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Abstract 

Recent studies suggest that gut microbiota composition, abundance and diversity can 

influence many chronic diseases such as type 2 diabetes. Modulating gut microbiota through 

targeted nutrition can provide beneficial effects leading to the concept of personalized nutrition 

for health improvement. In this prospective clinical trial, we evaluated the impact of a 

microbiome-based targeted personalized diet on hyperglycaemic and hyperlipidaemic 

individuals. Specifically, BugSpeaks®- a microbiome profile test that profiles microbiota using 

next generation sequencing and provides personalized nutritional recommendation based on 

the individual microbiota profile was evaluated. The test arm [microbiome-based nutrition] 

showed a statistically significant decrease in HbA1c level [from 8.30 ± 1.12 to 6.67 ± 0.89, 

p<0.001] after 90 days. The test arm, also showed a 5% decline in the systolic pressure whereas 

the control arm showed a 7% increase. Incidentally, a sub-cohort of the test arm of patients 

with >130mm Hg systolic pressure showed a statistically significant decrease of systolic 

pressure by 14%. Interestingly, CRP level was also found to drop by 19.5%.  Alpha diversity 

measures showed a significant increase in Shannon diversity measure [p<0.05], after the 

microbiome-based personalized dietary intervention. The intervention led to a minimum 2-fold 

[Log2 fold change] increase in beneficial species like Phascolarctobacterium succinatutens, 

Bifidobacterium angulatum, Levilactobacillus brevis, and a similar decrease in non-beneficial 

species like Alistipes finegoldii, Sutterella faecalis. Overall, the study indicated a net positive 

impact of the microbiota based personalized dietary regime on the gut microbiome and 

correlated clinical parameters. 

Key Words: Gut microbiome, Microbiome-based Diet, HbA1c, Hyperglycaemia, CRP, 

hypertension, hyperglycaemia  
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1. Background 

The human gut microbiome, a complex ecosystem of trillions of microorganisms, plays a 

crucial role in our health and disease. It does so by influencing various physiological 

processes, including metabolism, nutrition, immunity, and even cognitive and behavioural 

functions1–5. Further, the gut microbiome’s composition and diversity vary among individuals, 

influenced by factors such as age, diet, and environment6. A balanced gut microbiome or 

eubiosis, is crucial for health, while an imbalance or dysbiosis, can contribute to various 

diseases like systemic inflammation, insulin resistance, and autoimmune and metabolic 

disorders7. Furthermore, a strong and expanding evidence base supports the influence of gut 

microbiota in human metabolism, particularly in relation to conditions like hyperglycaemia 

and hyperlipidaemia1–3,7. 

Hyperglycaemia, characterized by high blood sugar levels1,3, and hyperlipidaemia, 

marked by high levels of lipids in the blood1,2,8, are both metabolic disorders often associated 

with type 2 diabetes mellitus [T2DM] and cardiovascular diseases, respectively1–3,7,8. Altered 

glucose homeostasis is associated with altered gut microbiota, which in turn is clearly 

associated with the development of T2DM and associated complications, by increasing serum 

concentrations of branched-chain amino acids causing insulin resistance3,2,9,10 For instance, a 

study conducted in 2019 found that the relative abundance of several bacterial taxa was 

significantly higher in individuals with diabetes plus hyperlipidaemia, with several bacteria 

correlated with fasting plasma glucose and blood lipid levels of the participants11,12. 

These reports clearly indicate that the gut microbiota influences host nutritional status 

and phenotype, regulating everything from nutrient absorption, storage, metabolism to even 

disease development and progression. These substantial evidences also indicate that the gut 

microbiota play a significant role, through its own or interacting metabolites, which can be 

modulated for a positive role in regulating these metabolic syndromes4,5,8,11. Specifically, this 
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can be achieved by exploiting the malleability of the gut microbiome, which not only vary 

from person to person, but can easily be changed by diet13. Consequently, modulation of the 

gut microbiota, through various means, has emerged as an important tool to fulfil nutritional 

requirements, combating malnutrition and even diseases such as hyperglycaemia and 

hyperlipidaemia1,2,12.  

Several recent studies have reported the application of personalized nutrition to improve 

intestinal microflora, and in turn the health status of the individual14–17. Specifically, the 

difference in individual responsiveness based on the gut microbiota has the potential to 

become an important research approach for personalized nutrition and health management16. 

In the context of hyperglycaemia, the gut microbiota’s influence on postprandial glycaemic 

responses to identical meals has been demonstrated18. This suggests that a personalized diet 

based on one’s gut microbiome could significantly help in lowering hyperglycaemia and 

alleviating its negative effects19,20. A study conducted by the Mayo Clinic Centre for 

individualized medicine found that a personalized diet based on one’s microbiome [along with 

genetics, age, and activity level] is a far better way to control one’s blood glucose than cutting 

carbohydrates and calories21,22,23. This approach fits into precision medicine paradigm by 

considering different diet patterns and adopting the best one based on individual microbiota 

composition to achieve significant adiposity reduction and improve metabolic status.24–26 

BugSpeaks® is a microbiome profiling test that provides nutritional recommendation 

based on the individual’s microbiota profile ascertained through whole genome shotgun 

metagenomics sequencing. In this prospective interventional trial, we have investigated the 

impact of BugSpeaks® recommended gut microbiome-based personalized diet in 

hyperglycaemic and hyperlipidaemic individuals. Specifically, the impact on clinical 

parameters such as HbA1c [hyperglycaemic], Total Cholesterol, LDL, HDL, Triglycerides, 

Non-HDL Cholesterol [hyperlipidaemic], CRP and IL-10 [inflammatory markers] have been 
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evaluated. Most importantly, the impact of the personalized diet on the gut microbiome, and 

possible correlations with the clinical parameters have also been evaluated. 

2.0. Materials and Methods 

2.1 Study design and subjects’ selection:  

This prospective interventional trial was an open label, controlled, randomized, 

comparative, parallel group study, with two arms, conducted in conformity with ICH-GCP [E6 

R2] guidelines, the Helsinki Declaration, and the local regulatory requirements [Indian GCP, 

Indian Council of Medical Research, and New Drugs and Clinical Trials Rules-2019]. There 

was no further changes or amendments made after protocol approval. The study was initiated 

only after the receipt of ethics committee (EC) approval (Institutional Ethics committee, 

Charak Hospital- Reg:ECR/152/Inst/MP/2021, Bhopal, India). After obtaining the informed 

consent, subjects were screened by undergoing various assessments as per the schedule of 

assessment mentioned in protocol. This trial is registered and approved with the clinical trials 

registry – India with the following number CTRI/2022/05/042791 on 24/05/2022.   

The trial included 30 Indian adults with hyperglycaemia and hyperlipidaemia, with 

HbA1c ≥ 8 or LDL cholesterol ≧ 120 mg/mL, or both. Both male and female participants were 

included in the study, with an age range of 42-65 years; with varying body weights [body mass 

index [BMI] of 19.6 – 33.3 kg/m2]; willingness to provide written informed consent and 

comply with study instructions for its duration, specifically agree to follow a personalised diet 

for 3 months. Exclusion criteria included subjects with history of alcohol, smoking or tobacco 

consumption; history of clinically significant physiological or neurological or psychiatric 

disease; organ transplantation or surgery in the past 6 months; known hypersensitivity or 

idiosyncratic reaction or intolerance to any dietary changes or any related products as well as 

severe hypersensitivity reactions [like angioedema] to any drugs or food products; difficulty 
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with donating blood were excluded from the study. With the evaluation of gut microbiome in 

mind, individuals treated with oral antibiotics during two weeks prior to the study, who are 

undergoing any dietary restrictions, who consume antioxidant supplements, fermented foods 

[>3 servings per week] and/or laxatives, were also excluded from the study. Women who 

consume oral contraceptives or who are pregnant or breastfeeding, were also excluded from 

the study. Participants who met the necessary inclusion criteria were further encouraged not to 

change their current physical activities, and to refrain from any changes in their dietary habits 

before starting the clinical trial. 

After obtaining the informed consent, subjects were screened by undergoing various 

assessments. After confirming eligibility, eligible subjects were randomized to receive either 

BugSpeaks® based personalised diet [15 subjects] or regular diet [15 subjects] for 90 days. 

Subjects in both the arms continued with their stable dose of diabetic 

medication.(Sulphonylureas,DDP4 Inhibitors,Thiazolidinediones,Nateglinide) The dietary 

restriction in the study were monitored for 90 days under the supervision of investigator 

through 4 onsite visits, Day 1, Day 30, Day 60 and Day 90 and daily patient diary recording. 

Safety assessment was done through subject reporting and laboratory parameters. 

Table 1: Subject characteristics at baseline 

Gender Male Female 

n 19 11 

Age (Years) 55.05 ± 7.0 53.82 ± 7.97 

Hight (cm) 170.42 ± 6.79 165.45 ± 7.19 

Weight (kg) 72.63 ± 11.37 66.73 ± 10.69 

BMI 24.95 ± 3.11 24.32 ± 2.89 

Values represented as mean ± standard deviation 
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2.2 Investigation product [IP]: BugSpeaks®  

IP used in this clinical trial was a personalized gut microbiome-based diet, generated 

based on the individual’s gut microbiome. Briefly, the personalization of the diet was based on 

an in-silico compilation of associations between gut microbiome, microbial metabolism, 

disease and nutrition [and in extension foods]. We overlayed and integrated these resources on 

to an individual’s gut microbiome profile in order to establish nutritional associations between 

one’s gut microbiome, with the overall objective of formulating a personalized set of dietary 

recommendations.  

2.3 Study protocol and intervention: 

The current randomized prospective study was conducted as per the schedule provided 

in Figure.1 [study design]. The trial initiated with screening and baseline testing of all the 

subjects followed by stool sample collection for gut microbiome testing. Block randomization 

of 15 participants to either test arm [receiving BugSpeaks® gut microbiome-based personalized 

diet] or control arm [receiving regular diet] for the random sequence for treatment allocation 

was generated using  online randomization tool [www.randomization.com] using pseudo 

number generator. The gut microbiome was profiled for the 15 participants of the test arm using 

whole genome shotgun metagenomics and personalized diet regimes were generated based on 

the individual microbiota profile. Personalized diet plans based on the individual’s microbiota 

profile were generated using algorithms and matrices which took into consideration abundance 

of various microbes and the effect of various food items in modulating their level. During the 

intervention period [day 1 to 90], all the participants were instructed to follow either the 

BugSpeaks® gut microbiota based personalized nutritional meal plan (test arm) or regular diet 

regimes (diabetic meal plan – control arm) under the supervision of a dietician and principal 
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investigator. The daily diet and occurrence of adverse events were recorded throughout the trial 

period. Site visit was planned on day 1, 30, 60 and 90 of the study periods. HbA1c, CRP, IL-

10, triglycerides, LDL and HDL and anthropomorphic parameters such as systolic and diastolic 

blood pressure, BMI etc were evaluated for all the participants on Day1 and at the end of the 

study on day 90. One participant in the control arm was lost to follow up. Faecal samples of 

participants of the test arm were collected for microbiome sequencing, analysis and for 

providing nutritional recommendation based on the microbiota profile of each of the 

participants.  

 

Figure 1: Study Design. A flow chart depicting the study design, with two arms of the study, 

list of clinical parameters evaluated as primary end points and the microbiome profiling for 

the intervention arm [left] 
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2.4. Plasma Parameters 

Plasma concentration of the HbA1c, Total Cholesterol, LDL, HDL, Triglycerides, Non-

HDL Cholesterol, CRP and IL-10 were determined at Samadhan Pathology and 

Diagnostics,Bhopal, details along with the method are mentioned below:  

S. No Test Name Method 

1 HbA1c HPLC 

2 Total Cholesterol Photometric 

3 LDL Photometric 

4 HDL Photometric 

5 Triglycerides Photometric 

6 Non-HDL Photometric 

7 Cholesterol Photometric 

8 CRP Immunoturbidimetry 

9 IL-10 ELISA 

 

2.5. Statistical analysis 

The difference between test and placebo group was statically analysed using student’s 

t test. All the data was represented as mean ± standard error [SE]. A p value <0.05 was denotes 

statistical significance unless specified. Also, all endpoints were analysed separately, however 

gut metagenomic analysis was performed with different suite of tools, as described below. 

2.6 Gut Microbiota Analysis 

Faecal samples subjects in the test arm were collected 7 days before intervention [day 

1] and on the last of the study period [Day 90]. Gut microbiota of all the subjects belonging to 

the test arm were processed, sequenced and analysed at Leucine Rich Bio Pvt Ltd., India, using 

shotgun metagenome sequencing method, as detailed below. 

2.6.1. Sample Collection 
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Stool samples were collected from participants in the test arm using Invitek Molecular Stool 

Collection Module [Cat. No. 1038111300, Berlin, Invitek Molecular GmbH]. Each participant 

was given the stool collection kit, with clear instructions about sample collection. The stool 

collection tube contained 8ml of DNA stabilizing solution and an integrated spoon in cap. All 

participants were instructed to collect ~2-3 spoons of stool into the 8ml stabilizing solution. 

Once collected, they were instructed to gently mix the sample with the stabilizing solution for 

15 seconds, seal and then shipped under room temperature to the processing unit for DNA 

extraction. 

2.6.2. DNA Extraction 

DNA was extracted from stool samples using QIAamp® Fast DNA Stool Mini [Cat No./ID: 

51604, QIAGEN] following the manufacturer’s "Fast DNA Stool Mini Handbook" for fast 

purification of genomic DNA. Briefly, the extraction protocol consisted of two major steps: 

Lysis of and separation of impurities from stool samples and purification of DNA thereafter. 

Lysis of and separation of impurities from stool samples was carried out using the InhibitEX 

Buffer [Cat No./ID: 19593, QIAGEN], during which cellular structures release their DNA 

content in the solution. The sample matrix was pelleted by centrifugation and the DNA in the 

supernatant was purified on QIAamp Mini spin columns, which involved removal of proteins, 

binding DNA to the QIAamp silica membrane, washing away impurities, and eluting pure DNA 

from the spin column. Eluted DNA was collected in 1.5 ml DNA Lo-Bind microcentrifuge 

tubes, and the quantity and quality were assessed by Qubit 2.0 DNA HS Assay [ThermoFisher, 

Massachusetts, USA] and NanoDrop® [Roche, USA] to meet the sequencing requirements. 

2.6.3. Sequencing 

Whole metagenome sequencing was performed on all samples using long read sequencing 

technology. Briefly, the DNA library was prepared with the Ligation sequencing kit [SQK-

LSK114] [Oxford Nanopore Technologies [ONT], Oxford, UK], then loaded onto a R10.4.1 
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MinION flow cell [FLO-MIN114] and sequenced on the ONT MinION Mk1C device [MIN-

101C]. Basecalling and demultiplexing of sequence reads was performed with Guppy v4.2.2 

and with assistance by MinKNOW GUI v20.10. Raw sequencing reads were stored in FastQ 

format for further computational analysis. 

2.6.4. Upstream Analysis 

The upstream analysis involved quality check and quality improvement measures, 

including but not limited to host [human] sequence removal. This was followed by alignment 

of quality processed reads to a reference database of microbial genomes. The % normalized 

abundances, of all the microorganisms identified within these samples, were quantified, and 

later used for downstream analysis involving various statistical measures.  

To elaborate, a thorough quality check of the raw sequencing data and some quality 

improvement measures were adopted to retain only quality reads for further processing. 

Primarily, the pre-processing operations included a quality check through NanoStat29 [v1.4.0] 

[https://github.com/wdecoster/nanostat] and removal of short and sub-par quality reads. Later, 

the reads that were deemed suitable for further analyses were mapped to the latest stable version 

of the human reference genome GH3830 [GRCh38], using Bowtie231 [v2.5.2], to align and 

filtered out host [human] sequences from the data. 

Kraken 2, a taxonomic classification system that uses exact k-mer matches to achieve 

high accuracy and fast classification of sequences was utilized for rapid, accurate, and sensitive 

microbial classification and quantification of species within the samples32 

[https://github.com/DerrickWood/kraken2/wiki/About-Kraken-2]. A custom database, built on 

the comprehensive, integrated, non-redundant, well-annotated set of sequences from Reference 

Sequence [RefSeq] collection [https://ftp.ncbi.nlm.nih.gov/genomes/refseq/], was used as the 

reference database. The result were the raw abundance profiles of prokaryotes [bacteria, 

archaea], eukaryotes [protozoa, metazoa etc.] and viruses, stratified across all taxonomic levels. 
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2.6.5. Downstream Metagenomic Analysis 

Data filtering and data normalization steps were performed to remove low quality or 

uninformative features from raw abundance data to improve downstream statistical analysis. 

Briefly, features with exceedingly small counts [<5 reads] and in very few samples [<10% 

prevalence] were filtered out, followed by a low variance filter using variances measured by 

inter-quantile range [IQR]. Normalization is an essential step in the analysis of microbial 

abundances in shotgun metagenomics. Data normalization addressed the variability in 

sampling depth and any sparsity of the data to enable more biologically meaningful 

comparisons. Trimmed mean of M-values [TMM] is one of the best performing normalization 

methods, which has showed a high True Positive Rate [TPR] and low False Positive Rate 

[FPR]33. It is also known to be best in controlling the FDR. Hence, we performed TMM 

normalization on the data to ensure accurate biological interpretation of the metagenomic data. 

Taxonomic composition of communities across samples and comparing groups were 

visualized for direct quantitative comparison of abundances. Percentage bar plots were created 

for comparing group of the test arm, Day 1 [before intervention] and Day 90 [after 

intervention], for viewing the composition at various taxonomic levels.  

Alpha diversity was characterized using different measures. Chao1 index was used for 

richness-based measure, while Shannon index was used to estimate diversity of the community 

based on richness as well as evenness [the abundance of organisms]. Further, the statistical 

significance of grouping based on experimental factor was also estimated. Furthermore, 

'similarity' or 'dissimilarity' between the two experimental factors was also measured using 

Beta diversity methods. Non-phylogenetic beta diversity analysis was performed employing 

Bray-Curtis distance. Principle Coordinate Analysis [PCoA] was used to visualize the distance 

matrix created by the beta diversity analysis and statistical significance of the clustering pattern 

in PCoA plots were evaluated using Permutational ANOVA [PERMANOVA]. Both the alpha 
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and beta diversity analyses were performed using the phyloseq packages34,35 

[https://github.com/joey711/phyloseq] and the results were plotted as box and whisker plots 

for alpha diversity and PCoA plot for beta diversity respectively. 

Differential abundance [DA] analysis was also performed to identify and characterize 

significantly altered microbial abundances across the experiment factors. Recently it has been 

highlighted that there is a high variation in the output of DA tools across sequencing datasets, 

presenting issues with reproducibility among microbiome researchers. Hence, it is 

recommended that researchers use a consensus approach based on several DA tools to help 

ensure results are robust36. Considering this, we performed the differential abundance analysis 

with five different DA tools, viz., Univariate Analysis [T-Test ANOVA]37, MetagenomeSeq38–

40, EdgeR [v3.12]41, DeSeq242, and LEfSe [Linear discriminant analysis Effect Size]43. While 

each of these DA tools differ in their approach to data normalization and the algorithms used 

for evaluation of variance or dispersion, features were deemed to be significant based on their 

adjusted p-value [default adj.p-value cutoff = 0.05]. Once the DA analysis was performed using 

individual tools, we identified those microbial species that were called significantly [p < 0.01] 

differentially abundant in “consensus” by 3 or more DA tools, ensuring the robustness of the 

DA characterization. 

In order to gain insights into the probable role of taxa in terms of correlation and deduce 

the importance of their participation in biological interactions, we also performed the network 

analysis. In order to illustrate the differential correlations of the gut metagenome profiles before 

and after the BugSpeaks® personalized diet, analysis was conducted for selected taxa obtained 

after data pre-processing and only those significantly correlated taxa were reported. Briefly, 

abundance profiles across all samples were imported and loaded using Pandas [V. 2.1.2], and 

preprocessing of the data was performed, which included removal of genus and species with 

low variance and low raw abundance counts. TMM transformation of the data was performed 
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using Conorm [V. 1.2.0], and other pre-processing steps were performed using Sklearn [V. 

1.3.0], which together created train test splits, for using this data to train. Spearman R 

correlation, between all species/genus and the intervention arm, was performed using Scipy [V. 

1.11.1], followed by a filtration step of removing all the correlations with < 0.5 Spearman R 

coefficient and > 0.05 p-value. Network diagrams of species interactions of pre- and post-

intervention groups were also generated using Networkx [V. 3.1]. The features of the network 

include; Edge thickness is proportional to the Spearman correlation between species, Edges are 

deleted if Spearman is below the thresholds highlighted above, blue-coloured edge represents 

a negative correlation, while a pink-coloured edge represents positive correlation; finally 

different node colours were used for different kingdoms. 

2.7. Efficacy and safety variables 

All endpoints were set to assess impact of gut microbiome-based dietary intervention. 

It included the estimation change in serum HbA1c, CRP, Total Cholesterol, LDL, HDL, 

Triglycerides, Non-HDL Cholesterol and IL-10, and change in faecal gut microbiome. 

Additionally, assessment of adverse events, vital signs [pulse rate, systolic and diastolic blood 

pressure [seated], BMI, body temperature and respiratory rate and physical examination was 

done to evaluate safety of the intervention. 

2.8  Data Availability 

The datasets generated from the next-generation sequencing in this study will be available in 

the NCBI Sequence Read Archive [SRA] repository, Bioproject ID: PRJNA1046298, 

following an embargo from the date of publication to allow for commercialization of research 

findings 

3.0 Results and Discussion 

Present clinical trial was conducted to evaluate the safety and impact of BugSpeaks® 

microbiome-based personalized dietary regime in hyperglycaemic and hyperlipidaemic 
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individuals, specifically to evaluate the impact of such diet on gut microbiota and other disease 

related clinical parameters. The current clinical trial was a randomized, double-blinded, 

prospective study, initiated with 30 Indian subjects with hyperglycaemia and/or 

hyperlipidaemia per study design [Figure 1, study flow chart]. Demographic details of the test 

subjects at baseline were provided in Table 1 [Subject characteristics at baseline]. The effect of 

the intervention on HbA1c, Total Cholesterol, LDL, HDL, Triglycerides, Non- HDL 

Cholesterol, CRP and IL-10 levels were determined on 90th day of the study, post 3 months of 

dietary intervention. The changes in gut microbiome profiles were characterized for the test 

arm only, before and after the microbiome-based intervention. Further, safety of the gut 

microbiome-based personalized diet was studied in terms of the adverse events. 

3.1. Change in HbA1c levels 

Statistically significant decrease in HbA1c level was observed in the test arm with 

personalized microbiome-based diet [from 8.30 ± 1.12 to 6.67 ± 0.89, p<0.001], while only 

small numerical non-statistical decrease in HbA1c level was observed in the control arm with 

regular diet [from 8.24 ± 0.96 to 7.32 ± 2.16, p=0.15] after 90 days of dietary intervention 

[Figure 2A]. 100% of the participants in the test arm, who followed microbiota based 

personalized diet, showed a decrease in HbA1c levels, with a mean reduction of 1.62% in 

HbA1c absolute count [Figure 2B], while only 78.5% participants in the control arm showed a 

decrease in HbA1c levels, with a mean reduction of only 0.91% in HbA1c absolute count 

[Figure 2C]. This meant that there was a 19.6% drop in mean HbA1c levels in the test arm with 

microbiome-based dietary intervention, as compared to only a 11.1% drop in the control arm 

[Figure 2D]. This strongly indicated that achieving a significant reduction in HbA1c levels is 

possible with personalization of diet based on one’s gut microbiome. The reduction in HbA1c 

was found to be much more profound as compared to diabetic specific diet in this trial [test 

arm vs control arm]. This reduction in HbA1c levels was also correlated with changes in the 
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gut microbiota, with shift in composition, abundance and diversity of several species within 

the gut [detailed below]. 

 

Figure 2: Change in HbA1c levels. A: Overall change in HbA1c levels across the arms, 

where ***p < 0.001. B & C: Change in HbA1c levels in each individual, within the 

BugSpeaks personalized nutrition arm and the regular nutrition arm, respectively. D: Overall 

% drop between the two arms. 

 

 

3.2 Change in the blood pressure parameters 

 Elevated blood pressure is a major cardiovascular and metabolic disease risk factor44 . 

Gut microbiota dysbiosis has been reported in patients with high blood pressure45. Gut 

microbiota modulation has been shown to impact blood pressure46. Hence, we wanted to 

investigate if microbiota based nutritional intervention would impact the blood pressure 
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parameters in the participants of the test arm. Mean systolic blood pressure was found to be 

slightly reduced in the participants of the test arm [139mm Hg ± 22 to 132mm Hg ± 10.9] post 

intervention whereas it was found to slightly high in the participants of the control arm who 

undertook regular nutrition [126 mm Hg ± 6.6 to 135mm Hg ± 13.5]. This change however 

was not statistically significant [Figure 3A]. Interestingly, statistically significant decrease in 

systolic pressure [153mm Hg ± 20 to 131mm Hg ± 8.6, p< 0.01] was found in a subset of the 

participants [8 out of 15] in the test arm at the end of the study period [day 90] whose basal 

systolic pressure was >130mm Hg prior to the microbiome based personalized dietary 

intervention. Similarly, a 4.5% decline in diastolic pressure was also found in this subset of 

participants from the test arm, although this decrease was not statistically significant [Figure 

3B]. It has been reported that increase in Lactobacillus and Bifidobacteria are associated with 

lower blood pressure46. Interestingly, gut microbiota analysis of these participants showed 

increased abundance of phylum Firmicutes [Lactobacillus is member of this phylum] and 

Actinobacteria [Bifidobacteria is a member of this phylum] [Figure 4A]. More specifically 

Levilactobacillus brevis and Bifidobacterium angulatum were found higher post intervention 

in the test arm participants. At the genus level we observed an increased abundance of 

Roseburia and Bacteroides, and decreased abundance of Prevotella and Phocaeicola post 

intervention with personalized diet [Figure 4B]. Also, our analysis showed a decreased 

abundance of Alistipes finegoldii in the participants post intervention. Strikingly, high 

abundance of Alistipes finegoldii has been reported in the intestine of patients with high blood 

pressure47. So, a reduction in Alistipes finegoldii abundance might also be a contributing factor 

in the improvement of the blood pressure parameters in this group. 
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Figure 3: Change in Blood Pressure Parameters. A: Overall change in Systolic and 

Diastolic pressures across the comparing arms of Regular Nutrition and BugSpeaks Nutrition. 

B: Change in Systolic and Diastolic pressures within a sub-cohort of patients in BugSpeaks 

Nutrition Showing a significant reduction in Systole within the arm, with **p < 0.01. 

 

3.2. Change in serum CRP levels 

Chronic inflammation has been found to be associated with type 2 diabetes, 

hyperlipidaemia etc.48,49.  High CRP level is an indicator of inflammation and underlying 

disease conditions such as cardiovascular diseases and type 2 diabetes50–52. We evaluated the 

change in CRP level in a subset of participants whose basal serum CRP level was >=2mg/L 

prior to intervention [9 out of 15 participants]. We found 20% decrease in the CRP level post 

intervention although the decrease was not statistically significant [Figure 5]. Interestingly, we 

found decreased Prevotella and increased Roseburia along with an increased Levilactobacillus 

brevis in these participants post intervention [Figure 4B & Figure 7D]. This might be one of 

the reasons for reduced inflammation as increased Prevotella has been found to have pro-

inflammatory effect 53. Similarly increased Levilactobacillus brevis and Roseburia have been 

associated with reduced inflammation54,55,56,50–52. Lowered CRP levels after dietary 

intervention further shows the positive impact of the microbiome-based personalized nutrition 
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in chronic disease conditions such as Type 2 Diabetes. Increase in subject population, along 

with further customization of the microbiome-based diet, might be helpful to get statistically 

significant changes in CRP levels.  

 

Figure.4: Differential Abundance across Phylum [A] and Genus [B] levels. 

 

3.3. Change in other endpoints 

 No statistically significant decrease in the levels of Total Cholesterol, LDL, HDL, 

Triglycerides, Non- HDL Cholesterol and IL-10 was observed in the test arm with personalized 

microbiome-based diet, as compared to the control arm with regular diet, after 90 days of 

intervention.  
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Figure 5: Change in serum CRP levels. CRP levels were found to be decreased by 20% 

post intervention by BugSpeaks personalized nutrition. 

 

3.4. Changes in gut microbiome 

Change in gut microbiome profiles after 90 days of intervention with microbiome-

based personalized dietary regime was characterized only for the test arm and was visualized 

for direct quantitative comparison of abundances, followed by alpha and beta diversity 

measures, and lastly differentially abundant species and network and correlation analysis 

across the comparing groups. 

Since we performed the whole metagenomic sequencing, we were able to profile all the 

microbial taxa within the sample, including fungi and viruses. We did not observe any 

significant difference in the composition; however, we did observe some shift in abundance 

and diversity of few groups. Largely, abundances of Bacteria, Archaea, and Viruses were 

slightly decreased by Day 90 of microbiome-based intervention, by 0.07% [from 99.44% to 

99.37%], 0.04% [from 0.12% to 0.08%], 0.03% [from 0.13% to 0.10%] respectively. Inversely, 
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abundances of Fungi, and Eukaryota increased slightly by Day 90 of microbiome-based 

intervention, by 0.08% [from 0.20% to 0.28%] and 0.06% [from 0.11% to 0.17%] respectively. 

In context of diversity, Shannon diversity index estimated an increase in diversity in Bacteria, 

while small decrease in diversity in kingdoms Archaea, Fungi, Eukaryota and Virus [Figure 

6A]. Other patterns emerged at phylum level, with a significant decrease in abundance of 

Bacteroidetes [from 76.099% to 66.186%], with a 9.91% shift, post microbiome-based 

intervention. This reduction in abundance of Bacteroidetes was largely attributed to the net 

shift in abundance of genus Prevotella, with decrease in abundance of Prevotella copri [↓ by 

9.791%], Phocaeicola plebeius [↓ by 6.540%] and Prevotella hominis [↓ by 1.562%], and 

increase in abundance of Pseudonocardia cytotoxica [↑ by 1.442%], Prevotella stercorea [↑ by 

1.508%] and Bacteroides_sp_CBA7301 [↑ by 4.445%]. There was substantial increase in the 

abundances of Firmicutes and Actinobacteria in test arm, with 5.57% increase [from 16.091% 

to 21.660%] and 2.84% increase [from 0.983% to 3.819%], respectively. Many butyrate 

producing bacteria and probiotics are from these phyla and hence it is possible that a positive 

shift in these phyla may have led to an improvement in hyperglycaemic and inflammation 

parameters in this current study. 

Alpha diversity measures further confirmed these abundance shifts, with significant 

increase in Shannon diversity measure, from 2.43 to 3.11 [p=0.029], post microbiome-based 

personalized dietary intervention [Figure 6B]. On the other hand, Chao1 indicated a minor 

decrease in diversity, from 1154 to 1126 species [Figure 6C]. Together, these estimates 

indicated that there was an overall decrease in species richness, while a significant increase in 

species evenness. In other words, the microbiome-based dietary intervention impacted the gut 

microbiota by reducing the number of species by a small degree, while modulating the other 

species to an even and better distribution of abundances. The beta diversity measure by Bray-

Curtis distance didn’t establish any significant difference between the two arms. However, it 
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displayed clustering between the groups, represented by the ellipses in Figure 6D. Increase in 

subject population, along with finetuning of the personalization of the microbiome-based diet, 

might aid in statistically significant changes in diversity measures. 

Even though there were no statistically significant changes in microbiome profile at the 

higher taxonomic levels, except with Bacteroidetes, we observed several specific changes at 

species level that were statistically and potentially functionally significant. Based on the 

consensus approach employed with five different differential abundance [DA] tools, we could 

establish as many as 15 species to be significantly differentially abundant [p < 0.05] between 

the two arms of the study. We estimated a minimum 2-fold [Log2 fold change] increase in 

Brachyspira pilosicoli, Phascolarctobacterium succinatutens, Phascolarctobacterium sp 

Marseille Q4147, Bifidobacterium angulatum, Acinetobacter venetianus, Levilactobacillus 

brevis, and Acidithiobacillus ferriphilus in the test arm. On the other hand, we estimated a 

minimum 2-fold [Log2 fold change] decrease in Parabacteroides sp ZJ 118, Sutterella seckii, 

Sutterella sp KLE1602, Phocaeicola sp Sa1CVN1, Alistipes finegoldii, Sutterella faecalis, 

Lachnoclostridium pacaense, and Treponema succinifaciens, in the test arm with microbiome-

based personalized dietary intervention. The comparative abundance plots of some of these 

species are displayed in [Figure 7 A-H] 

Some of the more interesting correlations, between the above highlighted reduction in 

HbA1c and CRP levels, were observed at species level. To begin with, maintenance of optimal 

levels of succinate is key during glucolipid metabolism, where succinate regulates glucose 

homeostasis to ameliorate hyperglycemia57.  

Phascolarctobacterium succinatutens belonging to the Negativicutes class of 

Firmicutes was found to be significantly higher in abundance within the test arm. P. 

succinatutens is a species of asaccharolytic [does not ferment sugars] bacteria, has been 

previously isolated and identified from the healthy human gut, known to play a key role in 
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governing intestinal homeostasis and energy metabolism59,60. The most important characteristic 

of P. succinatutens is that it is a succinate-utilizing bacterium, that exclusively uses succinate 

produced by other bacteria [such as Bacteroides species] as the substrate for propionate 

production58,59,61,62. Further, a Mediterranean [plat rich] diet has been found to increase the ratio 

of succinate-consuming bacteria [Like, P. succinatutens, Odoribacteraceae and Clostridaceae] 

to succinate producing bacteria [like Prevotella copri, and other species of Prevotellaceae and 

Veillonellaceae]57,58. This pattern was also observed in the current study, where the succinate 

producing Prevotella copri was observed to be reduced in abundance by 9.791%, while the 

succinate consuming P. succinatutens was found to be significantly increased in its abundance 

[by 4.5-fold [log2 fold change]], post implementation of microbiome-based personalized diet. 

Further, as highlighted above, maintenance of optimal levels of succinate is key during 

glucolipid metabolism to regulate glucose homeostasis and ameliorate hyperglycemia57. A 

larger study simultaneous measurements of HbA1c, succinate and other serum parameters 

should confirm this observation and open up prospects for using specific succinate consuming 

bacteria that are beneficial to host health. Or to administer succinate-consuming probiotics and 

promote their growth through high fibre dietary intervention, which is expected to lead to the 

uptake of excessive succinate and provide new ideas for treating related diseases57,63–65. 
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Figure 6: Changes in diversity of gut microbiome, within the BugSpeaks Nutrition arm. 

A: Changes in Shannon alpha diversity measure across kingdoms. B: Significant change in 

Shannon alpha diversity measure post intervention with BugSpeaks Nutrition. C: Changes in 

Chao1 diversity measure across two arms. D: Beta diversity measure by Bray-Curtis distance 

across two arms. 

 

Decreasing abundance of Prevotella and increasing abundance of 

Phascolarctobacterium along with Levilactobacillus brevis and Roseburia could be the 

correlating factor for the observed reduction in inflammation. Furthermore, succinate has 

potential as a target for immune monitoring57,63, and recently, reducing the succinate 

concentration has shown promise in treating gut chronic inflammatory diseases and obesity-

related inflammation, suggesting a new way to alleviate these diseases66,67. Hence, the 

personalization of diet based on one’s gut microbiome might have true potential in addressing 

various inflammatory diseases.  
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Few more species of bacteria, with potential probiotic properties were also found to be 

significantly increased in the test arm who adopted the microbiome-based personalized diet. 

Bifidobacterium angulatum and Levilactobacillus brevis, both were estimated to be increased 

in the test arm by 3.485-fold and 2.213-fold [Log2 Fold Change], after 90 days of personalized 

diet regime. Bifidobacterium angulatum is a species of bacteria that is part of the human gut 

microbiota, a relatively less common species Bifidobacterium group of probiotics68. 

Administration of other Bifidobacterium probiotics, such as Bifidobacterium bifidum and 

Bifidobacterium breve have been associated with amelioration of hyperglycaemia, 

dyslipidaemia, and oxidative stress in various studies69–71. The observation of this study also 

indicates the potential of Bifidobacterium angulatum in amelioration of hyperglycaemia and 

reduction of HbA1c levels. On the other hand, Levilactobacillus brevis has been previously 

reported to alleviate the progression of type 2 diabetes in animal models, via interplay of gut 

microflora, bile acid and NOTCH 1 signalling72. Also, Levilactobacillus brevis possess 

inhibitory effects on α-amylase and α-glucosidase activities, and has been reported to have anti-

diabetic properties73. Hence, the significantly reduced levels of HbA1c in this study, might be 

a direct correlation to the increased abundance of Levilactobacillus brevis. 
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Figure 7: Significantly differentially abundance species. A: Log2 Fold Change, of some of 

the most differentially abundant species; A-H: Differential abundance of species that were 

differentially abundant (*p-value < 0.05). 

 

Network diagrams of species interactions of pre- and post-intervention, with all 

statistically significant associations [Spearman coefficient >0.5 and p-value <0.05], have been 

shown in Figure 8A and 8D. Within these network analysis comparisons, few key negative 

correlations were observed between species, especially between Sutterrella sp KLE1602 and 

Phocaeicola massiliensis [Spearman correlation coefficient -0.66] [Figure 8C] in the pre-

intervention group of the test arm. Interestingly, Phocaeicola massiliensis is observed in a 

positive correlation with Parabacteroides distasonis both in the pre and post intervention 

participants [Figure 8A & 8D]. Recent report suggests that higher abundance of 

Parabacteroides distasonis may alleviate metabolic syndrome through production of 

succinate74. As we find that Sutterrella sp KLE1602 is reduced in post intervention group, it is 

tempting to speculate that in the pre intervention group due to higher abundance of Sutterrella 
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sp KLE1602, it may indirectly reduce Parabacteroides distasonis level thereby causing some 

of the metabolic syndrome effects. Clustering based on Spearman correlation shows an 

interesting pattern wherein some clusters of microbes are seen to be positively correlated 

among each other in the post intervention as compared to the pre intervention group. It would 

be interesting to find out if this shift in the correlation pattern influences the clinical outcome 

in the participants of the test arm. 

 

Figure 8: Network analysis and correlations. A: Network of associations Pre-intervention, 

along with B: Specifically showing positive [high Spearman correlation coefficient] and 

negative [low Spearman correlation coefficient] correlations between two species. C: 

Network of associations Post-intervention with BugSpeaks personalized nutrition, and D: A 

positive Spearman correlation between two specific species, with a high correlation 

coefficient. 
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Figure 9: Hierarchical clustering Pre and Post intervention. Heat maps representing the clustering of 

species based on Spearman correlation. A: Pre-intervention and B: Post-intervention. Higher number 

of positive correlations were observed post intervention with BugSpeaks® personalized nutrition. 

 

4.0 Conclusion 

Gut microbiota has been implicated in various chronic diseases such as type 2 

diabetes75,76. Modulating gut microbiota through dietary interventions such as prebiotics and 

probiotics have shown promising results in improving disease conditions77,78. Propositions 

have also been made to modulate diet to improve the efficacy of treatment of Covid19, anxiety 

and depression79,80. In this study we evaluated the efficacy and safety of a personalized gut 

microbiota specific nutritional intervention utilizing next generation sequencing based 

profiling of the individual gut microbiota. Our study shows marked improvement in the 

hyperglycaemic, hypertensive and inflammation parameters in the participants of the test arm 

who followed diet plan based on their unique gut microbiota profile as compared to the control 

arm participants who followed diabetic specific regular nutritional plan. The small decrease in 

the HbA1c level in the control arm can be attributed to the fact that the participants of both the 
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test and control arms continued with their stable dose of anti-diabetic medication during the 

trial as was ethically required for the study. The participants in the control arm also received a 

dietician and Principal Investigator approved diabetic meal plan and hence the possibility of 

the diabetic regular meal plan’s effect on lowering the HbA1c level in this arm can also be one 

of the contributing factors. The study shows that gut microbiota directed diet plans can 

supplement the anti-diabetic medication and improve upon the overall condition in such 

patients. We observed a significant decrease in hypertension parameters in the participants of 

the test arm thereby highlighting the overall positive impact of the personalized gut microbiota-

based diet intervention. However, we did not find any significant decrease in hyperlipidaemic 

parameters such as total cholesterol, HDL and LDL levels in this study. This might be because 

of lesser duration of the study to see the impact of microbiota based personalized nutrition on 

such parameters. Overall, no adverse effect was reported by the participants following the gut 

microbiota based nutritional meal plan thereby showing the safety of such an intervention. 

Our study also found specific changes in the gut microbiota post intervention that may 

have contributed to the positive effects. Specifically, we found increased Shannon diversity 

post intervention and possibility of better utilization of succinate in that group. Increased 

abundance of probiotics such as Bifidobacterium angulatum and Levilactobacillus brevis may 

have also contributed in improving hyperglycaemic, hypertensive and inflammation 

parameters. This trial to our knowledge, is the first of its kind study in Indian patients thus 

emphasising the positive impact of gut microbiota modulation in disease irrespective of the 

ethnicity.  

In totality, personalized nutrition based on one’s gut microbiome aims to preserve or 

increase the overall gut health using relevant information about the individual’s gut 

microbiome, by delivering personalized nutritional recommendations27. Such personalization 

of nutritional advice will be far more effective than more generic approaches and future of 
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personalized nutrition strategies would rely significantly on the gut microbiome to manage 

disease conditions and overall health4,10,15,28. While the potential of such an approach is 

promising, it’s important to note that our understanding of the gut microbiome and its complex 

interactions with our bodies and our diets is still evolving. More research is needed to fully 

understand the potential benefits and challenges of a microbiome-based personalized diet. 

Personalized nutrition based on one’s gut microbiome offers a promising approach to rectify 

dysbiosis and improve health outcomes17,22,27. 
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