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Abstract

Accurately predicting the risk of cervical lymph node metastasis (LNM) is crucial for surgical decision-making in thyroid
cancer patients, and the difficulty in it often leads to over-treatment. Ultrasound (US) and computed tomography (CT)
are two primary non-invasive methods applied in clinical practice, but both contain limitations and provide unsatisfactory
results. To address this, we developed a robust and explainable multimodal deep-learning model by integrating the above
two examinations. Using 3522 US and 7649 CT images from 1138 patients with biopsy-confirmed LNM status, we showed
that multimodal methods outperformed unimodal counterparts at both central and lateral cervical sites. By incorporating a
diverse granularity fusion module, we further enhanced the area under the curve (AUC) to 0.875 and 0.859 at central and
lateral cervical sites respectively. This performance was also validated in an external cohort. Additionally, we quantified
the modality-specific contributions for each nodule and systematically evaluated the applicability across various clinical
characteristics, aiding in identifying individuals who can benefit most from the multimodal method.

The global incidence of thyroid cancer has surged1

over the past 30 years[1], reaching over 586,000 new2

cases in 2020[2]. Despite its generally indolent na-3

ture, thyroid cancer leads to cervical lymph node4

metastasis (LNM) in up to 50% of patients[3]. Can-5

cer cells typically initially metastasize to the central6

lymph nodes and subsequently spread to the lateral7

cervical site, increasing the risk of recurrence and8

poor prognosis[4]. Consequently, LNM status signif-9

icantly influences the surgical approach for thyroid10

cancer patients. Therapeutic lymph node dissection11

(LND) of central and lateral cervical compartments is12

normally recommended for individuals with central13

and/or lateral cervical LNM[5]. While for patients14

without LNM, although central LND remains con-15

troversial, prophylactic lateral cervical LND is not16

advised[5, 6]. However, the current non-invasive di-17

agnostic accuracy of LNM is insufficient to guide18

surgical decisions. For the central site, the primary19

imaging methods, including Ultrasound (US) and20

computed tomography (CT), provide average sensi-21

tivities of only 0.28 and 0.39[7], respectively. This22

leads to a prevalent tendency for overtreatment to23

prevent missed LNM detection and results in poten-24

tial complications such as recurrent laryngeal nerve25
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injury and hypoparathyroidism. Therefore, there is a 26

pressing need to improve the accuracy of LNM risk 27

assessment to assist surgical management. 28

In recent years, the introduction of artificial in- 29

telligence methods has significantly improved the 30

performance of LNM prediction. Several studies uti- 31

lizing US images have employed various machine 32

learning methods, such as gradient boosting, ran- 33

dom forests, neural networks, etc., achieving AUCs 34

in the range of 0.700 to 0.772[8, 9, 10] for predicting 35

central site LNM. Other studies focusing on extract- 36

ing high-dimensional radiomic features or employing 37

deep learning methods to predict LNM status have 38

achieved AUCs spanning from 0.78 to 0.90[11, 12, 13] 39

for the central site and 0.62[14] for the lateral cervical 40

site. Similarly, in the case of CT images, methods 41

based on radiomic features extracted from thyroid 42

nodules have demonstrated predictive capabilities 43

for central site LNM at AUCs ranging from 0.710 to 44

0.770[15, 16]. 45

However, it’s crucial to acknowledge that both US 46

and CT modalities have limitations owing to their 47

examination techniques. Though US images provide 48

high-resolution visuals of thyroid nodules’ interior 49

and boundary characteristics, their limited field of 50

view poses challenges in assessing the spatial rela- 51

tionships between thyroid nodules and surrounding 52

tissues. Conversely, CT images offer essential relative 53
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position information about the thyroid, lymph nodes,54

and surrounding tissues, albeit at a lower resolution55

compared to US images. Relying solely on unimodal56

methods restricts the predictive capabilities of the57

model. Considering that US and CT provide com-58

plementary information and are widely utilized in59

thyroid cancer diagnosis, there’s a great potential to60

improve the performance by integrating US and CT61

images through a multimodal approach for predict-62

ing LNM status. For instance, Zhao et al. developed63

a multivariate logistic regression multimodal model64

for predicting central LNM status by incorporating65

clinical factors, US-derived diagnostic features, and66

CT measurements, achieving an AUC of 0.827[17].67

Nevertheless, the study did not directly compare the68

multimodal method’s performance with unimodal69

methods, besides, it utilized a simplified model that70

overlooked the interaction between the two modali-71

ties, leaving the full potential of multimodal fusion72

approach unexplored.73

Leveraging deep learning methods for integrating74

multimodal medical data has emerged as a promi-75

nent approach to enhance our understanding of com-76

plex diseases[18, 19, 20], with promises in tailoring77

personalized diagnosis, prognosis, treatment, and78

care[21, 22, 23, 24]. The central premise of multi-79

modal data integration is that diverse data sources80

complement each other, augmenting information be-81

yond any individual modality. However, significant82

challenges persist, such as data scarcity, sparsity, and83

inter-modality complexity, limiting the full exploita-84

tion of data integration benefits. Recent advance-85

ments in deep learning methods within this domain86

primarily focus on representation learning and fusion87

techniques[25, 26], which include extracting mean-88

ingful representations with unlabeled data[27, 28]89

and employing attention-based approaches to allow90

more sophisticated fusion of cross-modality represen-91

tations[29, 30, 31, 32]. While these strategies exhibit92

improvements in model performance, their use in the93

biomedical field still requires broader testing across94

diverse scenarios and adaptation to specific tasks95

through dedicated study designs[33].96

In this study, we aim to improve the predictive97

accuracy of LNM status for thyroid cancer patients98

by developing a multimodal method incorporating99

US and CT images. We curated a paired multi-100

modal dataset consisting of 3522 US and 7649 CT101

images from 1138 patients with biopsy-confirmed102

LNM status at both central and lateral cervical sites103

(Fig. 1). To comprehensively integrate the consis-104

tent and distinct information of both modalities, we105

first employed a multi-task network scheme to en-106

hance modal-specific feature learning (Fig. 2), which107

achieved superior performance compared to cur-108

rently commonly used methods on unimodal mod- 109

els. Next, we demonstrated that, even with a basic 110

feature fusion strategy, multimodal models consis- 111

tently outperform their unimodal counterparts at 112

both sites. Furthermore, we designed a diverse gran- 113

ularity fusion module, which learns the attention at 114

three granular levels from fine to coarse: dimension 115

level, modality level, and nodule level (Fig. 2). With 116

the incorporation of this module, our multimodal 117

model achieved AUCs of 0.875 and 0.859 at the cen- 118

tral and lateral cervical sites respectively. Compared 119

to unimodal methods of US and CT, the multimodal 120

AUC improved by 5.5% and 10.1% respectively, at 121

the central compartment, and by 7.4% and 8.1% re- 122

spectively, at the lateral cervical site. When evaluated 123

on an external validation set, our proposed model 124

demonstrated an AUC of 0.903 at the central site, 125

which robustly confirmed the generalizability of the 126

multimodal model. In addition, we comprehensively 127

evaluate the applicability of each modality on nod- 128

ules with various characteristics to identify patients 129

who can best benefit from the multimodal method 130

(Fig. 1), which could significantly improve the clin- 131

ical utility of multimodal models. In summary, we 132

presented a promising approach to mitigate the issue 133

of overtreatment in thyroid cancer. Our multimodal 134

AI system exhibits strong performance, high gen- 135

eralizability, and substantial clinical utility, offering 136

significant potential for enhancing the diagnosis and 137

treatment of thyroid cancer. 138

Results 139

Patient Cohort 140

This study incorporated two datasets: a main cohort 141

and an external cohort. The main cohort comprised 142

patients who underwent thyroid examinations at Zhe- 143

jiang Cancer Hospital from August 2018 to February 144

2021. To reflect the real clinical diagnostic conditions, 145

only necessary data quality control was performed, 146

with specific details outlined in the supplementary 147

material. After quality control, the main cohort con- 148

sists of 1138 patients with a total of 1285 thyroid nod- 149

ules. The external cohort, obtained from Shaoxing 150

People’s Hospital in Zhejiang Province, also under- 151

went the same quality control process, comprising 152

60 patients with 60 thyroid nodules. Both cohorts 153

included samples with matched US and CT data, 154

featuring multiple images of thyroid nodules, along 155

with their corresponding LNM status at the central 156

and lateral cervical sites. 157

The models were evaluated under an eight-fold 158

cross-validation setting, and various metrics were 159

employed to assess their performance. These met- 160
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Table 1: Performance of LNM status prediction using unimodal networks

Modalities LNM location Models ACC AUC SENS SPEC PREC F1 score
Yu et al [12] 0.739 0.792 0.787 0.689 0.719 0.750

ResNet 0.760 0.812 0.823 0.699 0.736 0.774Central site
Proposed 0.782 0.820 0.836 0.728 0.754 0.792

Yu et al [12] 0.729 0.754 0.729 0.731 0.736 0.728
ResNet 0.747 0.725 0.826 0.665 0.713 0.763

US

Lateral cervical site
Proposed 0.767 0.785 0.843 0.693 0.737 0.784
ResNet 0.726 0.759 0.743 0.707 0.720 0.730

Central site
Proposed 0.745 0.774 0.737 0.755 0.751 0.743
ResNet 0.746 0.758 0.812 0.679 0.718 0.760

CT
Lateral cervical site

Proposed 0.764 0.778 0.725 0.797 0.796 0.751

rics encompassed accuracy (ACC), the area under161

the ROC curve (AUC), sensitivity (SENS), specificity162

(SPEC), precision (PREC), and the F1 score. We re-163

ported the mean metrics calculated from the eight-164

fold cross-validation process for a comprehensive165

evaluation. It is worth mentioning that samples from166

different folds were divided based on the individual167

thyroid nodules, and nodules from the same patient168

were consistently present within the same fold. In169

addition, an undersampling strategy was applied in170

this study to maintain a balance between positive171

and negative categories.172

Enhance modal-specific feature learning173

by employing multi-task models of each174

modality175

We start from enhancing modal-specific feature ex-176

traction to make the best use of each modality and177

evaluate the feature capability in predicting LNM178

status of each modality. US provides clear visualiza-179

tion of thyroid nodule attributes such as boundary,180

shape, and internal structure (composition, calcifica-181

tion, echo characteristics). Meanwhile, CT images182

encompass both thyroid nodules and the surround-183

ing anatomical context, offering insights into their184

relationships. Therefore, we employ a multi-task185

learning approach for each modality (as illustrated186

in Fig. 2). Specifically, besides the LNM predic-187

tion task, we introduce two auxiliary tasks for US: a188

nodule mask segmentation task to guide the model189

to focus on the internal structural features, and a190

nodule boundary segmentation task to emphasize191

the boundary and shape of nodules. Likewise, for192

CT, we introduce a nodule mask task and a tissue193

boundary segmentation task to guide the model to194

distinguish nodules and surrounding tissue regions,195

respectively. We chose ResNet[34] as the backbone196

to build multi-task models for each modality, due to197

its simple structure, high popularity, and excellent198

performance (Methods). For each unimodal network,199

we trained it to complete the auxiliary segmentation 200

tasks in the first 100 epochs and added the additional 201

LNM prediction task in the following 200 epochs. We 202

compared our multi-task models for each modality 203

with ResNet models directly predicting LNM, and for 204

the US unimodal model, we also re-implemented the 205

network developed by Yu et al[12]. It shows that our 206

multi-task models for both modalities consistently 207

outperform their counterparts at both central and 208

cervical lateral sites, with an obvious improvement 209

of ACC and AUC (Table 1). 210

When comparing the unimodal performance of US 211

and CT, we have some interesting observations. First, 212

at the central site, the US models generally outper- 213

form CT models, whereas there is no consistent win- 214

ner between US and CT models at the lateral cervical 215

site. Moreover, at both the central and lateral cervical 216

sites, US models consistently exhibit higher sensitiv- 217

ity, meanwhile, CT models consistently demonstrate 218

higher specificity. These results suggest that US is 219

more sensitive but less specific, while CT is the op- 220

posite, highlighting the complementary information 221

provided by these two modalities. 222

Basic multimodal fusion methods 223

outperform either unimodal model 224

Based on the multi-task unimodal models, we fur- 225

ther evaluate the efficacy of integrating US and CT 226

for predicting the risk of LNM. We first examine 227

the multimodal performance using three basic fu- 228

sion methods: concatenation, element-wise sum, and 229

element-wise multiplication, to fuse the unimodal 230

features extracted from US and CT and re-train the 231

multimodal network in an end-to-end manner. The 232

results clearly show that even with basic fusion meth- 233

ods, multimodal models significantly improve per- 234

formance. 235

For the central site prediction, the average multi- 236

modal AUC improved by 2.8% and 7.4% compared 237

to US and CT unimodal respectively. Likewise, 238
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Table 2: Performance comparison of unimodal and multimodal approaches using basic fusion methods

LNM location Modality
Multimodal

fusion operation
ACC AUC SENS SPEC PREC F1 score

US 0.782 0.820 0.836 0.728 0.754 0.792
CT 0.745 0.774 0.737 0.755 0.751 0.743

Concat 0.810 0.853 0.862 0.759 0.782 0.819
Sum 0.806 0.850 0.855 0.757 0.779 0.814

Product 0.812 0.840 0.861 0.763 0.790 0.820

Central site
Multimodal

Average results 0.809 0.848 0.859 0.760 0.784 0.818
US 0.767 0.785 0.843 0.693 0.737 0.784
CT 0.764 0.778 0.725 0.797 0.796 0.751

Concat 0.804 0.825 0.860 0.744 0.779 0.815
Sum 0.808 0.854 0.878 0.742 0.771 0.819

Product 0.811 0.835 0.867 0.755 0.784 0.821

Lateral
cervical site

Multimodal

Average results 0.808 0.838 0.868 0.747 0.778 0.818

for the lateral cervical site prediction, the average239

multimodal AUC outperforms the US and CT uni-240

modal models by 5.3% and 6.0% respectively (Table241

2). These results affirm the hypothesis that US and242

CT modalities comprise complementary information,243

and their integration can improve the performance244

of LNM status prediction.245

Further improve multimodal performance246

by incorporating a diverse granularity247

feature fusion module248

Multimodal fusion using basic methods can combine249

US and CT information and improve LNM predic-250

tion but is not able to fully consider the interaction251

between these two modalities. Recent progress based252

on the attention mechanism has shown superiority in253

multimodal fusion. In our study, we adopted the at-254

tention mechanism simultaneously on three granular255

levels to fully incorporate the information useful for256

LNM prediction, which are feature dimensions level257

(minimum granularity), modalities level (medium258

granularity), and nodules level (maximum granular-259

ity). In specific, these include dynamically adjusting260

the attention weights of different feature dimensions261

to balance the common and specific features of the262

two modalities, adapting the modality-specific atten-263

tion to learn the respective advantages for different264

nodules, plus flexibly aggerate the features of other265

nodules based on nodule-level attention to refine the266

prediction, considering nodules with the same LNM267

status should exhibit greater feature similarity. We268

refer to our modality fusion methods as the ‘diverse269

granularity fusion’ network (DGFNet, as illustrated270

in Fig. 2, detail see Methods). Equipped with the271

DGF module, our model demonstrates exceptional272

predictive capabilities with AUCs of 0.875 and 0.859273

at the central and lateral cervical sites respectively274

(Table 3), indicating its remarkable performance in 275

predicting the risk of LNM. Particularly, the multi- 276

modal AUC exhibited a significant improvement of 277

5.5% and 10.1% compared to the US and CT uni- 278

modal models at the central site, respectively. And 279

a substantial enhancement of 7.4% and 8.1% respec- 280

tively at the lateral cervical site. These results further 281

underscore the efficacy of integrating US and CT in 282

predicting LNM in thyroid cancer. Furthermore, in 283

comparison to the basic fusion methods, our DGFNet 284

model achieves superior performance in nearly all 285

metrics, providing comprehensive evidence for the ef- 286

fectiveness of fusing multimodal features at different 287

granularities. 288

DGFNet demonstrates exceptional 289

generalization abilities 290

Recognizing the importance of the generalizability 291

of multimodal networks in clinical applications, we 292

evaluated the efficacy of our DGFNet model using 293

an external test dataset. The primary cohorts were 294

partitioned into training and validation sets, and the 295

model with the highest accuracy on the validation 296

set was selected to predict the LNM status of pa- 297

tients on the external cohort. Owing to constraints 298

related to data availability, our external evaluation 299

is only performed at the central site, the results are 300

presented in Table 4. Overall, our DGFNet model per- 301

formed well on the external dataset, with an accuracy 302

of 0.817 and an AUC of 0.903, showing similar per- 303

formance compared to the internal accuracy of 0.844 304

and an AUC of 0.898. This consistency underscores 305

the strong robustness and external generalizability of 306

our model. 307
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Table 3: Performance comparison of multimodal methods using different fusion techniques

LNM location
Multimodal

fusion methods
ACC AUC SENS SPEC PREC F1 score

Basic fusion 0.809 0.848 0.859 0.760 0.784 0.818
Central site

Diverse granularity fusion 0.826 0.875 0.848 0.803 0.813 0.830
Basic fusion 0.808 0.838 0.868 0.747 0.778 0.818Lateral

cervical site Diverse granularity fusion 0.838 0.859 0.862 0.814 0.835 0.842

Table 4: Performance of LNM status prediction on internal and external validation set

Dataset ACC AUC SENS SPEC PREC F1 score
Internal validation set 0.844 0.898 0.854 0.833 0.837 0.845
External validation set 0.817 0.903 0.909 0.763 0.690 0.784

DGFNet dynamically adjusts the308

contribution of US and CT in predicting309

the LNM status prediction at different310

sites311

We next seek to delineate the contribution of each312

modality in the DGFNet model on every nodule. We313

analyze by quantifying the contributions of US and314

CT within the DGFNet model using the integrated315

gradients[35] and comparing them to their unimodal316

counterparts. The results are presented in Fig. 3,317

where a larger feature attribution value corresponds318

to a greater contribution to the correct prediction in319

DGFNet model, and the red or green denotes correct320

or wrong prediction respectively.321

The result shows that, at both the central site (Fig.322

3a) and lateral cervical site (Fig. 3b), there is a no-323

table number of cases where the DGFNet can change324

the unimodality to make positive contributions even325

when it fails to give correct prediction in unimodal326

models (attribution greater than 0 but red color) and327

lead to a correct prediction in this multimodal ap-328

proach. In addition, when looking at the central and329

lateral cervical sites separately, we find that, across330

all samples, 64.9% of nodules exhibit higher US attri-331

bution over CT attribution at the central site, while332

55.2% of the nodules show higher US attribution over333

CT attributions at the lateral cervical site. These find-334

ings agree with our prior observations on unimodal335

LNM prediction performance, highlighting a more336

prominent role for US at the central site, whereas337

both US and CT show comparable importance at the338

lateral cervical site. In addition, this underscores339

that the DGFNet model can dynamically adjust the340

weights of the two modalities based on nodule char-341

acteristics, effectively leveraging the strengths of both342

modalities.343

DGFNet enhances model attention on the 344

nodular region in US and CT images 345

To further investigate how our DGFNet model im- 346

proves the LNM prediction performance, we gener- 347

ated saliency maps for both US and CT images in 348

the multimodal network and compared them with 349

their unimodal counterparts. The results clearly show 350

that, for both US and CT images, the DGFNet model 351

significantly increases the attention towards the re- 352

gion of interest compared to the unimodal models. 353

Specifically, within US images, the multimodal model 354

focuses more intensely on the nodules’ peripheral 355

and inner hypoechoic region (Fig. 4a), whereas in CT 356

images, it narrows its focus to the nodules and their 357

immediate surrounding tissues (Fig. 4b), all of which 358

represent crucial regions providing key information 359

for LNM prediction. This directly proves the supe- 360

riority of DGFNet in grasping meaningful medical 361

information over unimodal methods. 362

Identify patients who can best benefit 363

from multimodal integration 364

The multimodal approach can effectively improve the 365

LNM prediction, however, it is often unfeasible to ex- 366

amine all patients by both modalities in real clinical 367

settings. Hence, to make our DGFNet more appli- 368

cable and useful for clinicians, we further seek to 369

identify patients who can best benefit from the mul- 370

timodal approach. Given that the US examination 371

is cheaper and more commonly used, we analyzed 372

by identifying cases for whom adding CT as a sup- 373

plementary modality would be advantageous. We 374

evaluated four well-established sonographic charac- 375

teristics of the thyroid nodule during US diagnosis 376

including maximum diameter, margin characteristics, 377

aspect ratio, plus location in the thyroid for central 378

cite nodules, and categorized the nodules based on 379

the measurements. We then compared the prediction 380

performance in each category between the DGFNet 381

5
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and the unimodal model of US and CT respectively.382

(Results on more characteristics are illustrated in Sup-383

plementary Material)384

The analysis shows that the DGFNet model385

achieves particularly high performance in specific386

circumstances. This includes nodules with maxi-387

mal diameters between 20mm and 36mm, as well as388

more extreme cases less than 12mm or larger than389

60mm(Fig. 5a). Additionally, DGFNet excels in cases390

exhibiting non-smooth borders (Fig. 5b), aspect ratios391

surpassing 1 (Fig. 5c), and nodules situated within392

the thyroid isthmus (Fig. 5d). Similar findings are393

observed in the analysis conducted at the lateral cer-394

vical site (Supplementary Material). Therefore, the395

DGFNet model is potentially particularly beneficial396

and practical for patients with the above nodule char-397

acteristics.398

Discussion399

Patients often undergo multiple types of examina-400

tions in the diagnostic process, and the effective in-401

tegration of multimodal information can greatly im-402

prove diagnosis accuracy. Recent advancements in403

artificial intelligence techniques have facilitated the404

progress of deep-learning-based multimodal integra-405

tion methods, which have emerged as a trend in406

cancer diagnosis in recent years. In this study, we407

pioneered the development of a multimodal deep408

learning approach that effectively integrates US and409

CT modalities to successfully enhance the accuracy410

of LNM prediction and further demonstrate its gen-411

eralizability in an external dataset. Moreover, by412

conducting a series of comprehensive interpretability413

analyses, we quantified the modality-specific con-414

tribution across nodules in various situations, and415

investigated the attention heatmap of US and CT im-416

ages within the model, which not only shed light417

on the reasons for the improved performance of the418

multimodal model, but also improve the model’s419

applicability in clinical settings, and opens a new420

avenue for mitigating the problem of overtreating421

thyroid cancer.422

The effective integration of multimodal data often423

relies on a deep understanding of the domain knowl-424

edge involved with specific medical tasks. In our425

study, a close collaboration between AI scientists and426

clinicians allowed us to leverage our collective exper-427

tise in deep learning models, thyroid cancer, US and428

CT images. This enabled us to strategically employ429

multi-task learning techniques, facilitating the identi-430

fication of critical regions and extraction of essential431

LNM-related features from both US and CT images.432

Moreover, we introduced a novel diverse granularity433

fusion network (DGFNet) that learns the attention434

from three different levels, which excels in not only 435

effectively integrating shared and specific features 436

from multimodal data but also dynamically adjust- 437

ing the weights of each modality’s data for different 438

nodules. This approach demonstrates the potential 439

to optimize the utility of both US and CT images and 440

aggregate information from similar nodules, thereby 441

enhancing the model’s overall performance and ro- 442

bustness. 443

Besides the excellent performance of our developed 444

DGFNet model, our study has yielded valuable clini- 445

cal insights through the multimodal approach. First, 446

it shows that unimodal methods based on US appear 447

to be more sensitive but less specific, while CT-based 448

unimodal methods are the other way around. Second, 449

it shows that the US modality generally plays a more 450

significant role than CT at the central site, whereas 451

there is no obvious difference between US and CT at 452

the lateral cervical site. Furthermore, by quantifying 453

the performance of the unimodal and multimodal 454

models for nodules within different diagnosis charac- 455

teristics categories, we could pinpoint patients with 456

certain nodule characteristics who can potentially 457

best benefit from the multimodal approach. These 458

analyses offer valuable insights for accurately iden- 459

tifying the appropriate patient population for mul- 460

timodal diagnostic approaches in clinical practice 461

and guiding patients in selecting the most suitable 462

examination method. 463

In conclusion, through a close collaboration be- 464

tween AI scientists and clinicians, this study suc- 465

cessfully develops a multimodal approach aimed at 466

improving the LNM prediction for thyroid patients. 467

It paves the way for addressing the issue of overtreat- 468

ment in thyroid cancer and provides new insights 469

in the integration of multimodal data for precise di- 470

agnosis, representing an excellent scientific research 471

example originating from clinical practice and di- 472

rectly addressing clinical necessities. 473

Methods 474

Patient Cohort 475

There are two cohorts included in this study. The 476

main cohort was obtained from Zhejiang Cancer Hos- 477

pital in Zhejiang Province, China, consisting of 1360 478

patients. After the data screening process, a total of 479

1138 patients with 1285 nodules were retained for 480

analysis. The main cohort was utilized for the model 481

establishment and internal performance evaluation. 482

The second cohort, referred to as the external co- 483

hort, was sourced from Shaoxing People’s Hospital 484

in Zhejiang Province, China. Initially, this cohort in- 485

cluded 126 patients, and after the data screening pro- 486
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cess, 60 patients with complete data were included487

for evaluation of model generalization (The patient488

enrollment process is illustrated in Supplementary489

Material). Ethical approval for the study was ob-490

tained from the ethics committees of both hospitals491

and verbal informed consent was obtained from all492

participating patients.493

The inclusion criteria for this study encompassed494

the following: (1) patients with thyroid nodules, (2)495

patients who underwent cervical US and CT exami-496

nations, and (3) patients with confirmed pathological497

status of cervical LNM. Exclusion criteria consisted498

of the following: (1) missing US or CT data, (2) the499

presence of measurement lines in the US images, and500

(3) patients with multiple malignant thyroid nod-501

ules and metastatic cervical lymph nodes. As all the502

thyroid nodules had the potential to metastasize, it503

was impossible to determine which specific nodule504

had metastasized to the cervical lymph nodes. After505

the data screening process, the number of nodules506

with and without metastasis in the central and lat-507

eral cervical sites for both cohorts is presented in the508

Supplementary Material.509

Multiple US images, including transverse and lon-510

gitudinal sections, as well as multiple CT images511

from different slices, were available for most nodules512

in the dataset. During each epoch of the training513

process, one random US image and one random CT514

image were paired together to form an image pair.515

During the evaluation process, the US and CT images516

with the largest nodal area were selected from the517

multiple available images to form an image pair for518

analysis.519

Data pre-processing520

Region of Interest Extraction. The methods used521

for extracting the region of interest in both US and522

CT images are similar and described as follows: 1)523

We first performed a dilation operation on the mask524

of thyroid nodules annotated by clinicians, using a525

3x3 dilation kernel. The iteration steps were set to526

40 and 25 for US and CT images, respectively. 2) We527

determined the horizontal bounding rectangle of the528

dilated region, with the height, width, and center529

coordinates of the rectangle denoted as h, w, and530

(xcenter, ycenter), respectively. 3) Using (xcenter, ycenter)531

as the center and the larger value of h and w as the532

side length, we obtained the external square of the533

thyroid nodule. 4) The original US and CT images534

were then cropped to reserve the region within this535

square. If the square area exceeds the image bound-536

ary, the images are padded with zeros to fill the537

exceeding part.538

Image Augmentation. The cropped US and CT539

images were resized to 288x288 pixels and 96x96 pix-540

els, respectively. To enhance the diversity of the data, 541

we applied additional data augmentation techniques 542

to both modalities. These techniques included rota- 543

tion, horizontal flip, cropping and scaling, brightness- 544

contrast transformation, and elastic transformation. 545

For rotation, the angle of rotation ranged from -15° 546

to 15°. Random cropping occurred with the cropped 547

area set to be between 90% and 100% of the original 548

size. The probability of applying these transforma- 549

tions was set to 0.5, ensuring a balanced augmenta- 550

tion effect. 551

Convolutional neural network architecture 552

The architecture of the proposed model is depicted 553

in Fig. 2. The model is composed of three distinct 554

branches: the US branch, the CT branch, and the Mul- 555

timodal branch. Both the US and CT branches share 556

an identical structure, each comprising an encoder 557

and two decoders. The encoder adopts a pre-trained 558

ResNet[34] architecture, with ResNet34 and ResNet18 559

selected for the central and lateral cervical sites, re- 560

spectively. Regarding the US branch, the decoders 561

are trained to delineate the mask and boundary of 562

thyroid nodules, directing the model’s attention to- 563

wards the internal and marginal regions of the nod- 564

ules, correspondingly. Conversely, the CT branch’s 565

decoders focus on segmenting the mask of thyroid 566

nodules and the boundary of surrounding tissue, fa- 567

cilitating the model in comprehensively capturing 568

information about both the thyroid nodule and its 569

adjacent surroundings. 570

All the aforementioned decoders share the same 571

structure. Each decoder is constructed from 5 upsam- 572

ple blocks, with every block encompassing 2 layers. 573

In the initial layer of each block, the input feature 574

is upsampled using bilinear interpolation. Subse- 575

quently, the second layer comprises a convolutional 576

block, incorporating a convolutional layer featuring a 577

kernel size of 3×3, followed by batch normalization, 578

relu activation, and a dropout layer. Notably, to en- 579

hance segmentation performance, short connections 580

interconnect the encoder and decoder components. 581

The US and CT encoders produce 512-dimensional 582

vectors through global average pooling. In unimodal 583

models, these vectors directly enter the classifier 584

for LNM prediction. In the multimodal model, the 585

unimodal vectors integrate within the multimodal 586

branch and then proceed to the classifier with the 587

same structure—a two-layer fully connected neural 588

network with 512 input nodes and a single output 589

node. 590
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Diverse granularity fusion module591

The diverse granularity fusion module comprises592

three branches, as depicted in the supplementary593

material. All branches are constructed using the594

attention mechanism.595

In the dimensional correlation branch, the US and596

CT features undergo a preliminary transformation as597

outlined below:598

QD
US = fUS × WD

Q−US (1)

VD
US = fUS × WD

V−US (2)

QD
CT = fCT × WD

Q−CT (3)

VD
CT = fCT × WD

V−CT (4)

Here, fUS and fCT are the unimodal features of US599

and CT, respectively, and WD
Q−US, WD

V−US, WD
K−CT,600

and WD
V−CT are trainable parameters. The product601

of QD
US and KD

CT, followed by the application of the602

softmax function, results in the attention matrix AD ,603

which captures the interplay between various feature604

dimensions of the US and CT modalities:605

AD = softmax

(
QD

US × KDT

CT√
dk

)
(5)

Here, dk is the dimension of KD
CT. The derived606

attention matrix is then utilized for the enhanced607

multimodal features:608

f D
US = VD

US + AD × VD
US (6)

f D
CT = VD

CT + ADT × VD
CT (7)

Ultimately, the enriched features are amalgamated609

through concatenation along the dimension axis,610

yielding the fused features:611

f D = concat
(

f D
US, f D

CT

)
(8)

In the modal weights branch, the US and CT fea-612

tures are first concatenated along the modal axis:613

f N
US−CT = concat ( fUS, fCT) (9)

Then the QM, KM, and VM are generated respec-614

tively:615

QM = f M
US−CT × WM

Q (10)

KM = f M
US−CT × WM

K (11)

VM = f M
US−CT × WM

V (12)

The WM
Q , WM

K , and WM
V are trainable parameters. 616

Through the multiplication of QM and KM, an atten- 617

tion matrix emerges, encapsulating the priority of the 618

two modalities within separate nodes. 619

AM = softmax

(
QM × KMT

√
dk

)
(13)

Subsequently, this attention matrix is employed to 620

adjust the relative significance of the two modalities: 621

f M = VM + AM × VM (14)

In the nodal correlation branch, US and CT features 622

are first merged along the dimensional axis: 623

f N
US−CT = concat ( fUS, fCT) (15)

Then QN, KN, and VN are obtained respectively: 624

QN = f N
US−CT × WN

Q (16)

KN = f N
US−CT × WN

K (17)

VN = f N
US−CT × WN

V (18)

The WN
Q , WN

K , and WN
V are trainable parameters. 625

The attention matrix is obtained and employed to 626

delineate the interrelation between distinct nodules: 627

AN = softmax

(
QN × KNT

√
dk

)
(19)

Refined features considering the similarity of dif- 628

ferent nodules emerge: 629

f N = VN + AN × VN (20)

The features from the three branches undergo 630

element-wise multiplication, resulting in the ultimate 631

fused features: 632

fF = f D ⊙ f M ⊙ f N (21)

Nodule boundary extraction in US images 633

Firstly, the nodule boundary width (d) was deter- 634

mined as a multiple ( f ) of the square region of in- 635

terest’s length. For our study, f was set to 0.08. Sec- 636

ondly, the annotated thyroid nodule mask underwent 637

dilation and erosion operations to yield Rdilation and 638

Rerosion, respectively, with a kernel size of 3×3 and 639

iterations of 0.5d. Finally, the nodule’s boundary 640

was obtained as the difference between Rdilation and 641

Rerosion (Rdilation − Rerosion). 642
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Boundaries of surrounding tissue643

extraction in CT images644

Firstly, bilateral filtering[36] was applied to preserve645

the edges while reducing noise. The diameter of the646

pixel field was set to 7, and the sigma values for both647

the color space and coordinate space were set to 100.648

Secondly, the Canny algorithm[37] was employed to649

further extract the boundaries of the surrounding650

tissues. The lower and upper threshold values were651

set to -100 and 200, respectively.652

Training Configuration653

The base learning rate in our study was set to654

1 × 10−4, and we employed a cosine learning rate655

schedule during the training process. The batch size656

was set to 30, and we utilized the Adam optimizer657

to optimize our model. A weight decay of 1 × 10−5
658

was applied to mitigate overfitting. In this study, a659

multi-task strategy was employed to address differ-660

ent tasks. For the classification task, specifically the661

prediction of the LNM status, we utilized a binary662

cross-entropy loss function. As for the segmenta-663

tion tasks, a combination of binary cross-entropy loss664

and Intersection over Union (IOU) loss functions was665

utilized. The model was initially trained for the seg-666

mentation tasks for the first 100 epochs, and then667

the classification task was added and trained for the668

remaining 200 epochs.669

Interpretability Analysis Methods670

We employed the integrated gradients[35] method to671

enhance the interpretability of our model. Integrated672

gradients is a feature attribution technique that cal-673

culates the integral of gradients along the path from674

a chosen baseline to the input, resulting in an attri-675

bution value for each input feature. In our study, the676

baseline is manually specified, and we select a base-677

line where the predicted probability of our trained678

model is close to 0.5, indicating equal probabilities679

for both LNM presence and absence. To determine680

the contributions of US and CT images, we sum the681

attributions of each pixel in the respective images. By682

visualizing the attribution of each pixel, we generate683

saliency maps for US and CT images.684

Statistical Analysis685

We assessed the performance of our model using686

several evaluation metrics, including accuracy, area687

under the curve (AUC), specificity, sensitivity (also688

known as recall), precision, and F1-score. To ana-689

lyze the model’s performance across different thresh-690

olds, we constructed receiver operating characteristic691

(ROC) curves, plotting sensitivity against specificity.692

Hardware and Software 693

The computational resources utilized include an Intel 694

10900K CPU with a clock speed of 3.7GHz and 20 695

threads. The graphics card employed is a GEFORCE 696

RTX 3090, equipped with 10752 CUDA cores and 697

24GB of graphics memory. The programming lan- 698

guage used for implementation is Python 3.9.7, and 699

the deep learning framework employed is PyTorch 700

1.10.0. 701

Data availability 702

Though this study was carried out with participant 703

consent, the dataset remains restricted in public ac- 704

cess. For research inquiries, de-identified data can 705

be obtained from the corresponding author upon 706

reasonable request. 707

Code availability 708

The code for model development and 709

interpretability analysis is accessible at 710

https://github.com/li10107/DGFNet. 711

References 712

[1] YuJiao Deng et al. “Global burden of thyroid 713

cancer from 1990 to 2017”. In: JAMA network 714

open 3.6 (2020), e208759–e208759. 715

[2] Hyuna Sung et al. “Global cancer statistics 716

2020: GLOBOCAN estimates of incidence and 717

mortality worldwide for 36 cancers in 185 coun- 718

tries”. In: CA: a cancer journal for clinicians 71.3 719

(2021), pp. 209–249. 720

[3] Kyu Eun Lee et al. “Ipsilateral and contralateral 721

central lymph node metastasis in papillary thy- 722

roid cancer: patterns and predictive factors of 723

nodal metastasis”. In: Head & neck 35.5 (2013), 724

pp. 672–676. 725

[4] David T Hughes and Gerard M Doherty. “Cen- 726

tral neck dissection for papillary thyroid can- 727

cer”. In: Cancer Control 18.2 (2011), pp. 83–88. 728

[5] Bryan R Haugen et al. “2015 American Thy- 729

roid Association management guidelines for 730

adult patients with thyroid nodules and differ- 731

entiated thyroid cancer: the American Thyroid 732

Association guidelines task force on thyroid 733

nodules and differentiated thyroid cancer”. In: 734

Thyroid 26.1 (2016), pp. 1–133. 735

9

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 5, 2024. ; https://doi.org/10.1101/2023.12.25.23300117doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.25.23300117


[6] Claudio Gambardella et al. “The role of pro-736

phylactic central compartment lymph node dis-737

section in elderly patients with differentiated738

thyroid cancer: a multicentric study”. In: BMC739

surgery 18.1 (2019), pp. 1–8.740

[7] Mostafa Alabousi et al. “Diagnostic test ac-741

curacy of ultrasonography vs computed to-742

mography for papillary thyroid cancer cervical743

lymph node metastasis: A systematic review744

and meta-analysis”. In: JAMA Otolaryngology–745

Head & Neck Surgery 148.2 (2022), pp. 107–118.746

[8] Yinlong Yang et al. “Prediction of central com-747

partment lymph node metastasis in papillary748

thyroid microcarcinoma”. In: Clinical endocrinol-749

ogy 81.2 (2014), pp. 282–288.750

[9] Jiang Zhu et al. “Application of machine learn-751

ing algorithms to predict central lymph node752

metastasis in T1-T2, non-invasive, and clinically753

node negative papillary thyroid carcinoma”. In:754

Frontiers in medicine 8 (2021), p. 635771.755

[10] Jong-Lyel Roh, Jin-Man Kim, and Chan Il Park.756

“Central lymph node metastasis of unilateral757

papillary thyroid carcinoma: patterns and fac-758

tors predictive of nodal metastasis, morbidity,759

and recurrence”. In: Annals of surgical oncology760

18 (2011), pp. 2245–2250.761

[11] Meng Jiang et al. “Nomogram based on shear-762

wave elastography radiomics can improve pre-763

operative cervical lymph node staging for764

papillary thyroid carcinoma”. In: Thyroid 30.6765

(2020), pp. 885–897.766

[12] Jinhua Yu et al. “Lymph node metastasis pre-767

diction of papillary thyroid carcinoma based768

on transfer learning radiomics”. In: Nature com-769

munications 11.1 (2020), p. 4807.770

[13] Tongtong Liu et al. “Comparison of the appli-771

cation of B-mode and strain elastography ultra-772

sound in the estimation of lymph node metas-773

tasis of papillary thyroid carcinoma based on a774

radiomics approach”. In: International journal of775

computer assisted radiology and surgery 13 (2018),776

pp. 1617–1627.777

[14] Vivian Y Park et al. “Radiomics signature for778

prediction of lateral lymph node metastasis in779

conventional papillary thyroid carcinoma”. In:780

PLoS One 15.1 (2020), e0227315.781

[15] Jingjing Li et al. “Computed tomography-782

based radiomics model to predict central cervi-783

cal lymph node metastases in papillary thyroid784

carcinoma: a multicenter study”. In: Frontiers785

in Endocrinology 12 (2021), p. 741698.786

[16] Yun Peng et al. “Prediction of central lymph 787

node metastasis in cN0 papillary thyroid carci- 788

noma by CT radiomics”. In: Academic Radiology 789

30.7 (2023), pp. 1400–1407. 790

[17] Shanshan Zhao et al. “Combined Conventional 791

Ultrasound and Contrast-Enhanced Computed 792

Tomography for Cervical Lymph Node Metas- 793

tasis Prediction in Papillary Thyroid Carci- 794

noma”. In: Journal of Ultrasound in Medicine 42.2 795

(2023), pp. 385–398. 796

[18] Jana Lipkova et al. “Artificial intelligence for 797

multimodal data integration in oncology”. In: 798

Cancer cell 40.10 (2022), pp. 1095–1110. 799

[19] Kevin M Boehm et al. “Harnessing multimodal 800

data integration to advance precision oncol- 801

ogy”. In: Nature Reviews Cancer 22.2 (2022), 802

pp. 114–126. 803

[20] Julián N Acosta et al. “Multimodal biomedical 804

AI”. In: Nature Medicine 28.9 (2022), pp. 1773– 805

1784. 806

[21] Kevin M Boehm et al. “Multimodal data inte- 807

gration using machine learning improves risk 808

stratification of high-grade serous ovarian can- 809

cer”. In: Nature cancer 3.6 (2022), pp. 723–733. 810

[22] Xuejun Qian et al. “Prospective assessment 811

of breast cancer risk from multimodal multi- 812

view ultrasound images via clinically applica- 813

ble deep learning”. In: Nature biomedical engi- 814

neering 5.6 (2021), pp. 522–532. 815

[23] Richard J Chen et al. “Pan-cancer integrative 816

histology-genomic analysis via multimodal 817

deep learning”. In: Cancer Cell 40.8 (2022), 818

pp. 865–878. 819

[24] Hong-Yu Zhou et al. “A transformer-based 820

representation-learning model with unified 821

processing of multimodal input for clinical di- 822

agnostics”. In: Nature Biomedical Engineering 823

(2023), pp. 1–13. 824

[25] Ye Zhu et al. “Vision+ X: A Survey on Multi- 825

modal Learning in the Light of Data”. In: arXiv 826

preprint arXiv:2210.02884 (2022). 827

[26] Chao Zhang et al. “Multimodal intelligence: 828

Representation learning, information fusion, 829

and applications”. In: IEEE Journal of Selected 830

Topics in Signal Processing 14.3 (2020), pp. 478– 831

493. 832

[27] Hassan Akbari et al. “Vatt: Transformers for 833

multimodal self-supervised learning from raw 834

video, audio and text”. In: Advances in Neu- 835

ral Information Processing Systems 34 (2021), 836

pp. 24206–24221. 837

10

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 5, 2024. ; https://doi.org/10.1101/2023.12.25.23300117doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.25.23300117


[28] Kaiming He et al. “Masked autoencoders are838

scalable vision learners”. In: Proceedings of the839

IEEE/CVF conference on computer vision and pat-840

tern recognition. 2022, pp. 16000–16009.841

[29] Xiaohan Wang, Linchao Zhu, and Yi Yang.842

“T2vlad: global-local sequence alignment for843

text-video retrieval”. In: Proceedings of the844

IEEE/CVF Conference on Computer Vision and845

Pattern Recognition. 2021, pp. 5079–5088.846

[30] Diping Song et al. “Deep relation transformer847

for diagnosing glaucoma with optical coher-848

ence tomography and visual field function”. In:849

IEEE Transactions on Medical Imaging 40.9 (2021),850

pp. 2392–2402.851

[31] Shuai Zheng et al. “Multi-modal graph learn-852

ing for disease prediction”. In: IEEE Transac-853

tions on Medical Imaging 41.9 (2022), pp. 2207–854

2216.855

[32] Richard J Chen et al. “Multimodal co-attention856

transformer for survival prediction in gigapixel857

whole slide images”. In: Proceedings of the858

IEEE/CVF International Conference on Computer859

Vision. 2021, pp. 4015–4025.860

[33] Tsai Hor Chan et al. “Histopathology Whole861

Slide Image Analysis With Heterogeneous862

Graph Representation Learning”. In: Proceed-863

ings of the IEEE/CVF Conference on Computer864

Vision and Pattern Recognition. 2023, pp. 15661–865

15670.866

[34] Kaiming He et al. “Deep residual learning for867

image recognition”. In: Proceedings of the IEEE868

conference on computer vision and pattern recogni-869

tion. 2016, pp. 770–778.870

[35] Mukund Sundararajan, Ankur Taly, and Qiqi871

Yan. “Axiomatic attribution for deep networks”.872

In: International conference on machine learning.873

PMLR. 2017, pp. 3319–3328.874

[36] Carlo Tomasi and Roberto Manduchi. “Bilateral875

filtering for gray and color images”. In: Sixth876

international conference on computer vision (IEEE877

Cat. No. 98CH36271). IEEE. 1998, pp. 839–846.878

[37] John Canny. “A computational approach to879

edge detection”. In: IEEE Transactions on pat-880

tern analysis and machine intelligence 6 (1986),881

pp. 679–698.882

Acknowledgments883

This work was supported by the National Natural884

Science Foundation of China (No. 82071946), the885

Natural Science Foundation of Zhejiang Province886

(No. LZY21F030001), the Pioneer and Leading Goose887

R&D Program of Zhejiang (No. 2023C04039), the 888

National Key Research and Development Program 889

of China (2022YFF0608403), Youth Research Fund 890

Project of Shaoxing People’s Hospital (Grant Num- 891

ber 2022YB07), and the fund of Zhejiang Province 892

Medical and Health Science and Technology Project 893

(No. 2023KY581). We thank Y.G. for providing us 894

external validation set. 895

Author contributions 896

M.H., C.S., X.L., and D.X. conceived and planned 897

the study. C.S., G.L., and X.L. designed the research 898

framework. J.Y., C.P., S.Z., and J.Y. collected the 899

raw US and CT images, patients’ clinical informa- 900

tion, and image annotation. G.L., Y.H., and X.F. per- 901

formed the data preprocessing and conducted the 902

performance analysis. G.L. designed the multimodal 903

fusion method and carried out model interpretation 904

analysis. G.L. and C.S. wrote the manuscript. All 905

authors commented on the manuscript. 906

Competing interests 907

The authors declare no competing interests. 908

11

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 5, 2024. ; https://doi.org/10.1101/2023.12.25.23300117doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.25.23300117


Saliency map visualization Multimodal applicabilityMultimodal contribution

Interpretability 

analysis

Patients 

Enrollment

Data acquisition 

and preprocessing

Prediction of the 

LNM risk

Central site

Lateral cervical site

  

   

   

   

  

   

   

   

Multimodal 

contribution

Multimodal 

applicability

Saliency map 

visualization

Model 

construction

US CT

External Cohort

60 patients

Main Cohort

1138 patients

Figure 1: Overall AI system for LNM risk prediction. The main cohort was employed for AI system development and evaluation,
while the external cohort assessed the system’s generalizability. After preprocessing, paired US and CT images are input into DGFNet,
our deep learning model, to predict LNM status in central and lateral cervical regions. Post-AI system development, we conducted
an extensive interpretability analysis comprising multimodal contribution assessment, saliency map visualization, and multimodal
applicability evaluation.
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Figure 2: DGFNet architecture. DGFNet consists of three branches: the US branch, CT branch, and multimodal branch. Each
US and CT branch incorporates an encoder and two decoders. DGFNet concurrently performs five tasks: nodal mask and boundary
segmentation in US images (guiding the model to focus on internal and marginal nodule features), boundary segmentation of nodules
and surrounding tissues in CT images (guiding the model to focus on nodule and surrounding tissue features in CT images), and the
final LNM prediction. The fusion of multimodal features in the latent space occurs within the diverse granularity fusion module, and
the final results are generated by subsequent fully connected layers. The diverse granularity fusion module includes the dimensional
correlation branch, modal weights branch, and nodal correlation branch, amalgamating characteristics from both modalities to provide a
diverse granularity information integration. A detailed explanation of this module is available in the Methods section.
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Figure 3: Attribution analysis of US and CT in predicting LNM status at central (a) and lateral cervical (b) sites. Each subfigure
comprises four panels, with the shared horizontal axes indicating nodule indices. The central site includes 954 nodules, while the lateral
cervical site includes 402 nodules. The values of the top two panels display attributions from US and CT images in the multimodal
prediction, respectively. Column colors denote unimodal predictions, where green signifies accurate predictions and red indicates
inaccuracies. The third panel illustrates the multimodal prediction results. Panel 4 represents the ground truth.
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Figure 4: Examples of saliency map visualization results at central site. In these instances, both the US and CT unimodal models
initially generated inaccurate predictions, whereas the multimodal models effectively rectified these to provide accurate predictions. The
red curve delineates the nodule’s boundary in the original US and CT images. The color red signifies an elevated likelihood of LNM
development, whereas the color blue signifies the contrary.
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Figure 5: Distribution of nodules with varied attributes and associated correct predictions ratio in central Site. Attributes encompass
nodal maximum diameter (considering the larger of the maximum diameters from transverse and longitudinal US views) in US
image(a), characteristics of margin (b), aspect ratio (calculated as the height divided by the width in transverse views) of nodules(c),
and location in thyroid (d).
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