0.222 (0.03) 1e-14 BAIAP2L2 WM,GWM T S 

24 Xp22.2 X  13,893,318 rs5979992 G/C 0.326  0.132 (0.02) 3e-08 GEMIN8 GM T * 

25 Xp22.33 XY   2,120,556 rs377113838 T/C 0.236  0.234 (0.03) 2e-12 DHRSX WM,GWM T * 

 

Note: For each of the 25 loci, only the strongest variant-phenotype association is shown. Column ‘Phenotype(s)’ lists all 
brain age gap phenotypes with significant associations. The phenotype with the strongest association is mentioned first. For 
insertion/deletions, A1 and A2 alleles were truncated to three nucleotide bases. 

 

Cytoband: cytogenetic band that contains the discovered locus; Chr: chromosome; Position: base pair position of index 
variation on chromosome; ID: identifier of index variation; A1: effect allele; A2: other allele; Freq: frequency of A1; Beta 
(SE): beta coefficient and standard error; p: p-value; Prioritized Gene: most relevant gene selected by our gene prioritization 
procedure; Phenotype(s): Traits for which a genome-wide significant association was found within that locus (grey matter 
GM, white matter WM, and combined grey and white matter brain age gap GWM), trait with strongest association is 
mentioned first; Rep.: indicator of locus replication status (one-tailed p < 0.05), either true (T) or false (F); Ref.: previous 
studies that have reported this locus genome-wide significant, J: Jonsson et al. (2020), L: Leonardsen et al. (2023), N: Ning 
et al. (2019), S: Smith et al. (2020) 

We observed the majority of index variations in intronic regions of protein-coding genes. 133 

Consistently, ANNOVAR enrichment tests indicated that variants in high linkage disequilibrium 134 

(LD) with our genome-wide significant variants were underrepresented in intergenic regions, and 135 

over-represented in UTR3, UTR5, exonic, intronic, exonic non-coding RNA, and intronic non-136 

coding RNA regions (suppl. Fig. A13, suppl. Table B7). 137 
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Fine-mapping and gene prioritization 138 

To shed light on the potential causal genes through which identified variants exert their effects 139 

on BAG, we used several fine-mapping, annotation, and co-localization strategies that integrate 140 

information from multiple omics resources. For each genome-wide significant locus, we a) inferred 141 

the number of distinct causal signals and constructed 95% credible sets of variants that likely 142 

include the causal variant using FINEMAP,34 b) physically mapped credible variants to genes 143 

using ANNOVAR,35 c) predicted transcript consequences of non-synonymous exonic credible 144 

variants and scored their deleteriousness using CADD,36 DANN,37 and REVEL,38 d) mapped 145 

variants to genes through expression quantitative trait locus (eQTL) lookup in 49 GTEx v8 146 

tissues,39 e) conducted summary-data-based Mendelian Randomization (SMR)40,41 with RNA 147 

sequence data of 2,865 brain cortex samples42 to test for mediation of variant effects through 148 

gene expression and splicing, and f) calculated polygenic priority scores (PoPS)43 that 149 

incorporate data from single-cell RNA sequencing datasets, curated biological pathways, and 150 

protein-protein interaction (PPI) networks. Across all genes nominated by abovementioned 151 

strategies, we computed an integrative gene priority sore and prioritized the most relevant gene 152 

(see methods). Figure 3 provides an overview of the analysis workflow. A locus-wise summary 153 

of all results is shown in suppl. Table B6 (details in suppl. Tables B7-B15). 154 

For the 25 discovered loci, FINEMAP revealed a model-averaged number of k causal 155 

signals per locus ranging from 1.04 to 2.06 (median: 1.24), with the most probable k model 156 

suggesting 1 causal signal for 21 loci, and 2 causal signals for 4 loci (suppl. Table B6). This 157 

finding is largely consistent with conditional analysis results, suggesting 1 independent signal for 158 

each locus. The size of the 95% credible set of variants ranged between 4 and 2,514 (median: 159 

46), indicating a small pool of causal candidates for some loci and a putative complex linkage 160 

structure that hinders pinpointing causal variants for other loci. The estimated per-locus 161 

contribution to the phenotypic variance, i.e., the regional heritability, ranged between 0.09% 162 

and 0.70%.  163 
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 164 

Fig. 3  Overview of the post-GWAS analysis workflow including the gene prioritization procedure. Green boxes 165 
represent data input (discovery GWAS) and output (prioritized genes). Blue boxes represent analyses whose outcomes 166 
were used for gene nomination and subsequent prioritization. Apricot-colored boxes reflect gene nomination categories. 167 
Grey boxes reflect all other analyses carried out to refine the genetic architecture of brain age gap such as heritability 168 
and polygenicity analyses. Genes were prioritized by integrating data from multiple strategies such as functional 169 
annotation of credible variants, summary-data-based Mendelian Randomization (SMR), GTEx eQTL lookups, and 170 
Polygenic Priority Scores (PoPS). 171 

 172 

We observed the strongest associations at locus 17q21.31 (rs111854640, p = 2.3E-53), 173 

which tags a well-known 900kb inversion polymorphism.44,45 This region is one out of three with 174 

alternate haplotype reference sequences included in genome assembly GRCh37 (UCSC haplotype 175 

sequence: chr17_ctg5_hap1). Consistent with the strong LD cluster in the inverted region,44 we 176 

found this locus with by far the largest credible set of variants (2,514). We carried out an 177 

NHGRI-GWAS catalog search to identify pleiotropic effects with other complex traits.46 This 178 

search revealed a large variety of locus-associated traits, including educational attainment,47 179 

depressed affect,48 alcohol consumption,49 sleep duration,50 lung function,51 male puberty 180 

timing,52 age at onset of menarche,51 and Alzheimer’s disease.53 The locus covers multiple genes, 181 

including MAPT, STH, KANSL1, and CRHR1. Several genome-wide significant variants in these 182 

genes are GTEx single-tissue and multi-tissue eQTLs (suppl. Tables B12-B13). SMR analyses 183 

implicated alterations in gene expression and splicing of MAPT and KANSL1 as putative 184 

mechanisms that mediate variant effects on BAG (suppl. Tables B10-11). Additionally, we 185 

identified several exonic variants causing amino-acid changes in transcript sequences (suppl. 186 

Table B9). The highest CADD deleteriousness score was shown for rs176515149 (CADD score: 187 

34), located in exon 6 of MAPT, with a GWAS p-value of 4.9e-52. This variant causes an 188 

arginine-to-tryptophan substitution at MAPT protein position 370. MAPT encodes the well-189 
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known ‘tau protein’ implicated in Alzheimer’s and other neurodegenerative diseases.54 190 

Altogether, we prioritized MAPT as most plausible susceptibility gene for brain aging in this 191 

locus.  192 

Three other loci were identified with a tractable number (≤	10) of likely causal variants. 193 

The first locus with 4 credible variants refers to an intergenic region at 1q41, 41 kb upstream of 194 

KCNK2, encoding Potassium channel subfamily K member 2. KCNK2 is also prioritized by 195 

SMR, GTEx, and PoPS analyses. KCNK2 has been implicated in neuroinflammation, blood-196 

brain barrier dysfunction, and cerebral ischemia.55,56. GWAS catalog matches suggest 197 

associations with cortical thickness,57 surface area,58 and sulcal opening.59.  198 

The second locus, again with 4 variants in the 95% credible set, refers to an intronic region 199 

of NUAK1 at 12q23.3. Index variant rs12146713 is a multi-tissue eQTL of Lnc-NUAK1-1, i.e., 200 

a long non-coding RNA gene expressed in brain cortex, cerebellum, and other tissues. GWAS 201 

catalog matches suggest further associations with cortical thickness,57 surface area,58 and 202 

subcortical volume.57 203 

The third locus refers to exon 11 of BAIAP2L2 at 22q13.1, with 9 variants in the 95% 204 

credible set. Index variant rs142739979 is a non-frameshift INDEL predicted to cause an insertion 205 

of threonine, proline, and methionine between BAIAP2L2 protein sequence positions 411 and 206 

412. Additionally, this variant is a reported eQTL of nine genes, including SLC16A8 linked to 207 

age-related macular degeneration,60 and TRIOBP, whose protein isoforms have been implicated 208 

in neurite outgrowth, cell cycle progression, and motility of cancer cells.61  209 

While above-mentioned loci have also been supported in previous studies, we here discover 210 

several novel loci that offer new insights into the biological path-mechanisms of brain aging. One 211 

of them refers to a UTR5-region of TRPS1 at 8q23.3, with TRPS1 also representing the 212 

prioritized gene. Previous studies have implicated variants in strong LD (R2 > 0.8) with the 213 

index variant in neuroticism,48 type-2 diabetes,62 and anthropometric measures.63 TRPS1 is a 214 

transcription factor that represses the expression of GATA-regulated genes in vertebrate 215 

development,64 and has been implicated in a large variety of physiological processes including 216 

organ differentiation and tumorigenesis.65 217 

Another novel discovery refers to an intronic region of ICA1L at 2q33.2, led by rs76122535 218 

(p = 4.6e-10), with GTEx and SMR analysis indicating variant effects on expression and splicing 219 

of ICA1L, CARF, and NBEAL1 in a variety of tissues. The highest priority score was attained 220 

by CARF, which is reportedly upregulated during stress-induced and oncogenic senescence, and 221 

its overexpression has been observed to cause premature senescence.66 222 

Furthermore, we identified an X-chromosomal locus in an intron of GPM6B, led by 223 

rs597999 (p = 2.7e-08), which is also a GTEx eQTL of GPM6B. The GPM6B protein has been 224 
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suggested to regulate serotonin uptake, is particularly expressed in brain tissue, and belongs to 225 

the proteolipid protein family involved in cell-to-cell communication.67 226 

A final novel discovery to be mentioned refers to a variant near DHRSX, tagged by 227 

rs377113838 (p = 1.6e-12), which is a GTEx multi-tissue eQTL of the same gene, and lies in a 228 

pseudoautosomal region, i.e., a region with homologous sequences on chromosome X and Y. 229 

DHRSX has been shown to be play a crucial role in starvation-induced autophagy.68 230 

As strongest known risk factor for Alzheimer’s disease, we tested the ε4 allele of the 231 

apolipoprotein E (APOE) gene, determined from haplotypes of rs429358 and rs7412, for BAG 232 

associations. The number of ε4 alleles was indeed associated with higher BAG (p = 7.8e-06), 233 

although not attaining genome-wide significance.  234 

Altogether, by integrating information from several fine-mapping, functional annotation, 235 

and colocalization strategies we here prioritized several genes potentially involved in brain aging. 236 

These leads may stimulate novel testable hypotheses on the causes of biological aging. 237 

Replication of discovered variants 238 

Independent discoveries from the SNP-level analysis were tested for replication in a follow-up 239 

cross-ancestry meta-analysis of up to 7,259 individuals (suppl. Table B15, suppl. Fig. A14-A17). 240 

Replication analyses included index variations from the 25 genome-wide significant loci, and 241 

index variations from another 45 suggestive loci (conditional p-values ranging from 1.0e-06 to 242 

5.0e-08). The degree of consistency between discovery and replication results was highly unlikely 243 

to occur by chance (suppl. Fig. A18). Of the 25 discoveries, 23 showed consistent effect directions 244 

(binomial test: p = 9.7e-06) and 16 replicated at p < 0.05 (one-tailed nominal significance; 245 

binomial test: p = 2.0-15). This finding aligns closely with the outcomes predicted by statistical 246 

power analyses, with 16.51 out of 25 loci expected to attain one-tailed nominal significance in 247 

replication analyses. All replicated loci are highlighted in Table 2 (column ‘Rep.’). Novel 248 

replicated loci included 2q33.2 (rs76122535 near CARF), 3q13.33 (rs34567530 in SLC15A2), 249 

5q14.3 (5:90567689_TTA_T near LUCAT1), 8q23.3 (rs2721939 in TRPS1), 17q25.1 (rs3833085 250 

in TRIM47), Xp22.2 (rs5979992 in GPM6B), and Xp22.33 (rs377113838 near DHRSX, 251 

pseudoautosomal). 252 

Among the additional 45 suggestive variants, we found 35 with consistent effect directions 253 

(binomial test: p = 1.2e-04) and 14 attaining one-tailed nominal significance in replication 254 

analyses (binomial test: p = 2.3e-08). Moreover, we found polygenic scores (PGS) with variance 255 

explanations of 2.1% for grey matter, 2.8% for white matter, and 2.5% for combined BAG (all 256 

p ≤ 5.1e-22; suppl. Table B17). Proportions of explained variance were lower when considering 257 

only genome-wide significant discoveries (0.8-1.3%; all p ≤ 1.5e-09). In sum, replication results 258 
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provide strong support for true associations among the discovered loci and point towards 259 

additional contributions at sub-threshold significance levels. 260 

Gene-based analysis 261 

We investigated the potential impact of 18,643 protein-coding genes using GCTA-fastBAT.69 262 

Gene-based analyses aggregate information from multiple variants within the same genomic 263 

region, resulting in a reduced multiple-testing burden compared to variant-based analyses. Gene-264 

based analyses revealed 188, 327, and 295 genes significantly associated (FDR < 0.05) with grey 265 

matter, white matter, and combined grey and white matter BAG, respectively. To identify 266 

independent associated loci, we conducted a p-value informed clumping procedure of genes 267 

located in a physical distance of 3,000 kbp. This resulted in 69, 114, and 97 distinct loci, 268 

respectively, of which 151 were unique across the three phenotypes (suppl. Fig. A19, suppl. Table 269 

B18). Again, the strongest signal was observed at 17q21.31 covering MAPT. Significant genes 270 

also included APOE (encoding apolipoprotein E), i.e., the gene with the strongest known impact 271 

on late-onset Alzheimer’s disease.70 In total, gene-based analyses provide evidence for an 272 

extended set of genomic loci involved in human brain aging. 273 

Pathway analysis 274 

To gain further insights into the biological mechanisms underlying brain aging, we used gene-275 

based results to test for an enrichment of Gene Ontology (GO) terms, i.e., sets of genes known 276 

to serve a common biological function.71 Gene set enrichment analyses (GSEA) were conducted 277 

using GOfuncR.72 GSEA revealed nine significant GO terms (suppl. Table B19) after refinement 278 

of hierarchical dependencies. Analyses provided indications for a role of the immune system in 279 

brain aging, with significant results obtained for ‘MHC protein complex’ (GO:0042611) and 280 

‘peptide antigen binding’ (GO:0042605). Results also implicated ‘small GTPase binding’ 281 

(GO:0031267l) as potential mechanism in brain aging. Small GTPases are a superfamily of 282 

evolutionary conserved proteins that act as biological timers (binary on/off switches) of many 283 

essential cellular processes.73,74 These processes include cell differentiation, proliferation, and 284 

signal transduction.75 Several small GTPase proteins have been implicated in premature 285 

senescence.76–78  286 
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 287 

Fig. 4 Results from the genetic correlation analyses between brain age gap and 1,027 other complex 288 
phenotypes. (a) Genetic correlation matrix between brain age gap (columns) and 38 selected phenotypes 289 
from different health domains (rows). * p < 0.05 (nominal significance) ** FDR < 0.05 (level of significance 290 
after multiple testing-correction) (b) Volcano plot showing the magnitude (x-axis) and significance (y-axis) 291 
of genetic correlations between grey matter brain age gap and 989 traits examined by Neale and colleagues. 292 
The dashed horizontal line indicates the FDR-adjusted level of significance. (c) Forest plot showing the 293 
genetic correlation coefficients and standard errors for a subset of 23 exemplary traits that showed 294 
significant genetic correlations with grey matter brain age gap.  295 

Genetic correlations with other complex traits 296 

To examine a potential shared genetic basis with other complex traits, we applied bivariate LD 297 

score regression31,79 to GWAS summary statistics and calculated genetic correlations with 38 298 

frequently employed traits from different mental and physical health domains (suppl. Table 299 

B20).80–82 We also calculated genetic correlations with 989 heritable traits from a large set of 300 

GWAS summary statistics (Zenodo: https://doi.org/10.5281/zenodo.7186871). In total, we 301 

observed 22 out of 38 selected traits to significantly correlate (FDR < 0.05) with at least one of 302 

the three BAG variables (Fig. 4a, suppl. Table B21). Grey matter BAG showed the highest 303 

number of significant associations (22), relative to white matter (1) and combined grey and 304 

white matter BAG (13). A similar pattern was observed for the 989 traits, where we observed 305 

121, 2, and 36 significant associations for the three BAG traits, respectively (Fig. 4b and 4c, 306 

suppl. Table B22). 307 
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Among the 38 selected traits, we found significant associations between grey matter BAG 308 

and psychiatric (e.g., Major Depression: rG = 0.085), substance use (cigarettes per day: 309 

rG = 0.134), neurological (stroke: rG = 0.182), personality (neuroticism: rG = 0.100), sleep-310 

related (insomnia: rG = 0.096), cognition-related (educational attainment: rG = -.091), 311 

anthropometric (body-mass-index: rG = 0.075), as well as cardiovascular and metabolic 312 

syndrome traits (type-2 diabetes: rG = 0.127). 313 

Among the 989 heritable traits, we found evidence for genetic correlations with ‘mother’s 314 

age at death’ (rG = -0.240) and ‘father’s age at death’ (rG = -0.192), suggesting that higher 315 

BAG is associated with shorter familial life expectancy. Other significant associations referred 316 

to socioeconomic variables (e.g., ‘average total household income before tax’: rG = -0.207), 317 

mental health variables (‘frequency of tiredness/lethargy in last 2 weeks’: rG = 0.167), medical 318 

conditions (‘Vascular/heart problems diagnosed by doctor: High blood pressure’: rG = 0.149), 319 

medication intake (e.g. ‘medication for cholesterol, blood pressure or diabetes: None’: 320 

rG = -0.191), early life factors (‘maternal smoking around birth’: rG = 0.122), among others 321 

(suppl. Table B22). These results suggest a shared genetic basis between BAG and a broad range 322 

of health-related variables. 323 

Causal associations 324 

We used two-sample generalized summary-data-based Mendelian Randomization (GSMR)83 to 325 

investigate potential causal effects of 12 modifiable risk/resilience factors on BAG. The 326 

risk/reliance factors were BMI, waist-hip-ratio adjusted for BMI, low-density lipoprotein 327 

cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides, systolic blood 328 

pressure, diastolic blood pressure, pulse pressure, type-2-diabetes, coronary artery disease, 329 

schizophrenia, and years of education. Our analyses revealed significant effects of diastolic blood 330 

pressure on all three BAG traits (combined BAG: βxz = 0.610, p = 1.4e–08), as well as systolic 331 

blood pressure on grey matter (βxz = 0.443, p = 5.8e-05) and combined BAG (βxz = 0.326, 332 

p = 0.002).84 Results suggest that one standard deviation increase in blood pressure causally 333 

contributes to an about half-year increase in BAG (suppl. Table B24, suppl. Fig. A20-22). 334 

Degree of polygenicity and projection of discoveries to future GWAS 335 

To quantify the degree of polygenicity and predict the number of discoveries in forthcoming 336 

GWAS, we used GENESIS85 and estimated the number of underlying susceptibility variants and 337 

their effect sizes. We considered ‘height’ and ‘neuroticism’ as benchmark traits due to their 338 

different degrees of polygenicity.86–89 For the three BAG traits, the number of susceptibility 339 

variants was consistently estimated at 5.7k (SE 1.7k; suppl. Table B25). By comparison, this 340 

number was estimated at 12.6k (SE 1.3k) for height and 16.2k (SE 1.2k) for neuroticism. The 341 
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distributions of variant effect sizes (Fig. 5a) revealed that BAG exhibits a greater proportion of 342 

contributing variants with large effect sizes when compared to neuroticism and standing height. 343 

 344 

Fig. 5 Results of the genetic effect size distribution analysis for combined grey and white matter brain 345 
age gap. Neuroticism and standing height serve as reference traits. (a) Effect-size distributions of underlying 346 
susceptibility variants. Wider tails indicate a greater proportion of susceptibility variants with large effect 347 
sizes. (b) Expected number of discoveries as a function of sample size. (c) Expected proportion of genetic 348 
variance explained by genome-wide significant discoveries as a function of sample size. 349 

Moreover, the number of discoveries for BAG was predicted to show rapid increases with rising 350 

sample sizes (Fig. 5b). Fig. 5c shows that about 500k subjects are required to explain 80% of 351 

the SNP-based heritability for BAG from genome-wide significant discoveries. This number 352 

aggregates to about 1M for height and 6M for neuroticism. Together, these results suggest a 353 

relatively low degree of polygenicity for BAG when compared to other complex traits. 354 

Discussion 355 

We here leveraged genomic and neuroimaging methods to demonstrate the significance of brain 356 

age gap (BAG) as a putative biomarker of aging and its prospective utility in identifying 357 

therapeutic targets. Machine learning and MRI quantified brain age with excellent measurement 358 

properties, capturing distributed patterns of aging across the brain. Cross-trait association 359 

analyses established robust associations with various health traits, highlighting the potential 360 

clinical relevance of BAG. We showed that BAG is under substantial genetic control, with about 361 

30% of the phenotypic variance attributable to common genetic variation. We identified 25 362 

independent genome-wide significant loci, of which 13 loci are novel. The observed genomic 363 

signals unveiled several enriched biological pathways, e.g., immune-system-related processes as 364 

well as the binding of small GTPases, prompting further mechanistic exploration. Using genetic 365 

correlations, we characterized the common genetic basis between BAG and other complex traits, 366 

including psychiatric, neurological, cognitive, personality, substance use, sleep-related, as well as 367 

cardiovascular and metabolic syndrome traits. Through Mendelian Randomization, we 368 

established evidence for a causative role of enhanced blood pressure in accelerated brain aging. 369 
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Finally, we find BAG with a relatively low degree of polygenicity, and we anticipate this will 370 

facilitate further variant discoveries in the near future.  371 

Brain aging is not a uniform process; rather, it encompasses diverse aspects of structural 372 

and functional change. Studying different aspects of brain aging has been advocated to increase 373 

the yield of biologically meaningful insights.18 We calculated separate BAG for the brain tissue 374 

classes grey matter and white matter, in addition to a composite measure. For both tissues, we 375 

found remarkably consistent age prediction accuracies, along with comparable test-retest 376 

reliabilities and heritabilities. The genetic correlation between grey and white matter BAG, 377 

however, settled at rG = 0.70 (SE 0.018), suggesting both shared and segregated biological 378 

underpinnings. While grey matter and white matter BAG exhibit comparable SNP-based 379 

heritabilities (0.289 vs. 0.327; SE: 0.013), grey matter BAG showed a noticeably higher number 380 

of significant phenotypic and genetic associations, which may imply greater relevance for several 381 

health dimensions. This subject warrants more in-depth exploration in future research. 382 

We confirmed the previously reported inversion locus at 17q21.31 as strongest known 383 

genetic contributor to BAG,17,19–21 explaining 0.3% of the variance in grey matter and 0.7% in 384 

white matter BAG. The most likely causative gene in this locus, MAPT, encodes the well-known 385 

‘tau’ protein associated with Alzheimer’s disease. Genomic analyses also unveiled a role of 386 

Alzheimer’s risk gene APOE and other apolipoprotein genes. With both tau- and apolipoprotein 387 

alterations, our results implicate two hallmarks of Alzheimer’s in accelerated brain aging. This 388 

aligns with the demonstrated capability of BGA to forecast Alzheimer's disease.90 389 

Two prior studies on BAG have attempted to replicate variant discoveries, albeit with 390 

limited success.17,20 Here we observed a high degree of consistency between discovery and 391 

replication results, with 23 out of 25 loci showing consistent effect directions, and 16 loci 392 

attaining nominal significance in replication analyses. Notably, polygenic scores accounted for 393 

about 2-3% of the phenotypic variance, a remarkable proportion when compared to traits such 394 

as intelligence and major depressive disorder, which necessitated considerably larger discovery 395 

samples to attain similar prediction accuracies.82,91  396 

The current study has several limitations. First, the employed gene prioritization 397 

techniques face challenges in pinpointing causal genes,43 particularly for loci characterized by 398 

high gene density and complex linkage structures. Second, BAG has been estimated from cross-399 

sectional data, which is typically interpreted as accelerated or decelerated aging. However, an 400 

alternative interpretation posits BAG as stable individual differences that emerge at an 401 

ontogenetically early period and are carried into old age.92 Third, statistical power analyses 402 

revealed an expected number of 16 successful replications (out of 25), indicating a need for higher 403 

replication sample sizes. Fourth, polygenic overlap between different traits was estimated using 404 
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genetic correlations. Yet, this technique does not capture fractions of genetic variants shared 405 

between two traits irrespective of variant effect directions. Other bioinformatic tools such as 406 

MiXeR may be used in future studies to quantify genetic overlap by considering mixtures of 407 

variant effects.93 Fourth, polygenicity models are known to classify variants with very low effect 408 

sizes as null, resulting in a likely underestimation of BAG polygenicity estimates. 409 

In conclusion, the present study refines the genetic architecture of brain age gap and its 410 

relationships to other traits. We added 13 new variants to the catalogue of existing BAG 411 

associations and assigned plausible candidates to these loci such as TRPS1 implicated in various 412 

pathological processes, GPM6b involved in cell-to-cell communication, and CARF linked to 413 

premature senescence. This will facilitate further work on path-mechanisms of BAG and 414 

potential therapy targets. 415 
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Methods  730 

Sample characteristics 731 

Participants were drawn from the UK Biobank cohort study (www.ukbiobank.ac.uk) under 732 

application number 423032. A detailed description of the UK Biobank study design, participants 733 

and quality control (QC) methods has been published previously.23 The UKB received ethical 734 

approval from the National Research Ethics Service Committee North West-Haydock (reference 735 

11/NW/0382). All participants provided written informed consent. In the current study, the 736 

majority of participants were drawn from the January 2020 UKB brain imaging release (v1.7). 737 

These data contained 40,681 participants with structural T1-weighted MRI data (UKB data-738 

field 20252). We did not include T1-weighted MRI scans in folders labelled as ‘unusable’ (leaving 739 

39,679 participants). In total, MRI scans of 39,677 participants completed the voxel-based 740 

morphometry preprocessing (see section ‘MRI acquisition and preprocessing’). Analyses were 741 

restricted to participants whose self-reported sex matched the genetic sex (data-field 31 and 742 

2200), who were without indications of sex aneuploidy (data-field 22019), and who were no 743 

outliers in heterozygosity and missingness (data-field 22027). We only included unrelated 744 

participants as suggested by pairwise kinship coefficients below 0.0442 (pre-calculated 745 

coefficients retrieved using the command line tool ‘ukbgene’ with the ‘rel’ parameter). In our 746 

discovery GWAS, we only included participants of white-British ancestry (data-field 22006), 747 

which resulted in a final discovery sample of 32,634 participants (17,084 female, age range: 45.2-748 

81.9 years, mean age: 64.3 years).  749 

For replication analyses, we selected all remaining non-white-British ancestry individuals 750 

of the January 2020 release. Applying the same inclusion criteria, we then added participants 751 

whose imaging data were released until September 2022 (release v1.9), yielding a total of 7,785 752 

additional individuals. None of these individuals were related to individuals in the discovery 753 

sample. We only included individuals with a valid ancestry assignment from the Pan-ancestry 754 

UKB project (UKB return 2442; https://pan.ukbb.broadinstitute.org/). This resulted in 217 755 

African, 60 Admixed American, 409 Central/South Asian, 192 East Asian, 4,486 European, and 756 

62 Middle Eastern ancestry participants. In total, we included 5,427 UKB participants for 757 

replication analyses (2,847 female, age range: 44.6-82.8 years, mean age: 65.9 years). From the 758 

LIFE-Adult cohort study,26,27 we included another 1,833 European ancestry participants 759 

(888 female, age range: 45.2-80.3 years, mean age: 65.3 years).26,27 Altogether, the final 760 

replication sample included 7,259 participants (3,735 female, age range: 44.6-82.8 years, mean 761 

age: 65.7 years) from 7 subsamples (see section ‘Genome-wide association analysis and replication 762 

meta-analysis meta-analysis’ for analysis details). 763 
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MRI data acquisition 764 

The UKB imaging acquisition protocol and processing pipeline have been detailed previously 765 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977). In brief, brain MRI data were 766 

acquired in one of four UKB imaging centers (Cheadle, Newcastle, Reading, and Bristol) on 767 

Siemens Skyra 3T MRI scanners (Siemens Healthcare, Erlangen, Germany), running software 768 

VD13A SP4 with a standard Siemens 32-channel RF receive head coil. UKB’s neuroimaging 769 

strategy includes the acquisition of several imaging modalities. In this study, we used T1-770 

weighted structural MRI scans acquired using a 3D MPRAGE sequence in the sagittal plane, 771 

with 1x1x1 mm voxel-size, 208x256x256 acquisition matrix, 2,000 ms repetition time (TR), 772 

2.01 ms echo time (TE), 880 ms inversion time (TI), 6.1 ms echo spacing, 8° flip angle, 773 

240 Hz/pixel bandwidth, in-plane acceleration factor of R = 2, and 4:54 min duration 774 

(https://www.fmrib.ox.ac.uk/ukbiobank/protocol/). T1-weighted scans were defaced for subject 775 

anonymity and made available in NIFTI format (data-field 20252). 776 

In LIFE-Adult, brain imaging was performed using a 3T Siemens Verio MRI scanner 777 

(Siemens Healthcare, Erlangen, Germany) equipped with a standard 32 channel head coil. High 778 

resolution T1-weighted structural images were obtained using a 3D MPRAGE sequence with 779 

1x1x1 mm voxel-size, 256x240x176 acquisition matrix, TR = 2,300 ms, TE = 2.98 ms, TI = 900 780 

ms, and 9° flip angle. 781 

MRI preprocessing 782 

T1-weighted MRI scans in NIFTI-format were preprocessed using the voxel-based morphometry 783 

pipeline of CAT12 (r1364, http://dbm.neuro.uni-jena.de) for SPM12 (r7487) in MATLAB 784 

R2021a (The MathWorks Inc, Natick, MA, USA). CAT12 preprocessing involved affine and 785 

DARTEL registration of brain images to a reference brain, segmentation into grey matter, white 786 

matter, and cerebro-spinal fluid, bias correction for intensity inhomogeneity, and modulation of 787 

segmentations to account for the amount of volume changes due to spatial registration. Processed 788 

images were smoothed by applying an 8x8x8mm full-width-at-half-maximum (FWHM) gaussian 789 

kernel with subsequent resampling to 8mm3 voxel size. We only considered MRI scans with a 790 

CAT12 overall image quality rating < 3.0 for further downstream analyses. 791 

Feature set for machine learning 792 

The feature set for machine learning was derived from CAT12-preprocessed grey and white 793 

matter segmentations, with the smoothed and resampled brain images comprising 16128 voxels 794 

each. We excluded voxels that did not show any variation across individuals, resulting in 5416 795 

voxels for grey matter images and 5123 voxels for white matter images. Typically, voxel-based 796 

images are characterized by substantial spatial correlations. We conducted principal component 797 

analysis (PCA) in MATLAB to remove redundant information and reduce dimensionality. We 798 
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selected the first 500 principal components as features, which explained about 90% of the total 799 

variance in brain images and enabled model training in a reasonable period of time with advanced 800 

computational resources. 801 

Machine learning algorithms 802 

Age estimation models were built using the sparse Bayesian relevance vector machine (RVM) in 803 

MATLAB (The MathWorks Inc, Natick, MA, USA),24 and the extreme gradient boosting 804 

package ‘xgboost’ v.0.82.1 in R.25,94 The RVM was developed as a probabilistic Bayesian 805 

equivalent to the popular support vector regression (SVR), and has widely been used in brain 806 

age research.95–97 We used the RVM implemented in MATLAB toolbox SparseBayes v.2 with 807 

the wrapper and kernel function by Qiu.98 Furthermore, we made use of the XGBoost algorithms, 808 

which have become popular methods after winning several machine learning challenges hosted 809 

by the data science competition platform Kaggle.25,99 XGBoost has previously been employed in 810 

brain age research.15 We used XGBoost with both the decision tree (‘gbtree’) and linear gradient 811 

booster (‘gblinear’). The learning rate was set to η = 0.02 with 5000 training iterations and an 812 

early stopping after 50 iterations in the case of no further model improvement. The maximum 813 

tree depth was set to 3. Default settings were used for all other training parameters.  814 

Model training and age prediction 815 

Age estimation models were trained with the brain image PCA scores serving as features and 816 

chronological age serving as outcome variable. Model training and application was carried out 817 

in a 10-fold cross-validation manner with 100 repeats. Therefore, we randomly split the discovery 818 

sample into ten equal-sized subsets, of which nine subsets served for model training, and the 819 

remaining subset, the test sample, served for applying the model. Brain images of the training 820 

sample underwent PCA, and transformation parameters were subsequently applied to calculate 821 

PCA scores in the test sample. After the first model was trained and tested, the next subset 822 

served as test sample, while the other nine subsets were selected as training sample. This strategy 823 

was carried on until each subset served exactly once as test sample. The tenfold cross-validation 824 

procedure was repeated 100 times, so that 100 predictions were made for each subject. This 825 

procedure was performed for each tissue (grey and white matter) and model type (relevance 826 

vector machine, xgboost tree, and xgboost linear), resulting in a total number of 600 brain-827 

predicted age estimates per subject. In a nested 10-fold cross-validation approach, we stacked 828 

the estimates from the three different model types in an ensemble estimate, resulting in 100 829 

brain-predicted age estimates for grey matter, white matter, and combined grey and white 830 

matter, respectively. Finally, these estimates were averaged, leaving one brain-predicted age 831 

estimate for grey matter, white matter, and combined grey and white matter for each subject. 832 
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In the replication samples, we employed all discovery models from the 10-fold cross-833 

validation procedure and compared the resulting age predictions against those derived from 834 

additional models where the complete discovery sample was used for model training. Results 835 

were highly concordant for all three tissue classes (r > .997). Due to the improved practicability, 836 

we performed subsequent replication analyses based on models trained on the complete discovery 837 

sample, which revealed virtually identical age predictions. 838 

Cross-trait association analysis 839 

Cross-trait association analyses  were carried out using PHESANT,29 an automated 840 

preprocessing and analysis pipeline for phenome-wide association analyses in UK Biobank 841 

datasets. Cross-trait associations were conducted for each BAG trait and 7,088 non-imaging 842 

derived UK Biobank variables. Sex, age, age2, scanner site, and total intracranial volume served 843 

as covariates. Based on variable type (continuous, integer, categorical single choice, or 844 

categorical multiple choice) and number of distinct values observed, different types of regression 845 

analyses (linear, logistic, ordinal logistic, or multinomial logistic) were performed. Variables 846 

suitable for linear regression underwent inverse-rank normal transformation. To obtain 847 

standardized effect size estimates, we converted the resulting beta coefficients from the different 848 

types of regression models to a corresponding correlation coefficient r based on p-value, number 849 

of observations, and number of covariates. Phenome-wide association analysis plots were created 850 

by assigning each variable to a custom UK Biobank category based on the respective variable’s 851 

UK Biobank data dictionary path.  852 

FreeSurfer associations 853 

In addition to PheWAS analyses of non-imaging-derived phenotypes, we associated BAG with 854 

brain measures derived from the FreeSurfer aparc and aseg output files.30 FreeSurfer is an open-855 

source software package to process, analyze and visualize human brain MR images. We retrieved 856 

FreeSurfer output files from the UKB resource (data-field 20263) and extracted surface area, 857 

cortical thickness, and cortical volume estimates of 34 bilateral cortical segmentations, as well 858 

as volume estimates of 8 bilateral subcortical segmentations, resulting in 220 brain measures in 859 

total. We calculated partial product-moment correlations between BAG and the 220 brain 860 

measures using sex, age, age2, scanner site, and total intracranial volume as covariates. 861 

Visualizations were performed using the ENIGMA toolbox.100 862 

UKB genotyping and imputation 863 

We retrieved called and imputed genotypes (version 3) in BED and BGEN format, respectively, 864 

from the UK Biobank resource. Genotype collection, processing, and quality control have 865 

previously been described in detail.23,101 In brief, DNA was extracted from EDTA-treated whole-866 
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blood samples, aliquoted across three tubes (primary storage, backup storage, and genotyping 867 

tube), and shipped on 96-well plates of 50 µL aliquot per sample for genotyping to the Affymetrix 868 

Research Services Lab, Santa Clara, CA, USA. Genotyping was carried out using two arrays 869 

with a 95% marker overlap: the Applied Biosystems UK BiLEVE Axiom Array (807,411 870 

markers; used in 49,950 participants) and the Applied Biosystems UK Biobank Axiom Array 871 

(825,927 markers; used in 438,427 participants). Both genotyping arrays were designed for 872 

genome-wide coverage of genetic content including biallelic single nucleotide polymorphisms 873 

(SNPs) and short insertions and deletions (indels). Marker-based quality control included testing 874 

for batch, plate, array, and sex effects, departures from Hardy-Weinberg-Equilibrium, as well as 875 

discordance across two control DNA replicates from the 1000 Genomes project, with two wells 876 

on each plate assigned to these control subjects. Sample-based quality control included missing 877 

rates (> 0.05), unusually high fractions of heterozygous variant calls, and sex chromosome 878 

aneuploidy. Relatedness between individuals was inferred from kinship coefficients estimated 879 

using KING.102 Population stratification was measured by applying fastPCA103 Principal 880 

Component Analysis on a set of 147,604 pruned high-quality markers. White-British ancestry 881 

(data-field 22006) was derived from a combination of self-report and genetic principal 882 

components. Genotype calls were phased using SHAPEIT3 and imputation was done using 883 

IMPUTE4 (https://jmarchini.org/software/) with the Haplotype Reference Consortium, 884 

UK10K, and 1000 Genomes phase 3 datasets serving as reference panels. Imputation resulted in 885 

~97M markers available for downstream analyses. 886 

LIFE-Adult genotyping and imputation 887 

Genotype collection, processing, and quality control in LIFE-Adult have previously been 888 

described in detail.104 DNA was extracted from peripheral blood leukocytes. Genotyping was 889 

carried out using the Applied Biosystems Axiom Genome-Wide CEU 1 Array Plate with 587,352 890 

markers. Marker-based quality control included call rate < 0.97, Hard-Weinberg equilibrium 891 

p < 1.0e-06, and plate association p < 1.0e-07. Sample quality control included dish-QC < 0.82, 892 

missing rates > 0.03, reported vs. genetic sex mismatch, and cryptic relatedness. Genotypes were 893 

pre-phased using SHAPEIT. Imputation was carried out using IMPUTE2 with the 1000 genome 894 

phase 3 dataset serving as reference. This resulted in 85,063,807 markers derived from 7,776 895 

individuals. Post-imputation quality control included MAF ≥ 0.01 and INFO ≥ 0.8. As LIFE-896 

Adult replication results were aggregated meta-analytically with the UKB replication results, we 897 

only included variants identified as biallelic SNPs or indels with INFO ≥ 0.8 in the UKB dataset 898 
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(see ‘UKB genotyping and imputation’). This resulted in 9,472,504 markers passing quality-899 

control in LIFE-Adult. 900 

Control for population structure 901 

In the discovery sample, we calculated 20 genetic principal components by applying the 902 

randomized PCA algorithm (--pca 20 approx) implemented in PLINK v2.00a2LM 64-bit Intel 903 

(31 Jul 2019)105 on the same variants used by the UKB group (resource 1955; 146,988 markers 904 

passing our own quality-checks). For the UKB replication samples, we used genetic principal 905 

components provided by the pan-ancestry UKB project (UKB return 2442). The number of 906 

principal components serving as covariates was adjusted to the respective replication sample 907 

size. We used 10 principal components as covariates in the larger European-ancestry UKB 908 

replication sample and 3 principal components in each of the other UKB replication samples. In 909 

LIFE-Adult, 4 genetic principal components were used to account for subpopulation structure. 910 

Heritability and partitioned heritability 911 

Estimates of SNP-based heritability (h2
SNP) were derived by applying the GCTA genomic-912 

restricted maximum likelihood (GREML) algorithm to genetic relatedness matrices 913 

(GRMs).32,106 GRMs were calculated based on biallelic autosomal variants with MAF ≥ 0.01 914 

and INFO ≥ 0.80. GREML analyses were run in the discovery sample, with sex, age, age2, 915 

genotyping array, scanner site, total intracranial volume, and the first 20 genetic principal 916 

component serving as covariates. We conducted LD score regression31,79 on the GWAS summary 917 

statistics to corroborate GREML heritability estimates. We used precalculated LD scores and 918 

regression weights from 10000 Genomes phase 3 European ancestry samples 919 

(eur_w_ld_chr.tar.bz2). We retained variants with MAF > 0.01 included in the HapMap3 920 

panel after removal of the MHC region (w_hm3.noMHC.snplist.zip). In order to partition 921 

heritability by functional annotation, we conducted stratified LD score regression107 using the 922 

baseline-LD model v.2.2 with the 1000 genomes phase 3 regression weights and allele frequencies 923 

excluding the MHC region. We considered functional annotations reported among the 33 ‘main 924 

annotations’ by Gazal and colleagues.108 Annotations with FDR < 0.05 were regarded as 925 

significant after multiple testing correction.109 926 

Genome-wide association analysis and replication meta-analysis 927 

GWAS analysis were run in PLINK v2.00a2LM (31 Jul 2019) based on allelic dosage data. We 928 

included autosomal (chr1-22), gonosomal (chrX and chrY), pseudoautosomal (chrXY), and 929 

mitochondrial variations (chrMT). Analyses were run with male and female dosage data on a 0-930 

2 scale on diploid chromosomes (chr1-22, chrXY), 0-1 scale on regular haploid chromosomes 931 

(chrY and chrMT), and 0-2 scale on chrX. We selected biallelic SNPs and INDELs with 932 
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MAF > 0.01 and INFO > 0.80. Biallelic variations were defined as variations without duplicate 933 

chromosomal coordinates and duplicate identifiers in the imputed variant files. We modelled 934 

additive genetic effects and used sex, age, age2, total intra-cranial volume, scanner site, type of 935 

genotyping array, and the first 20 genetic principal components as covariates (3-10 genetic 936 

principal components were used in the replication GWASs; see section ‘control of population 937 

structure’). In total, there were 9,669,404 markers available for the discovery GWAS in 938 

n = 32,634 white-British ancestry individuals. The number of markers passing quality-control 939 

in the replication GWASs ranged between 8,364,077 (East-Asian ancestry) and 15,302,441 940 

(African ancestry). Results of the ancestry-stratified replication GWASs were aggregated by 941 

performing a fixed-effects inverse-variance-weighted meta-analysis in METAL.110 Variants with 942 

an aggregated n lower than 67% of the 90th quantile of all observed n (adapted from LDSC)31 943 

and heterogeneity p < 1.0e-06 were discarded. This yielded replication meta-analysis results from 944 

9,496,239 (grey matter), 9,496,243 (white matter), and 9,496,192 (grey and white matter) 945 

variants in up to n = 7,259 individuals. 946 

Identification of independent discoveries 947 

In order to identify independently associated variations, we performed stepwise conditional 948 

analyses employing the COJO module in GCTA.32,33 We used a 10,000 kb window-size 949 

(--cojo-wind 10000), a collinearity cutoff of 0.9 (–cojo-collinear 0.9)  and included variants 950 

reaching at least suggestive evidence in the discovery GWAS (--cojo-p 1e-6). We only considered 951 

multiple signals within one locus to be independent if the p-value of the subsidiary association 952 

signal did not increase by more than two orders of magnitudes. Variants were regarded as 953 

independent genome-wide significant discoveries if they reached p < 5.0e-08 in conditional 954 

analysis. All other variants with conditional p < 1.0e-06 were regarded as suggestive signals, 955 

which were not considered for fine mapping but tested for result consistency in replication 956 

analyses. We denote variants discovered through conditional analyses as ‘index variants’ (i.e., 957 

the top variant of an association signal). To identify independent discoveries across the three 958 

BAG GWAS, we selected all index variants identified through trait-wise conditional analyses 959 

and clumped these variants according to chromosomal position and linkage disequilibrium using 960 

PLINK v1.90b6.8 (--clump-r2 0.1 --clump-kb 10000).  961 

Definition of variant replication and power calculations 962 

For replication analyses, we selected index variations from genome-wide significant loci 963 

(p < 5.0e-08), and index variations from another 45 suggestive loci (conditional p-values ranging 964 

from 1.0e-06 to 5.0e-08). Consistency between discovery and replication results were tested via 965 

sign tests, i.e., binomial tests based on the number of observations where replication effect 966 

directions agree with the corresponding discovery effect directions. Variants with replication 967 
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p < 0.05 (one-tailed nominal significance) were regarded as replicated variants. To estimate the 968 

expected number of successful replications, we carried out power calculations based on 969 

standardized beta coefficients (discovery), MAF (discovery), and N (replication).111,112 Beta 970 

coefficients were corrected for winner’s curse.113 The expected number of successful replications 971 

was calculated as sum of all power values obtained for each individual variant. 972 

Novelty of the discovered loci 973 

Novelty of the discovered loci was examined by comparing our results against four previous 974 

genetic studies on BAG reporting discoveries at genome-wide significance levels.17,18,20,21 We used 975 

the clumping algorithm in PLINK v1.90b6.8 and regarded our own discoveries as novel if they 976 

did not clump together with previously reported variants, using a linkage disequilibrium 977 

threshold of R2 = 0.1 and a clumping window of 10 Mbp (--clump-r2 0.1 --clump-kb 10000). 978 

ANNOVAR enrichment test 979 

We used the ANNOVAR (2017-07-17)35 enrichment test implemented in FUMA v.1.3.7, a web-980 

based platform to  functionally map and annotate GWAS results (https://fuma.ctglab.nl/),114 981 

to test if genome-wide significant regions include relatively high or low proportions of variants 982 

with certain functional annotations. All candidate variants in linkage disequilibrium with an 983 

independent significant variant were considered for the ANNOVAR enrichment test. 984 

Independent significant variants were defined as autosomal variants reaching p < 5.E-08 and 985 

clumped with an r2 threshold of 0.60. Candidate variants were defined as all variants reaching 986 

p < 0.05 and showing r2 ≥ 0.60 with an independent significant variant. UK Biobank release2 987 

served as reference panel. If variants were annotated with multiple functional categories, each 988 

category was counted as distinct annotation. Enrichment was computed as the proportion of 989 

variants with a certain annotation divided by the proportion of variants with that annotation 990 

relative to all available SNPs in the reference panel. A two-tailed Fisher's exact test was 991 

conducted to test significance.  992 

Credible sets of variants 993 

For each locus identified for the three BAG traits, we used FINEMAP34 v.1.4.1 to construct 994 

credible sets of variants that cumulatively capture 95% of the regional posterior probability to 995 

include the causal variant. FINEMAP uses a Bayesian framework and a computationally efficient 996 

shotgun stochastic search algorithm to model the LD structure and the strength of the variants’ 997 

associations (Z scores) to infer likely causal variants. For each locus, we used a 5 Mb window 998 

around the index variant to identify the furthest variants in linkage disequilibrium (R2 ≥ 0.1) 999 

with the index variation. Base pair positions of the identified variants were used as lower and 1000 

upper bound of the respective genomic region. LD matrices covering all variants within that 1001 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2023. ; https://doi.org/10.1101/2023.12.26.23300533doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.26.23300533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genomics of brain age gap 
 

 

33 

genomic region were calculated by applying LDstore115 v2.0 to the same allelic dosage data as 1002 

employed for the genome-wide association analysis. We then applied FINEMAP allowing for up 1003 

to k=10 causal variants within each region (‘--sss --n-causal-snps 10 --prob-cred-set 0.95’). 1004 

Expected numbers of causal variants were derived by multiplying each evaluated number of k 1005 

causal variants by the FINEMAP model-based probability. We report 95% credible sets for the 1006 

most probable k model and report all variants that have been included in one of the credible 1007 

sets for the k causal signals. We also report the FINEMAP model-averaged regional heritability, 1008 

i.e., the estimated phenotypic variance explained by causal variants within each genomic 1009 

region.116  1010 

Functional annotation of variants 1011 

Annotation of variants was carried out using ANNOVAR,35 which allows to assign functional 1012 

categories to variants through their physical position relative to defined genes. We used RefSeq 1013 

gene annotations in human genome build 19 (hg19)117 retrieved from the UCSC Genome Browser 1014 

Annotation Database.118 We identified the nearest gene based on the priority of the variant 1015 

function (default ANNOVAR precedencies used) and the physical distance between the 1016 

respective variant and the gene. Moreover, we used ANNOVAR to predict transcript 1017 

consequences of non-synonymous exonic variants and added deleteriousness scores from CADD 1018 

(Combined Annotation Dependent Depletion),36 DANN (Deep Neural Network for Annotating 1019 

pathogenicity),37 and REVEL (Rare Exome Variant Ensemble Learner)38 provided in dataset 1020 

dbnsfp35a (hg19).119 We also added information on the cytogenetic band of each variant. 1021 

Gene nomination through functional annotation of credible variants 1022 

Credible variants were annotated using ANNOVAR (see section above),35 and variant posterior 1023 

probabilities (see section ‘credible sets of variants’) were aggregated for each implicated gene. 1024 

Genes were ranked according to their aggregated posterior probabilities and nominated for gene 1025 

prioritization. Genes implicated by non-synonymous exonic variations were separately 1026 

nominated for gene prioritization. Implicated genes were ranked based on the CADD phred-1027 

scaled scores of the non-synonymous exonic variant. If a gene was implicated by multiple non-1028 

synonymous variants, the top CADD phred-scaled score was used. 1029 

Gene nomination through Summary-data-based Mendelian Randomization 1030 

We used summary-data-based Mendelian Randomization implemented in SMR v.1.0340,41 to test 1031 

if the effect of an identified variant is potentially mediated by expression or splicing of a certain 1032 

gene. The SMR software provides an integrative approach that combines GWAS summary 1033 

statistics of complex phenotypes with information of omics resources to help prioritize gene 1034 

targets and regulatory elements. It adopts the Mendelian Randomization (MR) strategy by using 1035 
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a genetic instrument (z) to test for pleiotropic association between gene regulation (exposure; x) 1036 

and a trait of interest (outcome; y). The MR effect of gene regulation on a trait (βxy) is calculated 1037 

as two-step least squares estimate and defined as the ratio of the instrument effect on the 1038 

outcome (βzy) and that on the exposure (βzx),	i.e., βxy = βzy/βyz. The term ‘pleiotropy’ is preferred 1039 

over ‘causality’ in this context, since SMR is based on a single genetic instrument and is unable 1040 

to distinguish between (horizontal) pleiotropy and causality (vertical pleiotropy). The SMR 1041 

software features the heterogeneity in dependent instruments (HEIDI) method, which uses 1042 

multiple instruments in the regulatory region to distinguish pleiotropy from linkage (i.e., 1043 

transcript and phenotype are not associated because of a shared causal variant but due to two 1044 

or more distinct causal variants in linkage). We employed SMR with the BrainMeta v2 cis-eQTL 1045 

(gene expression) and cis-sQTL (gene splicing) summary statistics derived from RNA-sequencing 1046 

data of 2,865 brain cortex samples from 2,443 unrelated individuals of European ancestry.42 Our 1047 

GWAS variants were succesfully mapped to 16,375 eQTL and 58,941 sQTL probes. We only 1048 

considered results with FDR < 0.05, pHEIDI > 0.01, and those associations that could be assigned 1049 

to genome-wide significant loci from our discovery GWAS. We used the clumping procedure 1050 

implemented in PLINK v1.90b6.8 to assign significant SMR associations to discovered index 1051 

variations with a window-size of 3,000 kbp and R2 of 0.80. Genes implicated by eQTL and sQTL 1052 

SMR were separately nominated for gene prioritization and ranked according to SMR p-value. 1053 

Gene nomination through GTEx eQTL lookup 1054 

Index variations and their genome-wide significant neighbors in strong linkage disequilibrium 1055 

(R2 > 0.8) were mapped to single-tissue and multi-tissue cis-QTLs cataloged in the Genotype-1056 

Tissue Expression (GTEx) V8 database.120 Significant variant-gene pairs for 49 tissues were 1057 

obtained using the prefiltered file provided by GTEx (GTEx_Analysis_v8_eQTL.tar). 1058 

Multi-tissue QTLs were obtained using the METASOFT results for all 49 tissues 1059 

(GTEx_Analysis_v8.metasoft.txt.gz). Significant multi-tissue cis-QTLs were defined as 1060 

variant-gene associations with data available for at least 10 tissues and with an m-value ≥ 0.9 1061 

(i.e., the posterior probability that the effect exists) in at least 50% of the available tissues. Of 1062 

the remaining multi-tissue QTLs, a small fraction did not show convincing meta-analytic 1063 

p-values (across tissues) derived from the Han and Eskin's Random Effects Model (RE2). We 1064 

thus set an inclusion criterion of RE2 p < 5E-8 (met by 99.9% of remaining entries), which 1065 

resulted in a final number of 4,420,841 multi-tissue QTLs. Mapping our genome-wide significant 1066 

variants to single- and multi-tissue QTLs was carried out using the GTEx hg19 liftover variant 1067 

IDs. If multiple variants per discovered locus were associated with the expression of the same 1068 

gene in the same tissue (single-tissue QTL mapping) or associated with the expression of the 1069 

same gene across tissues (multi-tissue QTL mapping), respectively, we decided to only report 1070 

QTL results of the variant that is in strongest LD to the index variation of the discovered locus. 1071 
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We used the Bioconductor package biomaRt121 to convert Ensemble gene IDs to HGNC gene 1072 

IDs and symbols. Genes implicated by GTEx single-tissue and multi-tissue eQTLs were 1073 

separately nominated for gene prioritization and ranked according to the number of significant 1074 

associations across tissues. 1075 

Gene nomination through Polygenic Priority Scores 1076 

We calculated polygenic priority scores using PoPS,43 a similarity-based gene prioritization 1077 

method designed to pinpoint causal genes in significant GWAS loci. PoPS is applied on gene-1078 

based results derived from MAGMA, and uses the full polygenic signal (including signals beneath 1079 

genome-wide significance) to identify the most likely causal genes. PoPS incorporates data from 1080 

a variety of sources, including 73 publicly available single-cell RNA sequencing datasets, curated 1081 

biological pathways, and protein-protein interaction (PPI) networks. In total, more than 57,000 1082 

features are used to prioritize genes. We used the same PoPS feature map and same MAGMA 1083 

gene annotation file as employed in the original work (downloaded from 1084 

https://www.finucanelab.org/data).43 We applied MAGMA v.1.10 on our GWAS summary 1085 

statistics using the SNP-wise mean gene analysis with linkage information derived from the 1086 

discovery dataset (32,634 white-British ancestry individuals). For each index variant identified 1087 

through conditional analyses, we nominated up to three genes with the highest PoPS scores for 1088 

gene prioritization. Only genes located within 500 kb of the index variant and showing positive 1089 

scores were considered.  1090 

Gene prioritization 1091 

Genes considered for gene prioritization were nominated based on seven categories: 1) genes 1092 

implicated by functional annotation of credible variants (ranked by cumulative variant posterior 1093 

probabilities), 2) genes implicated by transcript consequences of non-synonymous exonic credible 1094 

variants (ranked by highest CADD deleteriousness score), 3) genes implicated by SMR eQTLs 1095 

(ranked by p-value), 4) genes implicated by SMR sQTLs (ranked by p-value), 5) genes 1096 

implicated by GTEx single-tissue eQTLs (ranked by number of significant associations across 1097 

tissues), 6) genes implicated by GTEx multi-tissue eQTLs (ranked by number of significant 1098 

associations across tissues), 7) genes implicated by PoPS (ranked by score). For each nominated 1099 

gene, we calculated a priority score as described below. 1100 

Let 𝑖 represent a specific gene, and 𝑗 denote the index of the gene nomination analysis conducted. 1101 

The priority score (𝑃!) for gene 𝑖 is computed by considering both the cumulative posterior 1102 

probability (𝐶!) obtained from the first gene nomination category and the ranks of the gene (𝑅!") 1103 

across the six additional nomination categories (𝑗 ∈ [1,6]). The formula is expressed as: 1104 
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 1105 

where… 1106 

𝑃! denotes the priority score for gene 𝑖 1107 

𝐶! represents the cumulative posterior probability for gene 𝑖 1108 

𝑛" denotes the number of genes ranked in nomination category 𝑗 1109 

𝑛" + 1 − 𝑅!" expresses the relative position of gene 𝑖 in the ranking. For example, if gene	𝑖 1110 

holds the top position (𝑅!" = 1), this term evaluates to 𝑛", reflecting the 1111 

maximum possible contribution. 1112 

#!$#!%&'

(
  calculates the total number of fractions (1 point per category in total) that can 1113 

be assigned to all genes within a nomination category 1114 

We designate the gene with the highest priority score per locus as the prioritized gene, indicating 1115 

that it holds the highest probability of being causal. 1116 

GWAS catalog search 1117 

All index variations from the SNP-level analyses and their genome-wide significant neighbors in 1118 

strong linkage disequilibrium (R2 > 0.8) were selected for an NHGRI (National Human Genome 1119 

Research Institute) GWAS catalog search. Index variations were identified through conditional 1120 

analysis (see section ‘Conditional analysis’). Genome-wide significant neighbors in strong linkage 1121 

disequilibrium were identified by carrying out a p-value informed clumping procedure with 1122 

R2 > 0.8 and 3,000 kb window-size implemented in PLINK v1.90b6.8. We used the GWAS 1123 

catalog released on December 21, 2021 (gwas_catalog_v1.0-associations_e105_r2021-12-21.tsv 1124 

received from https://www.ebi.ac.uk/gwas/api/search/downloads/full). We only considered 1125 

GWAS catalog entries that met genome-wide significance. 1126 

Gene-based analysis 1127 

Gene-based analysis were carried out using fastBAT as implemented in GCTA 1.93.1f.69 Gene 1128 

coordinates were obtained from the RefSeq gene annotation file in GFF3 format (genome-build 1129 

GRCh37.p13; annotation release 105.20201022).117 NCBI chromosome names were converted to 1130 

UCSC format. We selected genes of biotype ‘protein_coding’ located on chromosomes 1-22, X, 1131 

Y, and MT. In the case of duplicate gene names, only the first entry was kept after sorting by 1132 

chromosome, gene symbol, start coordinate, and end coordinate. This resulted in 19,319 1133 

protein-coding genes, of which 18,583 were successfully mapped to SNPs and INDELs included 1134 

in GWAS analyses. We ran fastBAT with linkage information derived from the discovery dataset 1135 

(32,634 white-British ancestry individuals). The window around gene boundaries was set to 0 kb 1136 

to reduce dependencies between gene associations. Genes with FDR < 0.05 (Benjamini & 1137 
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Hochberg) were regarded as significant after multiple testing correction. To identify independent 1138 

discoveries, we carried out a p-value informed clumping procedure with a conservative window-1139 

size of 3,000 kbp. To identify distinct discoveries across the three BAG traits, we performed a 1140 

2nd-level clumping procedure based on the top p-value of each gene across traits, again with 1141 

3,000 kbp window-size.  1142 

Pathway analyses 1143 

Gene Ontology (GO) pathway analyses were conducted using R package GOfuncR 1.14.0 with 1144 

Bioconductor database Homo.sapiens v1.3.1 build upon GO.db v3.14.0.71,72,122,123 The GO 1145 

annotation knowledgebase is a curated collection of biological terms and their relationships in 1146 

order to categorize genes and their products based on their involvement in ‘molecular processes’, 1147 

the ‘cellular components’ where they perform actions, and the higher-order ‘biological processes’ 1148 

they contribute to. We used a set of selected genes (genes prioritized through positional and 1149 

transcription-based colocalization strategies and those with gene-based FDR < 0.05) to perform 1150 

overrepresentation analyses of GO terms using the hypergeometric test implemented in 1151 

GOfuncR. The total count of genes included in overrepresentation tests was 201, 339, and 303 1152 

for grey matter, white matter, and combined grey and white matter brain age, respectively. We 1153 

also conducted gene set enrichment analyses (GSEA) based on the complete gene-based result 1154 

table to test for lower-than-expected ranks (p-values) of gene sets using the Wilcoxon rank-sum 1155 

test implemented in GOfuncR. By default, GOfuncR calculates family-wise error rates for terms 1156 

in each of the three GO aspects based on random permutations. To reduce the chance of false 1157 

discoveries, we integrated these permutation-based results to calculate family-wise error rates 1158 

across the three GO aspects. In addition, we refined results with FWER < 0.05 by decorrelating 1159 

GO terms and restricting results to the most specific terms using the implemented elim 1160 

algorithm.124 For result evaluation and interpretation, we determined the number of distinct loci 1161 

of genes that contribute to a GO term (using a 3,000 kbp clumping window) in order to account 1162 

for spatial clustering of genes and potential gene result dependencies. 1163 

Polygenic score analysis in replication sample 1164 

We used PRSice-2 to calculate polygenic scores (PGS) for BAG in the well-powered UKB 1165 

European ancestry replication sample.125 Polygenic scores were computed based on variants 1166 

reaching  ten pre-defined discovery p thresholds: 1.00, 0.50, 0.20, 0.10, 0.05, 0.01, 1.0e-03, 1.0e-04, 1167 

1.0e-06, 5.0e-08.82,126 Variants with replication MAF < 0.01 were discarded. Variants were 1168 

clumped with R2 < 0.1 and 500 kbp window-size. Associations between the ten resulting PGS 1169 

and BAG were calculated as partial correlations using sex, age, age2, scanner site, total 1170 

intracranial volume, genotyping array, and the first 10 genetic principal components serving as 1171 

covariates. 1172 
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Genetic correlations  1173 

We carried out bivariate LD score regression79 to compute pair-wise genetic correlations both 1174 

among BAG traits and between BAG traits and other complex traits. Bivariate LD score 1175 

regression was run with 38 selected traits, which have frequently been used in similar 1176 

investigations and cover a broad range of mental and physical health domains.80–82 In addition, 1177 

we calculated genetic correlations with a set of 989 heritable UK biobank traits, whose GWAS 1178 

summary statistics have been made publicly available by Neale and colleagues (Zenodo: 1179 

https://doi.org/10.5281/zenodo.7186871). LD score regression analyses included HapMap3 1180 

variants after exclusion of variants in the MHC region (variant list downloaded from 1181 

http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip). Genetic correlations 1182 

with FDR < 0.05 were regarded as significant after multiple testing correction.  1183 

Mendelian randomization 1184 

Evidence for potential causal associations between BAG and other complex traits was derived 1185 

using generalized summary-data-based Mendelian Randomization (GSMR) as implemented in 1186 

GCTA 1.93.1f.32,83 The GSMR method uses multiple genetic variants as instruments (z) to test 1187 

for causality between an exposure (x) and outcome variable (y). Instruments are near-1188 

independent genetic variants (clumped with R2 < 0.05) associated with the exposure variable at 1189 

a genome-wide significance level. GSMR is designed for two-sample scenarios, that is, GWAS 1190 

summary-statistics of large independent studies are used to estimate the effects of the exposure 1191 

on the outcome (βxy) based on the effects of the instruments on the exposure (βzx) and the effects 1192 

of the instruments on the outcome (βzy). The ratio between βxy and βzx reveals the estimated 1193 

mediation effect, i.e., βxy = βzy/βzx, which is expected to be identical at each instrument under a 1194 

causal model. Estimates from multiple instruments are integrated in a generalized least-squares 1195 

approach. The use of multiple instruments enables to distinguish between causality, where the 1196 

effect of an instrument on the outcome is mediated by the exposure, and horizontal pleiotropy, 1197 

where the effect of an instrument on the outcome is exhibited through pathways other than the 1198 

exposure. GSMR tests for heterogeneity in dependent instruments (HEIDI) to remove outliers 1199 

based on the deviation of each instrument from the causal model. We used the default setting 1200 

of removing HEIDI-outliers with deviation p < 0.01. To facilitate effect size comparisons, we 1201 

standardized instrument effects on continuous exposure variables (βzx) based on z-statistic, allele 1202 

frequency and sample size. GSMR has been demonstrated in simulations to be more powerful 1203 

than inverse-variance-weighted MR (MR-IVW) and Egger regression (MR-Egger).83 Other 1204 

empirical investigations have revealed qualitatively similar results between GSMR, MR-IVW, 1205 

and MR-Egger.82 For GSMR analyses, we selected 11 risk factors based on the availability of 1206 

summary statistics from large-scale GWAS that did not include the UK Biobank cohort and 1207 

provided at least m = 30 independent genome-wide significant variants as instruments (clumped 1208 
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with R2 < 0.05). Due to the limited number of genome-wide significant variants for BAG, we 1209 

only conducted unidirectional GSMR analyses with BAG serving as outcome variable. 1210 

Polygenicity 1211 

We conducted genetic effect-size distribution inferences implemented in R package 1212 

GENESIS v1.0127 to estimate the number of underlying susceptibility variants for BAG under a 1213 

normal-mixture model of variant effects. Analyses of the benchmark traits neuroticism and 1214 

height were based on the publicly available GWAS summary statistics by Baselmans et al.87 and 1215 

Allen et al.128 Variants were filtered to 1.07 million common variants with MAF ≥ 0.05 included 1216 

in the HapMap3 panel after exclusion of the major histocompatibility complex (MHC) region. 1217 

SNPs with less than 0.67 times the 90th percentile of sample sizes and those with extremely 1218 

large effect sizes (z2 > 80) were removed. We fitted the GENESIS three-component model, which 1219 

assumes that 99% of the variant effects are null and the remaining 1% follow a mixture of two 1220 

normal distributions, allowing a fraction of the susceptibility SNPs to belong to a cluster with 1221 

larger effect sizes. We have chosen the three-component model (M3) over the simpler two-1222 

component model (M2), because a) M3 has been shown to provide distinctly better fits for a 1223 

variety of complex traits, b) M3 has been shown to perform well even if the true data does not 1224 

conform the model assumptions, and c) M2 appears to exhibit a more pronounced bias towards 1225 

underestimating the number of susceptibility SNPs, particularly if model assumptions are not 1226 

met.89 We used default settings for defining tagging SNPs and LD scores by using an LD cutoff 1227 

of 0.1 and LD window of 1 Mbp. 1228 
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