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Abstract  65 
 66 
BACKGROUND: The grim (<10% 5-year) survival rates for pancreatic ductal adenocarcinoma (PDAC) 67 

are attributed to its complex intrinsic biology and most often late-stage detection. The overlap of 68 

symptoms with benign gastrointestinal conditions in early stage further complicates timely detection. 69 

The suboptimal diagnostic performance of carbohydrate antigen (CA) 19-9 and elevation in benign 70 

hyperbilirubinaemia undermine its reliability, leaving a notable absence of accurate diagnostic 71 

biomarkers. Using a selected patient cohort with benign pancreatic and biliary tract conditions we aimed 72 

to develop a biomarker signature capable of distinguishing patients with non-specific yet concerning 73 

clinical presentations, from those with PDAC. 74 

 75 

METHODS: 539 patient serum samples collected under the Accelerated Diagnosis of neuro Endocrine 76 

and Pancreatic TumourS (ADEPTS) study (benign disease controls and PDACs) and the UK 77 

Collaborative Trial of Ovarian Cancer Screening (UKCTOCS, healthy controls) were screened using 78 

the Olink Oncology II panel, supplemented with five in-house markers. 16 specialized base-learner 79 
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classifiers were stacked to select and enhance biomarker performances and robustness in blinded 80 

samples. Each base-learner was constructed through cross-validation and recursive feature elimination 81 

in a discovery set comprising approximately two thirds of the ADEPTS and UKCTOCS samples and 82 

contrasted specific diagnosis with PDAC. 83 

 84 

RESULTS: The signature which was developed using diagnosis-specific ensemble learning 85 

demonstrated predictive capabilities outperforming CA19-9 and individual biomarkers in both discovery 86 

and validation sets. An AUC of 0.98 (95% CI 0.98 – 0.99) and sensitivity of 0.99 (95% CI 0.98 - 1) at 87 

90% specificity was achieved with the ensemble method, which was significantly larger than the AUC 88 

of 0.79 (95% CI 0.66 - 0.91) and sensitivity 0.67 (95% CI 0.50 - 0.83), also at 90% specificity, for CA19-89 

9, in the discovery set (p=0.0016 and p=0.00050, respectively). During ensemble signature validation, 90 

an AUC of 0.95 (95% CI 0.91 – 0.99), sensitivity 0.86 (95% CI 0.68 - 1), was attained compared to an 91 

AUC of 0.80 (95% CI 0.66 – 0.93), sensitivity 0.65 (95% CI   0.48 – 0.56) at 90% specificity for CA19-9 92 

alone (p=0.0082 and p=0.024, respectively). When validated only on the benign disease controls and 93 

PDACs collected from ADEPTS, the diagnostic-specific signature achieved an AUC of 0.96 (95% CI 94 

0.92 – 0.99), sensitivity 0.82 (95% CI 0.64 – 0.95) at 90% specificity, which was still significantly higher 95 

than the performance for CA19-9 taken as a single predictor, AUC of 0.79 (95% CI 0.64-0.93) and 96 

sensitivity of 0.18 (95% CI 0.03 – 0.69) (p= 0.013 and p=0.0055, respectively). 97 

CONCLUSION: Our ensemble modelling technique outperformed CA19-9, individual biomarkers and 98 

prevailing algorithms in distinguishing patients with non-specific but concerning symptoms from those 99 

with PDAC, with implications for improving its early detection in individuals at risk.  100 

 101 

Introduction 102 

 103 

Pancreatic cancer (PC) remains lethal with approximately 500,000 new cases diagnosed globally each 104 

year with a comparable number of deaths.   Pancreatic ductal adenocarcinoma (PDAC) ranks as the 105 

seventh primary cause of cancer-related mortality (1, 2). Projections suggest that by 2030, mortality 106 

rates from PDAC will exceed that of other prevalent cancers, a shift which is attributed to an increasing 107 

incidence of obesity, diabetes mellitus, alcohol consumption in some regions (Europe, North America, 108 
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and Oceania) and advancements in detection and institution of screening initiatives that facilitate the 109 

timely identification of more common cancers (1-3). Across the European Union and the United 110 

Kingdom, mortality rates of PDAC have surpassed lung, breast and prostate cancers, underscoring the 111 

pressing need for enhancements in strategies for both detection and treatment of PC (4). These 112 

improvements are crucial to mitigate the growing burden of this disease (5, 6). 113 

 114 

The overall 5-year survival for PC patients is less than 10%. These figures improve in patients 115 

diagnosed with pre-invasive lesions (intraepithelial neoplasia, mucinous cystic lesions) or small tumours 116 

(< 2cm) detected at a localised stage (7). Patients with resectable disease are only identified in less 117 

than 20% of cases and advances in early detection strategies hold potential for improving these dismal 118 

figures (8, 9). The relatively low incidence and lifetime risk for PC in the general population (1.3%) 119 

preclude asymptomatic, average-risk adult (>50 age) screening, and efforts are rather focused on high-120 

risk populations  (9-11). Internationally, screening and surveillance is therefore recommended only in 121 

high-risk individuals (genetically predisposed, family history and high-risk pancreatic cysts), where a 122 

lifetime risk of at least 5% justifies their surveillance (9, 10, 12, 13). While surveillance in these high-123 

risk cohorts is consensus, we also reported on symptomatic cohorts in which the increased risk could 124 

justify investigations, as an additional risk group (9, 14).  125 

 126 

Existing evidence regarding the effect of timely diagnosis on outcomes in PDAC are limited, mostly due 127 

to the lack of randomisation, appropriate statistical considerations and homogenisations of study 128 

populations, and the topic remains an area of strong debate (15). Yet with research indicating that 129 

PDAC progresses from early (T1) stage to advanced (T4) in just over a year, and larger pancreatic 130 

cancers (>2 cm) metastases are detectable within approximately 3.5 months (range between 1.2 to 8.4 131 

months), it is very likely that prompt identification of PC would improve its prognosis (15-17). 132 

 133 

The reality of the situation however is that disease rarity, the presence of non-localising symptoms, the 134 

relatively low positive predictive values even for cancer specific ‘red-flag’ and advanced symptoms (e.g. 135 

weight loss, painless jaundice of 4-13%) challenge timely recognition in primary care settings, and a 136 

substantial number of PC patients are diagnosed following prolonged periods of clinical uncertainty (18, 137 

19). Previous case-control primary care studies associated various abdominal symptoms and increased 138 
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frequency of primary care consultations with PDAC, over the two years preceding its diagnosis (14, 20, 139 

21). These data suggest another potential window of opportunity for acceleration of PC detection.  140 

 141 

In roughly 30% of patients, PC manifests in the form of jaundice indicating tumour induced biliary 142 

obstruction, which is more evident in pancreatic head tumours (22). Together with significant weight 143 

loss, these frequently represent an already advanced disease. Although most often explained by benign 144 

aetiologies, symptoms such as back or epigastric pain, dyspepsia, anorexia, bloating, changes in 145 

consistency of stool, weight loss and anxiety/depression may also indicate an underlying pancreatic 146 

malignancy (14, 20-23). Such symptoms in adults (age > 60 years) with lifestyle factors (including heavy 147 

alcohol and tobacco consumption, obesity) and on the background of new or long-standing diabetes 148 

and chronic pancreatitis, are worrisome (9, 14, 21). In such patients, the United Kingdom National 149 

Institute for Health and Care Excellence (NICE) recommends direct access to cross-sectional imaging 150 

by CT, FDG-PET/CT, or EUS within two weeks (24). Although shorter diagnostic intervals are 151 

associated with extended survival, the non-specific clinical presentation and the complexity of 152 

diagnostic pathways result in delayed referral to specialised centres (14).  153 

 154 

To accelerate and improve cancer detection rates in the UK, ‘electronic cancer decision support tools’ 155 

(eCDST) have been developed to support primary care clinicians in fast tracking investigations in cases 156 

of suspected cancer (25-27). Risk prediction models/algorithms such as QCancer (25-27) combine 157 

symptoms data, patient risk factors and laboratory tests to predict a risk of undiagnosed cancers of 158 

various anatomical sites (colon, pancreas, renal, gastro-oesophageal and ovarian). These are digitally 159 

available for primary care physicians through patient record and data management portals (such as 160 

EMIS Web and INPS) and where higher risk justifies further investigations, could be combined with 161 

blood biomarker panels for further risk stratification prior to more invasive workup. 162 

 163 

When suspected, establishing a diagnosis will involve measurement of the serum marker CA19-9, 164 

cross-sectional (computed tomography or magnetic resonance) imaging and histopathology 165 

(endoscopic ultrasound guided tissue biopsy; EUS-FNB). CA19-9 is most reliable as a marker of tumour 166 

resectability, prognosis and monitoring of disease progression (28, 29), but as a diagnostic marker it 167 

performs poorly (median sensitivity and specificity of ~80%; AUC= 0.82), particularly in stage I/II disease 168 
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and in Lewis body negative patients (30, 31). The development of reliable and accurate diagnostic 169 

biomarkers is essential for risk stratification and prioritisation of further investigations, as well as 170 

justification of invasive interventions where the findings on imaging are unequivocal (32).  171 

 172 
Using serum samples collected from a selected study cohort with benign pancreatic and biliary tract 173 

conditions and applying robust machine learning stacked modelling, we therefore developed a serum 174 

biomarker signature capable of differentiating PC patients from healthy individuals and patients with 175 

benign abdominal conditions presenting with non-specific yet concerning symptoms for pancreatic 176 

cancer, at higher rates than CA19-9 and other state-of-the-art biomarkers.  177 

 178 
 179 

Materials and Methods  180 

 181 
Study Design  182 

As our cohort, we used serum samples from the Accelerated Diagnosis of neuro Endocrine and 183 

Pancreatic TumourS (ADEPTS) study (33) (UCL/UCLH Research Ethics Committee reference 184 

06/Q0512/106, IRAS Number 234637, NIHR portfolio no. 7343) study - an early detection study aimed 185 

at detecting pancreatic cancer in patients at an earlier stage. As part of the Early Diagnosis Research 186 

Alliance (EDRA), the ADEPTS study (previously referred to as TRANSlational research in BILiary tract 187 

and pancreatic diseases (TRANSBIL) study), commenced in 2018 and included a multicentre 188 

prospective blood sample collection from patients with non-specific but concerning symptoms 189 

associated with PDAC. Patients were recruited at gastroenterology/hepatobiliary and surgical clinics at 190 

University College London (UCLH) and the Royal Free Hospitals (RFH), London, UK. Blood samples 191 

were collected from subjects with benign hepatobiliary conditions as well as those with PDAC (stages 192 

I-IV). All patients recruited to the ADEPTS study provided written informed consent.  193 

For PDAC patients, tumour staging was performed according to the AJCC 8th edition (TNM) based on 194 

cross-sectional imaging and for those undergoing surgery, based on multi-disciplinary team recordings. 195 

All included PDAC cases were histologically confirmed by UCLH and RFH local pathologists based on 196 
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tissue analysis obtained by endoscopic ultrasound guided fine needle biopsies or specimens obtained 197 

during surgical resection.  198 

For benign disease controls, patients were selected to include the following diagnoses: chronic 199 

pancreatitis, intraductal papillary mucinous neoplasms (IPMN), or benign pancreatic diseases (e.g., 200 

serous cystadenomas and pancreatic heterotopia). Patients with acute and chronic pancreatitis, 201 

pancreatic cysts, benign biliary duct diseases (e.g., IgG4 disease), liver disease, gastritis/reflux disease, 202 

gallstones as well as those with familial history of pancreatic cancer, were also used. Samples also 203 

included those collected from patients presenting with non-specific symptoms which were not otherwise 204 

explained by an underlying gastrointestinal pathology (such as non-specific abdominal pain and irritable 205 

bowel syndrome) as well as other malignancies.  Medical history and confirmation of diagnosis was 206 

obtained from hospital medical records and included GP and secondary clinic referral letters. For 45 207 

patients, a QCancer score was available at time of specialist centre consultations. QCancer calculates 208 

the probability of an individual as harbouring an existing, yet undiagnosed cancer, by considering their 209 

specific risk factors and presenting symptoms. These are digitally available for primary care physicians 210 

through patient record and data management portals such as EMIS Web and INPS and designed as 211 

clinical decision support tools to aid in assessment of need for specialist referrals (34). 212 

 213 

To further represent the healthy population we also used samples from 72 healthy control UKCTOCS 214 

(35) samples that were collected from a nested case control discovery study part of UKCTOCS reported 215 

before (36), which had been previously approved by the Joint UCL/UCLH Research Ethics Committee 216 

A (Ref. 05/Q0505/57). Written informed consent for the use of samples in the UKCTOCS trial and 217 

secondary ethically approved studies was obtained from donors and no data allowing identification of 218 

patients was provided. The original UKCTOCS dataset from which data was used here was derived 219 

from serum samples collected from post-menopausal women, aged between 50 and 74 years, who 220 

were recruited between the years 2001 and 2005 (35). The collection of these samples was conducted 221 

in accordance with a specific Standard Operating Procedure (SOP) (37, 38). For the current work our 222 

interest lies only with the UKCTOCS matched non-cancer controls, i.e., with no cancer registry code, 223 

from individual women selected based on collection date, age, and centre to minimize variation due to 224 

handling and storage. Comprehensive information regarding diabetes status for the selected 225 

UKCTOCS participants was either unavailable or incomplete. In addition, data on disease duration was 226 
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not accessible. Consequently, it was not feasible to stratify samples to discovery and validation sets 227 

based on the type of diabetes they may have had. For the purposes of this study, only healthy controls 228 

that were matched to PDAC cases, with less than one year to diagnosis, were utilized. 229 

 230 

A total of 539 serum samples (493 controls and 46 PDAC cases, see Table 1) were analysed using the 231 

Olink multiplex immunoassay Oncology II panel in addition to five in-house markers: Carbohydrate 232 

antigen 19-9 (CA19-9), Interleukin 6 Cytokine Family Signal Transducer (IL6ST/IL6RB), von Willebrand 233 

factor (VWF), Pyruvate kinase isozymes M1/M2  (PKM/PKM2) and Thrombospondin 2  (THBS2/TSP2 ).  234 

The selection of additional markers, beyond CA19-9, was informed by our preceding research in early 235 

detection of PDAC (36, 39). In those studies, a panel of markers was identified due to its demonstrated 236 

ability to facilitate the early detection of pancreatic cancer, with a lead time of up to two years prior to 237 

diagnosis.  238 

 239 
Serum analyte measurements 240 
 241 
All ADEPTS (33) samples were randomized for testing. Supplementary Table 1 summarizes dilution 242 

factors and coefficients of variation. CA19-9 was measured using the Mucin PC/CA19-9 ELISA Kit 243 

(Alpha Diagnostic International) according to the manufacturer, using a 1:4 serum dilution. For VWF, 244 

we resorted to the Von Willebrand Factor Human ELISA Kit (abcam) at a 1:100 serum dilution. 245 

IL6ST/IL6RB by Quantikine human soluble gp130 (R&D Systems), according to manufacturer 246 

recommendations, at a 1:100 serum dilution. THBS2/TSP2 was measured using the Quantikine Human 247 

Thrombospondin-2 Immunoassay (R&D Systems) at a 1:10 serum dilution. Pyruvate kinase M2 (PKM2) 248 

was measured with an ELISA (Cloud-Clone Corp) at a 1:10 dilution.  249 

 250 

We outsourced tests using the multiplex immunoassay Oncology II panel from Olink on all samples. 251 

This Olink panel measured known cancer antigens, growth factors, receptors, angiogenic factors, and 252 

adhesion regulators (as detailed in Supplementary Table 2). Identical assays were performed on a 253 

subset of samples derived from the UKCTOCS study (37, 38).  254 

 255 

To bridge the normalized protein expression values from Olink between the UKCTOCS and ADEPTs 256 

datasets, we selected a representative sample set of 16 from each cohort and plated them together. 257 
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Subsequently, a correction was applied to the datasets using the statistical algorithms recommended 258 

in the Olink data normalization white paper (40). This method ensured that the data from different 259 

batches and studies were comparable, thereby enhancing the robustness and validity of the findings. 260 

 261 

Statistical analysis 262 
 263 
The selected set of ADEPTS samples used in this work was partitioned into two distinct sets: a discovery 264 

subset, comprising two-thirds of the total sample size, and a validation subset, encompassing the 265 

remaining one-third. Allocation into each set was performed by stratifying for specific age ranges, 266 

diabetes status, PDAC status and control diagnosis class. For the PDAC cases, tumour stage was also 267 

used. The age stratification ranges were the following: 18<Age£28; 29<Age£38; 39<Age£48; 268 

49<Age£58; 59<Age£68; 69<Age£78; Age³79. The samples assigned to the control class were made 269 

of benign conditions such as: Sphincter of Oddi dysfunction, Pancreatic Cyst, Other Cancer, Other 270 

Biliary Duct Disease, No Relevant Diagnosis, Liver Disease, Irritable Bowel Syndrome, IgG4 Disease, 271 

Gastritis/Reflux Disease, Gallstone Disease, Familial Pancreatic Cancer, Chronic Pancreatitis, Acute 272 

Pancreatitis, Isolated LFT Derangement and Non-specific Abdominal Pain. We also added an additional 273 

set of healthy control samples collected from a nested study done in UKCTOCS samples used in a 274 

previous paper (41). The controls matched by age to the PDAC cases in the UKCTOCS cohort that had 275 

a time to diagnosis below up to one year were selected. The allocation of these controls to the discovery 276 

or validation sets was done according to the division used in our previous work (41). The number of 277 

controls and cases collected for this study can be visualized in Figure 1. UKCTOCS controls are 278 

identified as ‘Healthy’. The discovery-validation split puts the prevalence of PDAC in the discovery set 279 

at close to 8%. The prevalence of PDAC in the resulting validation was approximately 14%.  280 

 281 

Receiver operating characteristic (ROC) curves were constructed for each model to assess diagnostic 282 

performance.  The area under the curve (AUC) for the ROC curves was used as the metric. Models and 283 

techniques were compared based on their rank in the discovery under a 10-time repeated 5-fold cross-284 

validation resampling strategy. ROC curves were generated with the pROC R package (version 1.18.0, 285 

https://cran.r-project.org/web/packages/pROC/index.html ). 95% CI for AUCs were determined by 286 

stratified bootstrapping. All AUC confidence intervals crossing 0.5 were considered to be non-287 
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significant. P values comparing ROC curves were also calculated using the pROC package, under a 288 

one-sided bootstrap approach with 10000 runs. 289 

 290 

In order to evaluate the association between each of the single markers available for this work, including 291 

clinical covariates (see Table 1 and Figure 1), and PDAC status, we used a logistic regression model 292 

implemented in the logistf R package (https://cran.r-project.org/web/packages/logistf/index.html, 293 

version 1.24.1). This approach fits a logistic regression model using Firth’s bias reduction method. The 294 

reported confidence intervals for odds ratios and tests were based on the profile penalized log likelihood 295 

and incorporate the ability to perform tests where contingency tables are asymmetric or contain zeros. 296 

The performance of single marker models was also verified in the discovery and validation sets (see 297 

Supplementary Figure 1 and Supplementary Table 3 and 4). The same package was also used to verify 298 

the association of the presence of symptoms and PDAC status (see Figure 4). 299 

 300 

A comprehensive multi-dimensional examination of the collated data was conducted by employing two 301 

distinct analytical frameworks. The first was a stacked ensemble algorithm where base-learners were 302 

developed according to the same algorithm but in subsets of the discovery set where samples belonging 303 

to a specific control diagnosis class were contrasted against the same 24 PDAC cases (see for example 304 

the proportions in Figure 1). The resulting base-learners were then stacked by a logistic regression 305 

model, (see Supplementary Table 5 for the resulting coefficients and Supplementary Figure 2 for the 306 

stacking procedures). This approach aimed to leverage the predictive power of multiple models, thereby 307 

enhancing the robustness and potentially leading to more precise predictive outcomes (36, 42, 43). For 308 

each base-learner classifier we resorted to a Recursive Feature Elimination (RFE) routine with logistic 309 

regression as the fitting algorithm available through caret (version 6.0-93, https://cran.r-310 

project.org/web/packages/caret/index.html) and oversampling of the minority class. This secures robust 311 

selection of features when combined with cross validation and the selection process is encapsulated 312 

inside an outer layer of resampling (44-46). Due to the prevalence of PDAC cases in the whole 313 

dataset being low, random under sampling of the majority class, here benign and healthy controls, 314 

would not have been sufficient to meet the demands of most algorithms. Therefore, creating an 315 

ensemble of classifiers specialised in contrasting a specific diagnostic class against PDAC allowed 316 

us to create more balanced subsets leading to increased performance (Figure 2). For the samples 317 
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collected from UKCTOCS no symptoms information was available and, therefore, we created a 318 

separate classifier associated with this subset of individuals. 319 

 320 

In addition to the stacked approach we also fitted state-of-the-art algorithms such regularized random 321 

forests (RRF, version 1.9.4, https://cran.r-project.org/web/packages/RRF/index.html); extreme 322 

gradient boosting trees (xgbTree, version 1.6.0.1, https://cran.r-323 

project.org/web/packages/xgboost/index.html );  and a generalized linear model with RFE applied to 324 

the whole discovery set (RFE glm, in caret). The latter allowed for testing if the division into diagnosis 325 

specific classifier ensembles was advantageous at low but representative prevalence (Figure 2) in 326 

a situation where we want to contrast PDAC cases with confounding diseases in a clinical setting. 327 

All base-models were trained by 10 times repeated 5-fold cross-validation with over-sampling of the 328 

minority class (see Table 1 and Supplementary Tables 6 and 7 for information on prevalence). 329 

 330 

To verify if the PDAC index developed with the ensemble stacked approach had any association with 331 

metrics used in the clinic but not taken into account in any stage of algorithm training, we also gathered 332 

the QCancer score (47)  for individuals in the ADEPTS study (see Figure 6).  333 

 334 

The procedure for assessing feature importance in each base learner was a model-agnostic method 335 

based on a simple feature importance ranking measure (48), implemented in the R package vip (version 336 

0.3.2, https://cran.r-project.org/web/packages/vip/index.html). The model-agnostic interpretability, by 337 

decoupling the interpretation from the model itself, introduces a level of flexibility that enables its 338 

application across any supervised learning algorithm. Despite the algorithm used for each diagnosis-339 

specific classifier being the same, the model-agnostic approach allows us to be able to generalise the 340 

computed importances to other work in the literature. 341 

 342 

Enrichment analysis for each of the signatures developed was performed with the gprofiler2 R package 343 

(version 0.2.1, https://cran.r-project.org/web/packages/gprofiler2/index.html ). A threshold for multiple 344 

comparison correction under the framework of false discovery rate was instituted at 0.05. 345 

 346 

 347 
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Results 348 

Data set characteristics 349 

In the full set of samples collected from the ADEPTS cohort, age at the time of sample collection, 57.44 350 

(range from 19.00 to 93.00) for controls and 69.72 (range from 43.00 to 91.00) for PDAC cases, emerged as a 351 

risk factor (OR= 1.06 (95% CI 1.04 – 1.09), p=2.47´10-7) (Table 1). As a predictor in a logistic regression 352 

model age as a feature achieved a ROC AUC of 0.73 (95% CI 0.66-0.79), with a cut-off at 61.5 years 353 

(calculated using the Youden J statistic). This finding was also observed in both the discovery 354 

(Supplementary Table 6 and Figure 1, ROC AUC 0.74 (95% CI 0.64-0.83), cut-off at 70) and validation 355 

sets (Supplementary Table 7 and Figure 1, 0.74 (95% CI 0.64-0.82), cut-off at 60), which incorporated 356 

not only ADEPTS samples but also healthy control samples collected from UKCTOCS (35). In our past 357 

research which was focused exclusively on UKCTOCS longitudinal samples, age similarly emerged as 358 

a risk factor for PDAC (36). Furthermore, gender (OR=2.72 (95% CI 1.46 – 5.27), p=0.0015) and 359 

ethnicity taken as a one-hot encoded variable (OR=2.02 (95% CI 1.34 – 3.03), p=6.56´10-4) were also 360 

confirmed as significantly associated with an increased risk of PDAC (Table 1). In the whole set of 361 

samples collected from the ADEPTS cohort, men had a 2.72-fold risk of PDAC compared to their female 362 

counterparts. Individuals of Caucasian ethnicity demonstrated a decreased risk of PDAC in a one 363 

versus rest calculation (OR=0.38 (95% CI 0.20 – 0.69), p=0.0018) and no significant association was 364 

found between PDAC risk and Asian or Afro-Caribbean ethnicity in the ADEPTS dataset under the 365 

same modelling framework (Table 1).  The association of gender and PDAC was also confirmed in the 366 

discovery (OR=4.98 (95% CI 2.08 – 13.50), p=0.00023, Supplementary Table 6 and Figure 1) and 367 

validation sets (OR=2.65 (95% CI 1.11 – 6.58), p=0.028 Supplementary Table 7 and Figure 1) , but 368 

ethnicity, taken as a one-hot encoded variable, remained a significant predictor of PDAC only in the 369 

validation set (OR=2.66 (95% CI 1.42 – 5.17), p=0.0020) (Supplementary Table 7 and Figure 1), which 370 

as was highlighted above also includes healthy control UKCTOCS samples. Within the group of the 371 

clinical covariates only age and gender are significant predictors of PDAC in both the discovery and 372 

validation set (Figure 1), with only age achieving a significant AUC in the validation set between these 373 

two. However, this was concomitant with remarkably low sensitivity (Sens), positive predictive (PPV) 374 

value and negative predictive value (NPV) at 90% specificity (Spec): AUC 0.74 (95% CI 0.64-0.82), 375 

Sens 0.13 (95% CI 0 - 0.39), PPV 0.16 (95% CI 0 - 0.36), NPV 0.88 (95% CI 0.86 – 0.91).  376 
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Development of PDAC biomarker signature in the presence of confounding conditions 377 

To aid the early detection of this cancer in individuals at risk, we aimed to develop a biomarker signature 378 

that could be used to differentiate between suspected PDACs and benign biliary conditions that often 379 

overlap in clinical presentation. We applied a uniquely developed ensemble learning model, with a 380 

logistic regression stacking layer (see Supplementary Figure 2 and statistical analysis in the Methods 381 

section), to a set of 539 serum samples (493 controls and 46 PDAC cases) which were analysed using 382 

the Olink Oncology II panel as well as four additional biomarkers we previously reported on (36). These 383 

included IL6ST, VWF, THBS2 and CA19-9. The oncogenic and prognostic glycolytic enzyme PKM2 384 

was additionally selected based on our past report of its diagnostic utility in biliary tract cancer patients 385 

(49-51).   386 

The application of stacked ensemble modelling as presented herein bolsters the robustness of 387 

predictive outcomes, enhancing the performance of biomarker panels through the incorporation of 388 

serum biomarker levels and relevant clinical covariates for distinct diagnostic classes. Each component 389 

classifier within the ensemble is designed to provide a specialized distinction between confounding 390 

diagnoses and PDAC, thereby establishing a heterogeneous set of classifiers that facilitates the precise 391 

identification of PDAC (see statistical analysis section in Methods). Previous studies have attested to 392 

the beneficial role of ensemble methods in augmenting early detection of PDAC against only healthy 393 

controls (36). The implementation of stacked (Stack, Figure 2), specialized classifiers, developed within 394 

the discovery set, generated a biomarker signature capable of predicting PDAC with an AUC of 0.98 395 

(95% CI 0.98 – 0.99), sensitivity of 0.99 (95% CI 0.98 - 1), PPV 0.92 (95% CI 0.91 - 0.92) and NPV 396 

0.99 (95% CI 0.97 - 1) at 90% specificity. In contrast, the predictive efficacy of CA19-9 in the discovery 397 

set taken as a single predictor under a logistic regression model was 0.79 (95% CI 0.66 – 0.91) 398 

(p=0.0016 under a one-sided bootstrap test comparing the two AUCs), sensitivity 0.67 (95% CI 0.50 - 399 

0.83), PPV 0.32 (95% CI 0.26 - 0.38) and NPV of 0.97 (95% CI 0.96 - 0.99) at 90% specificity (see 400 

Supplementary Table 3). Amongst all biomarkers, CA19-9 demonstrated the most significant 401 

association (refer to Supplementary Table 3 and Supplementary Figure 1 for univariate trend 402 

associations across the discovery set), and one of the highest performances in the validation set 403 

(Supplementary Figure 1 and Supplementary Table 4). 404 

 405 
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In the validation set, the ensemble signature predicted PDAC with an AUC of 0.95 (95% CI 0.91 – 0.99), 406 

sensitivity 0.86 (95% CI 0.68 - 1), PPV 0.54 (95% CI 0.48 - 0.58) and NPV of 0.98 (95% CI 0.95 - 1) at 407 

90% specificity. Once again, this is an improvement with respect to CA19-9 (p=0.0082, one-sided 408 

bootstrap test) taken as a univariate model developed in the discovery set; this CA19-9 model predicted 409 

PDAC status with an AUC of 0.80 (95% CI  0.66 – 0.93), sensitivity 0.65 (95% CI   0.48 - 0.56), PPV 410 

0.49 (95% CI   0.41 - 0.56) and NPV of 0.95 (95% CI  0.92 - 0.98) at 90% specificity in the validation 411 

set. If we further validate only on the benign disease controls and PDACs collected from ADEPTS, the 412 

diagnostic-specific ensemble signature achieved an AUC of 0.96 (95% CI 0.92 – 0.99), sensitivity 0.82 413 

(95% CI 0.64 – 0.95) at 90% specificity. This performance is also significantly higher than the 414 

performance of CA19-9 in a univariate model: AUC of 0.79 (95% CI 0.64-0.93) (p= 0.013 when 415 

compared with the full signature, one-sided test) and sensitivity of 0.18 (95% CI 0.03 – 0.69). 416 

A closer examination of the individual performances of each base-learner classifier (Figure 2A and B) 417 

reveals that the logistic regression stacked ensemble approach has superior performance in both 418 

discovery and validation sets. Despite the best base-learner being trained on samples diagnosed as 419 

'Gastritis/Reflux Disease' (Figure 2A and B), its performance was also superseded by the AUC 420 

computed with the stack model, the logistic regression coefficients of which are delineated in 421 

Supplementary Table 5. The stack model significantly relies on the “Healthy”, “Chronic Pancreatitis”, 422 

“IgG4 Disease”, “Irritable Bowel Syndrome”, ‘Other Biliary Duct Disease”, “Sphincter of Oddi 423 

Dysfunction”, “No Relevant Diagnosis”, “Other Cancer” and “Pancreatic Cyst” base-learners. Even 424 

though the remaining diagnostic class base-learners, including "Gastritis/Reflux Disease", did not reach 425 

statistical significance (p<0.05), employing a stack that solely resorts to significant base-learners led to 426 

a reduction in generalization capacity: AUC 0.98 (95% CI 0.97 – 0.99), sensitivity 0.98 (95% CI 0.95 – 427 

1), PPV 0.92 (95% CI 0.91 – 0.92), NPV 0.97 (95% CI 0.94 – 0.99) in the discovery set; AUC 0.93 (95% 428 

CI 0.87 – 0.99), sensitivity 0.82 (95% CI 0.64 – 0.95), PPV 0.53 (95% CI 0.47 – 0.57), NPV 0.97 (95% 429 

CI 0.95 – 0.99) in the validation set. Although the differences are not substantial, we retain the full set 430 

of base-learners to enhance the generalization capacity for predicting PDAC in unseen data sets and 431 

new samples.  432 

 433 
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The employment of stacked diagnosis-specialized classifiers surpassed the AUC performance of state-434 

of-the-art algorithms such as random forests (RRF) and extreme gradient boosting methods (xgbTree), 435 

in terms of AUC, sensitivity, positive predictive value, and negative predictive value at 90% specificity 436 

(Figure 2C and D); although the performance AUC of the stacked classifier was only marginally 437 

significantly higher than that obtained with RRF (p=0.040, one-sided) and not significant when 438 

compared with xgbTree (p=0.26, one-sided), the sensitivity values at 90% specificity obtained with the 439 

alternative methods were, in fact, significantly lower, p=0.028 and p=0.045, respectively. The ensemble 440 

also outperformed a logistic regression model with recursive feature elimination (Figure 2C and D) that 441 

did not rely on ensemble modelling (p=0.0066, one-sided), further substantiating our choice of machine 442 

learning paradigm for facilitating the identification of PDAC cases in a clinical setting where confounding 443 

diagnoses may be present, and the prevalence is low. 444 

 445 

The comprehensive index signature, incorporating all diagnostic categories, was constituted by 49 446 

features, of which 44 were proteins (see Figure 3 for the importance associated with each). Among 447 

these proteins, 21 demonstrated a significant association with PDAC in the discovery set; ICOSLG, 448 

GPNMB, ESM-1, DLL1, VWF, ERBB2, FCRLB, CEACAM5, EGF, CTSV, FASLG, Creatinine, CPE, 449 

CA9/CAIX, TBIL, CD207, CRP, CDKN1A, EPHA2, ITGAV, and MUC-16 (see Supplementary Figure 1 450 

and Supplementary Tables 3). The remaining 23 proteins, namely CXCL13, ERBB3, FOLR1/FR-alpha, 451 

FADD, ERBB4, CD27, AREG/AR, ADAM-TS-15, ABL1, ANXA1, CXCL17, CD70, CEACAM1, CD48, 452 

IL6ST, CD160, PKM/PKM2, CYR61/CCN1, CRNN, ADAM-8, FOLR3/FRgamma, THBS2, GZMB, did 453 

not demonstrate a significant association with PDAC in univariate models (see Supplementary Figure 454 

1 and Supplementary Tables 3 and 4). Additionally, five clinical covariates—Gender, Age, Ethnicity, 455 

Diabetes, and Body Mass Index (BMI)—were identified as important predictors following 456 

comprehensive recursive feature elimination during cross-validation (Figure 3). 457 

Gene Ontology (GO) and biological pathway enrichment (Kyoto Encyclopaedia of Genes and 458 

Genomes; KEGG, Reactome Pathway Database; REAC and WikiPathways; WP) analysis was 459 

performed for the selected set of features using g:Profiler (Supplementary Figure 3). Top significant 460 

terms for biological processes (BP) included ‘circulatory system development’, ‘blood vessel 461 

morphogenesis’, ‘cell adhesion’, ‘angiogenesis’, ‘blood vessel development’, ‘regulation of cell 462 

adhesion’, ‘positive regulation of cell population proliferation’, ‘cell-cell adhesion’, and ‘regulation of 463 
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developmental process’. Top relevant biological pathways included: ‘PI3K-KAT signalling pathway’, 464 

‘ERBB signalling pathway’, ‘pathways in cancer’, ‘proteoglycans in cancer’, ‘platinum drug resistance’, 465 

‘prostate cancer’, ‘type I diabetes mellitus’, ‘MAPK signalling pathway’ and ‘focal adhesion’. 466 

 467 

The scaled importance of each feature and diagnostic class/classifier is depicted in Figure 3. It is of 468 

significance to note that not every biomarker was selected by each individualized classifier, highlighting 469 

the requirement for an array of diverse predictors, each tailored to specific underlying conditions, to 470 

effectively identify PDAC. This is consistent with the idea that heterogeneous ensembles are 471 

fundamental for predictive capacity in blind datasets (36, 43).  472 

 473 

Of the five selected clinical covariates, only Age, Ethnicity, and Gender manifested as significant 474 

predictors of PDAC in the validation set, as illustrated in Figure 1 and explained in the data set 475 

characteristics subsection (see also Supplementary Table 6 and 7). It is worth emphasizing that the 476 

lack of significant association between certain markers and PDAC in the discovery set does not 477 

preclude their inclusion in the signature. These variables were selected due to their contribution to the 478 

enhanced robustness and generalization capacity in predicting PDAC during cross-validation with a 479 

recursive feature elimination routine (see Methods). A similar trend was verified in prior work focussed 480 

on ensemble models for PDAC early detection against healthy controls (36). 481 

 482 

Application of a reduced, 8-marker signature as a differentiator of PDAC from healthy and 483 

benign controls 484 

 485 

Across all conditions, 8 features with relatively higher scaled importance that differentiated controls from 486 

PDAC patients were selected (Figure 3). Importance is measured by the contribution of a specific 487 

feature to the output of the model (see Methods), in our case the probability of PDAC. These included 488 

CA19-9, VWF, CPE, CTSV, CEACAM1 and CD160 together with Diabetes and Age as 489 

clinicodemographic variables. Diabetes was a predictor of the differences between PDAC against 490 

familial cases, gastric reflux disease (GORD), sphincter of oddi (SOD) dysfunction, as well as healthy 491 

controls.  492 

 493 
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CA19-9 levels were only selected as a top discriminating feature against PDACs in patients with 494 

suspected sphincter of Oddi dysfunction, benign liver disease, irritable bowel syndrome (IBS), those 495 

with isolated LFT derangements as well as distinguished healthy subjects and those with other cancers 496 

(Figure 3 and Supplementary Table 8), from PDAC patients.  497 

 498 

Von Willebrand Factor (VWF) levels differentiated PDAC from symptomatic patients with pancreatic 499 

cysts, benign biliary duct diseases, non-abdominal conditions, patients with family history of PDAC, 500 

those with GORD as well as healthy subjects.  501 

 502 

The immunoglobulin like surface antigen  molecule CD160 (peripheral natural killer cells and CD8+ T 503 

lymphocytes) (52) and a proposed immune checkpoint inhibitor, was selected as a significant 504 

differentiator of PDAC from benign biliary tract diseases (IgG4 disease), SOD dysfunction, IBS as well 505 

as in familial pancreatic cancer subjects and other cancers. Cathepsin V (CTSV) levels were also a 506 

predictor of multiple conditions against PDAC, including benign biliary diseases and in subjects 507 

belonging to the familial PC cohort. In healthy subjects, however, this feature did not show significant 508 

importance as a differentiator from PDAC.  509 

 510 

Serum levels of the metallo-carboxypeptidase E (CPE) were a feature selected as significant in five 511 

conditions (acute pancreatitis, gallstones and IgG4 disease, SOD dysfunction and GORD) as well as a 512 

differentiator in those with FH of PC. A higher scaled importance was attributed to this enzyme against 513 

CA19-9 when differentiating acute and chronic pancreatitis (CP), isolated LFT derangements, 514 

unexplained abdominal pain and non-abdominal conditions versus PDAC (Figure 3). 515 

THE CEA cell adhesion molecule (CEACAM1) was selected as a feature in patients with non-explained 516 

recurrent abdominal pain, isolated LFT derangements, GORD, SOD dysfunction as well as a feature 517 

selected against non-pancreatic cancers. 518 

Chronic pancreatitis (CP) is a known risk factor for PDAC. In our index signature, the protein markers 519 

selected against PDAC included ESM1, ICOSLG, CTSV, CXL17 (CXC motif chemokine ligand 17), 520 

IL6ST, ITGAV, GZMB (granzyme B; secreted serine protease), with a reduced risk for cancer in 521 

Caucasian ethnicity (53-55).  522 
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 523 

 524 

We therefore opted to assess their combined performance against CA19-9 as a single marker. Using a 525 

similar stacking procedure as before, a reduced model was trained using the same ensemble approach 526 

as that highlighted before but with only 8 features as the input. The reduced signature predicted PDAC 527 

still with a high AUC value of 0.97 (95% CI 0.95-0.98), sensitivity 0.98 (95% CI 0.95-1), PPV 0.92 (95% 528 

CI 0.91-0.92) and NPV of 0.98 (95% CI 0.94-1) at 90% specificity, in the discovery set (Supplementary 529 

Figure 4C). In the validation set, however, the performance of the 8-marker signature was significantly 530 

reduced (p= 0.00038, one-sided) compared to the full stacked model (AUC of 0.84 (95% CI 0.75-0.94), 531 

sensitivity 0.64 (95% CI 0.36-0.82), PPV 0.47 (95% CI 0.33-0.53) yet with a NPV of 0.95 (95% CI 0.91-532 

0.97) at 90% specificity (Supplementary Figure 4D)), and only marginally superior to CA19-9 as a single 533 

marker  (p=0.18, one-sided). On the other hand, the 8-marker signature still outperformed CA19-9 by a 534 

relatively large margin when predicting PDAC against healthy UKCTOCS controls in the validation set: 535 

AUCredsig of 0.93 (95% CI 0.84 - 1), sensitivityredsig of 0.86 (95% CI 0.54 - 1), PPVredsig 0.94 (95% CI 0.90 536 

– 0.94), NPVredsig 0.80 (95% CI 0.54 – 1); AUCCA19-9 of 0.84 (95% CI 0.70 - 0.97), sensitivity CA19-9 of 537 

0.68 (95% CI 0.5 – 0.91), PPV CA19-9 0.92 (95% CI 0.89 – 0.94), NPV CA19-9  0.62 (95% CI 0.52 – 0.85), 538 

at 90% specificity. Under a bootstrap test this AUC difference is significant p= 0.025 (one-sided). In 539 

addition, it also outperformed the full PDAC ensemble model when predicting PDAC against healthy 540 

controls in the validation set, although the differences were not significant (p=0.2, one-sided): AUCsig of 541 

0.90 (95% CI 0.77 – 1), sensitivitysig of 0.86 (95% CI 0.54 – 1), PPVsig 0.94 (95% CI 0.92 – 0.94), NPVsig 542 

0.80 (95% CI 0.66 – 1) at 90% specificity.  543 

 544 

If on the other hand the reduced signature is validated in ADEPTS samples only, i.e. in PDACs plus  545 

benign disease controls, the performance of the reduced signature is far inferior to the full signature: 546 

AUCredsig of 0.83 (95% CI 0.73 – 0.93) (p= 0.0009 when compared with AUCsig, one-sided test), 547 

sensitivityredsig 0.59 (95% CI 0.27 – 0.82), PPVredsig 0.47 (95% CI 0.29 – 0.55) and NPVredsig 0.94 (95% 548 

CI 0.89 – 0.97), at 90% specificity. This further justifies the use of the full ensemble signature in blind 549 

data sets and in a scenario where there is limited information on a patient trajectory, despite its 550 

increased complexity. 551 
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In consideration of the marker importance in the reduced model, no marker received a null significance 552 

across all diagnostic specific base-learners, a divergence from observations in the comprehensive 553 

signature. CA19-9 emerged with the largest average importance across conditions, which also 554 

contrasted with the full model. Age and VWF were ranked with elevated average significance across 555 

diverse conditions. It's pertinent to note that CPE levels manifested diminished scaled importance in 556 

discerning healthy controls from PDAC, particularly when juxtaposed against CA19-9, age, and 557 

CEACAM1 (refer to Supplementary Figure 5). 558 

 559 

Application of the full PDAC ensemble signature in symptomatic patients  560 

Our subsequent aim was to explore whether specific clinical manifestations were correlated with PDAC 561 

status in our ADEPTS patient cohort, for which such information was available (refer to Supplementary 562 

Figure 6 and Supplementary Table 9). As a similar type of data was not available for the UKCTOCS 563 

subset (healthy controls) used in this work, we focussed this section on the ADEPTS cohort.  564 

 565 

In our prior research, we analysed 12 "red-flag" symptoms reported by patients up to 22 months before 566 

the diagnosis of pancreatic cancer was established (20). In this work, ‘Vomiting’ (p=0.17), 567 

‘Asymptomatic LFT Derangement’ (p=0.28), ‘Back pain’ (p=0.54), ‘Change in Bowel Habit’ (p=0.67) and 568 

‘Rectal Bleeding’ (p=0.76) were selected for PDAC (versus benign disease controls), yet only ‘Jaundice’ 569 

(p=3.22´10-15), and ‘Weight Loss’ (p=1.44´10-6) were significantly associated with PC cancer cases in 570 

the set of samples randomly selected from the ADEPTS cohort, in which the biomarker panel was tested 571 

(Figure 4B and Supplementary Table 9). Unsurprisingly, ‘Reflux’ (p=0.022) and ‘Bloating’ (p=0.048) 572 

were significantly associated with benign controls. Interestingly, 'Abdominal Pain', 'Heartburn', 573 

'Anaemia', and 'Dysphagia' upon presentation were aligned more with the benign control cohort, albeit 574 

not significantly (refer to Figure 4 and Supplementary Table 9).  575 

 576 

Within the framework presented in preceding sections, our ensemble of classifiers was developed 577 

independently of symptomatic data. To assess the overall efficacy of our signature and its predictive 578 

capacity for PDAC, we scrutinized its performance on a subset of ADEPTS patients, belonging to both 579 

discovery and validation cohorts, manifesting with 'Weight Loss' (n=56) and 'Jaundice' (n=40) (refer to 580 
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Figure 4 and Supplementary Table 9). For each sample within these cohorts, where symptom data was 581 

accessible, probability scores were derived based on the ensemble model formulated using the whole 582 

discovery set presented above. We should emphasize that no additional model refinement was 583 

pursued. The decision to aggregate these probability scores is further rationalized by the relatively 584 

limited patient count exhibiting 'Weight Loss' and 'Jaundice' within the individual discovery and 585 

validation datasets (Supplementary Table 9). In the ADEPTS subset of samples presenting with 'Weight 586 

Loss', an AUC of 0.95 (95% CI 0.90 - 0.1), a sensitivity of 0.94 (95% CI 0.29 - 1), a PPV of 0.80 (95% 587 

CI 0.56 - 0.81), and a NPV of 0.97 (95% CI 0.74 - 1) at 90% specificity were achieved (Table 2 and 588 

Figure 5). In patients presenting with 'Jaundice', an AUC of 0.89 (95% CI 0.79 - 0.99), a sensitivity of 589 

0.73 (95% CI 0.36 - 0.91), a PPV of 0.90 (95% CI 0.82 - 0.92), and a NPV of 0.73 (95% CI 0.54 - 0.89), 590 

at 90% specificity, were observed (Table 2 and Figure 5). Compared with the AUC obtained with a 591 

simple CA19-9 logistic regression model developed in the discovery set and by concatenating the 592 

probability scores in the discovery and validation as done above, a significantly lower AUC of 0.74 (95% 593 

CI 0.58 - 0.90) is achieved (p=1.29´10-11, one-sided bootstrap test), with a sensitivity of 0.53 (95% CI 594 

0.24 - 0.76), a PPV of 0.70 (95% CI 0.50 - 0.77), and a NPV of 0.81 (95% CI 0.73 - 0.90), at 90% 595 

specificity, for patients presenting with 'Weight Loss'. For patients presenting with ‘Jaundice’ an AUC of 596 

0.70 (95% CI 0.53 - 0.86) is reached, also significantly inferior (p= 1.94´10-7), with a sensitivity of 0.41 597 

(95% CI 0.14 - 0.73), a PPV of 0.83 (95% CI 0.64 - 0.90), and a NPV of 0.55 (95% CI 0.46 - 0.73), at 598 

90% specificity, for CA19-9 as the single predictor.  599 

 600 

With respect to other non-localising symptoms of note (Figure 5, Table 2 and Supplementary Table 10), 601 

the best predictive performance was noted for the full index signature where it was able to differentiate 602 

patients presenting with ‘abdominal pain’ due to benign conditions vs. PDAC with an AUC of 0.98 (95% 603 

CI 0.97-1), sensitivity of 0.94 (95% CI 0.81-1), PPV 0.43 (95% CI 0.40-0.45) and a NPV of 0.99 (95% 604 

CI 0.98-1), at 90% specificity. In those presenting with ‘change in bowel habit’, an AUC of 0.97 (95% CI 605 

0.92-1), sensitivity 0.86 (95% CI 0.81-1), PPV of 0.51 (95% CI 0.41-0.55) and NPV of 0.98 (95% CI 606 

0.95-1) was obtained. Both the index and the 8-marker signature showed superior predictive 607 

performance to CA19-9 as a single marker (see Supplementary Table 11 for the respective p-values).  608 

 609 

 610 



 21 

Correlation of the full PDAC ensemble signature with QCancer pancreatic score 611 
  612 

In our final analysis, we juxtaposed the performance of our full ensemble classifier PDAC index against 613 

the QCancer risk prediction index, a clinical decision support tool available for primary care physicians, 614 

that integrates a myriad of individual-specific risk factors including age, sex, ethnicity, clinical 615 

measurements, diagnoses, and patient-reported symptoms into a risk stratifying point of care 616 

questionnaire (47). The ‘Today’s QCancer’ index evaluates an individual's current risk of having an 617 

undiagnosed cancer as well as the specific risk for 9 distinct underlying cancer types, including 618 

pancreatic (‘pancreatic’ score) (56, 57). The aim was to determine whether in combination, the QCancer 619 

eCDST and our biomarker index signature would be able to better discriminate PDAC patients in a 620 

symptomatic (ADEPTS) cohort or whether it would be redundant. As the current risk threshold set by 621 

the NICE is at 3% for triggering specialist referrals (24), we opted to assess the combined performance 622 

of our index signature and the eCDST at a same or lower cut-off values.  623 

 624 

The number of samples for which a QCancer score was computed is illustrated in Figure 6C. Using the 625 

diagnostic-specific ensemble model delineated previously, probability scores for samples in both 626 

discovery and validation cohorts were used to ascertain the combined ROC AUC for those samples 627 

possessing a QCancer score. This amalgamation was imperative, considering the reduced number of 628 

samples with an associated QCancer score (Figure 6C). It should be emphasized that no subsequent 629 

refinements or training of the algorithm were conducted. The ensemble stack index demonstrated a 630 

remarkable performance, achieving an AUC of 0.98 (95% CI 0.97 – 0.99), a sensitivity of 0.99 (95% CI 631 

0.97-1), a PPV of 0.91 (95% CI 0.90 – 0.91), and a NPV of 0.99 (95% CI 0.96 - 1), at 90% specificity. 632 

Interestingly, when considering only samples with a QCancer risk above 2 or 2.5, the biomarker and 633 

clinical covariate ensemble index exhibited comparatively lower performance (Figure 6A). For a 634 

QCancer risk above 3.0, the performance of the index decreases minimally once again, which is 635 

expected as the difficulty of correctly singling out cases from confounding controls is increased (Figure 636 

6A). However, the QCancer pancreatic score did exhibit a correlation with the odds of PDAC as 637 

determined by the ensemble classifier (R=0.36, p=3.4´10-8, Figure 6D) which highlights an important 638 

link between the purely clinical variables recorded for this cohort and the PDAC signature. Most 639 

importantly, the stacked index succeeded in attributing higher odds ratios above 1 to several PDAC 640 

cases that would have otherwise escaped detection had a QCancer score above 3 been taken as the 641 
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risk predictor (Figure 6D). Contrarily, when depending exclusively on the QCancer score, and using it 642 

to calculate the ROC AUC, the predictive capacity for PDAC in the ADEPTS samples is noticeably 643 

diminished in comparison to the performance of the ensemble index (Figure 6B); this was verified in all 644 

samples with a Qcancer score (p=1.56´10-18 ,one-sided bootstrap test comparing AUCs), with a score 645 

above 2 (p=1.24´10-10), above 2.5 (p=3.68´10-13) and above 3 (p=2.33´10-8). This justifies the PDAC 646 

signature as a useful complementary resource for enhanced and accelerated diagnosis in the clinic. 647 

 648 

Discussion 649 
 650 

Our objective was to construct a multi-biomarker signature that could effectively differentiate individuals 651 

with non-specific yet concerning symptoms attributable to both benign abdominal pathologies and 652 

PDAC. CA19-9 tumour marker blood levels are used clinically to help confirm PDAC diagnosis in a 653 

clinical context (positive findings on imaging, histopathology), prognosticate and monitor recurrence 654 

following tumour resections (58). Its absent expression in Lewis body negative blood group individuals, 655 

an overall limited predictive capacity (79–81% test sensitivity and 82–90% specificity at best) and 656 

especially in the presence of certain inflammatory pancreatico-biliary conditions, have driven 657 

researchers to rather combine it in multi-marker panels to enhance its predictive performance (29, 30, 658 

58). In an evolving multi-omics area, reported panels have included proteins, circulating nucleic acids 659 

(micro-RNA, cfDNA) or tumours cells, metabolites, and products of alternative DNA splicing and 660 

methylations (58, 59), developed to differentiate PDAC from healthy and those with benign pathologies. 661 

Yet, the role of such diagnostic and screening panels in symptomatic cohorts remains unestablished. 662 

 663 

The sampled population in our study is an enriched, symptomatic, secondary care cohort where the 664 

prevalence of PDAC was close to 8%, representing figures observed in our hepatobiliary specialised 665 

referral centres. By using this target population and their unique set of serum samples provided by the 666 

ADEPTS study (33), we were able to develop a biomarker signature in a cohort of patients who were 667 

referred to our participating centres (University College London Hospitals, London UK and the Royal 668 

Free Hospital, London UK) with various abdominal and hepatobiliary conditions which in symptomatic 669 

presentation might overlap with PDAC (20). Moreover, we included samples from patients with known 670 

risk factors for PC (chronic pancreatitis, those with family history of PDAC and cystic lesions of the 671 
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pancreas, CLPs) and with biliary conditions that are known confounders of CA19-9 (i.e. biliary tract 672 

inflammation/obstruction, pancreatitis, CLPs) - the only tumour marker clinically applied in the workup 673 

and management (29, 39, 60) of PDAC. 674 

 675 

We employed ensemble methods, which have achieved impressive accuracy in numerous complex 676 

classification tasks (36, 42, 43, 61). Specifically, we utilized stacking—a form of meta-learning (43)—to 677 

create a superior-level predictive model based on the predictions of diagnostic-specific base classifiers. 678 

These classifiers leveraged a diverse set of features, highlighting the fundamental importance of 679 

heterogeneity arising from specific diagnoses when compared against PDAC, an approach previously 680 

demonstrated to be effective (36, 42). Moreover, this study enabled us to evaluate the specificity of our 681 

early detection machine learning approach (36) within a relevant symptomatic population, thereby 682 

allowing us to address confounding factors that may impact their performance. The use of such 683 

diagnostic specialized base-learners was further justified by the data asymmetry between PDAC cases 684 

and controls observed in both the discovery and validation datasets.  685 

 686 

Across all diagnosis classes (base learners) the index signature which comprised 44 clinical and serum 687 

protein covariates predicted PDAC (all stages) with an AUC of 0.98 (95% CI 0.98 – 0.99); at 90% 688 

specificity , a sensitivity of 0.99 (95% CI 0.98 - 1), PPV 0.92 (95% CI 0.91 - 0.92) and NPV 0.99 (95% 689 

CI 0.97 - 1) was reached, in contrast to CA19-9 as a single predictor under a logistic regression model 690 

- AUC 0.79 (95% CI 0.66 – 0.91), sensitivity 0.67 (95% CI 0.50 - 0.83), PPV 0.32 (95% CI 0.26 - 0.38) 691 

and NPV of 0.97 (95% CI 0.96 - 0.99). On validation, an AUC of 0.95 (95% CI 0.91 – 0.99), sensitivity 692 

0.86 (95% CI 0.68 - 1), PPV 0.54 (95% CI 0.48 - 0.58) and NPV of 0.98 (95% CI 0.95 - 1) was achieved 693 

by the signature, compared to an AUC of 0.80 (95% CI  0.66 – 0.93), sensitivity 0.65 (95% CI   0.48 - 694 

0.56), PPV 0.49 (95% CI   0.41 - 0.56) and NPV of 0.95 (95% CI  0.92 - 0.98), for CA19-9.  695 

 696 

The performance of this index panel must be appreciated within the context of the complex biology 697 

associated with each of the ensembled diagnostic classes, i.e., the challenges associated with 698 

biomarker alterations on the background of pancreatico-biliary inflammatory and obstructive 699 

pathologies. When applying a redacted, 8-marker signature (CA19-9, VWF, CPE, CTSV, 700 

CEACAM1,CD160, Diabetes and Age) - features that were selected with relatively high importance 701 
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across most base learners, the performance was naturally reduced, yet still performed significantly 702 

better against CA19-9 as a single marker during discovery. Using the general linear model stack as 703 

was done in the case of the full index, the reduced signature predicted PDAC with AUC of 0.97 (95% 704 

CI 0.95-0.98), sensitivity 0.98 (95% CI 0.95-1), PPV 0.92 (95% CI 0.91-0.92) and NPV of 0.98 (95% CI 705 

0.94-1), at 90% specificity (Supplementary Figure 4C), values comparable to the full index. During 706 

validation, however, the predictive capacity of the reduced signature was significantly reduced 707 

compared to the full stacked model (Supplementary Figure 4D) and only marginally superior to CA19-708 

9 alone across the cohort. In contrast, it still outperformed CA19-9 by a significant margin when 709 

predicting PDAC against healthy controls.  710 

 711 

As validation of its performance, we also applied the full index signature to the cohort, which were re-712 

stratified based on presenting symptoms in contrast to the ensemble of classifiers which were 713 

developed independently of symptomatic data and with no further model refinement. The aim was to 714 

test the signature performance in differentiating PDAC cases from controls by accounting for presenting 715 

symptoms, and which have been linked with repeated primary care consultations up to two-years prior 716 

to PDAC diagnosis (20) (Figure 4). Enriched by fulfilling certain sociodemographic, clinical and 717 

attributable suspicious symptom (identified using CDSTs such as QCancer tool), symptomatic patients 718 

would form an ideal cohort for further risk stratification by minimally invasive blood biomarker testing for 719 

prioritisation of more invasive (and costly) investigations. Yet, contrary to the full index, in the cohort 720 

used in the current work the QCancer score used as the sole predictor of PDAC did not achieve 721 

significant performances in samples above the threshold of 3%. This further motivates the recourse to 722 

combined strategies where complementary biomarker panels such as those identified by ensemble 723 

modelling approaches could improve early detection when used in conjunction with CDSTs. 724 

 725 

In our test subjects, however, only ‘Jaundice’ (p=3.22´10-15), and ‘Weight Loss’ (p=1.44´10-6) were 726 

significantly associated with PDAC. When testing the diagnostic performance of the full index signature 727 

in all symptomatic patients presenting with ‘Weight Loss', the signature significantly outperformed 728 

CA19-9: AUCsignature of 0.95 (95% CI 0.90 - 0.1) vs. AUCCA19-9 of 0.74 (95% CI 0.58 - 0.90) (Figure 5A, 729 

Table 2 and Supplementary Table 11). ‘Weight loss’ has previously been reported to have the longest 730 

diagnostic interval in a prospective primary cohort study (SYMPTOM pancreatic study), assessing 731 
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symptom trends and associated diagnostic intervals in PC (14). Attesting to the full index signature’s 732 

capacity as a rule out test in such patients, is its outstanding negative predictive value compared to that 733 

of CA19-9 (0.97 95% CI 0.75-1 vs. 0.81 95% CI 0.73-0.9, respectively) (Table 2). Similarly, the index 734 

signature performed superiorly to CA19-9 in jaundiced patients (AUC of 0.89 (95% CI 0.79 - 0.99) vs. 735 

CA19-9 AUC of 0.70 (95% CI 0.53 - 0.86), see also Supplementary Table 11), which underscores once 736 

again the increased capacity of the ensemble index to better identify PDAC in the presence of a known 737 

confounder of CA19-9 (29, 39).   738 

  739 

While our study provides valuable insights, it is not without limitations. While the observed prevalence 740 

of PDAC in this study aligns with secondary care population trends, enhanced specificity and positive 741 

predictive value would necessitate larger cohorts with an increased number of cases. Moreover, the 742 

sample set representing the 'Healthy' control class warrants expansion to incorporate a more diverse 743 

population of both men and women. This control class, derived from the UKCTOCS samples used in a 744 

previous study (36), exclusively comprised women. Given its superior performance in predicting PDAC, 745 

as depicted in Figure 2, the inclusion of male samples within this class could further enhance the breadth 746 

of the panel of markers identified in this study. Lastly, although diabetes emerged both as a risk factor 747 

and a central clinical covariate in our signature (including in the reduced panel), we must emphasize 748 

and recognise the lack of complete (type, duration) data in the UKCTOCS cohort (36). Nevertheless, 749 

diabetes mellitus (and in particularly of new onset) is an established risk factor and therefore its inclusion 750 

as a relevant feature in the signature is of no surprise (9). 751 

 752 
While both our index and reduced signature were superior to CA19-9 in their predictive performance 753 

and compensated for asymmetric binary classes by creating a diagnostic-specific ensemble, its 754 

complexity challenges its utilisation in clinic. Yet, in the current era of rapidly evolving assay 755 

technologies, the utilization of a complex biomarker signature comprising numerous variables has 756 

gained significant relevance. While the complexity of these biomarker signatures may pose analytical 757 

challenges, the evolving assay technologies offer the means to effectively harness their potential. 758 

 759 

Future enhancements however, will naturally necessitate the study of larger cohorts, potentially 760 

incorporating a biomarker-contextualized machine learning perspective that accounts for sample-761 

specific aspects related to diagnosis, a strategy employed in other cancer research domains (62). The 762 
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utilization of disease trajectory tracking and clinical history analysis (63) may also facilitate the 763 

application of advanced deep learning techniques and electronic health data. When combined with 764 

ensemble biomarker signatures taken for example in a longitudinal context (36, 64), these approaches 765 

could enhance the estimation of PDAC risk within an enriched symptomatic population. 766 

 767 

Data Availability: Data requestors will need to sign a data access agreement and in keeping with 768 

patient consent for secondary use obtain ethical approval for any new analyses. 769 
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Tables: 814 

Table 1. Cohort characteristics. The data set used to develop and test the classifiers is a combination of samples 815 
collected from ADEPTS cohort and selected controls from the UKCTOCS cohort. BMI: Body Mass Index. See 816 
Study Design in Materials and Methods section for additional details. Odds ratio (OR) and respective 95% 817 
confidence intervals are also provided in the p value column. 818 
 819 

 
Variable 

 
Cases Controls p value 

 
ADEPTS 
 

   

 
No. samples 

 
46 

 
421 

- 
 

Stage I 
 
4 

 
- 

Stage II 15 - 
Stage III 10 - 
Stage IV 16 - 

Unknown 1 - 
 
Mean age at sample 
draw (yr) (range) 
 

69.72 (43.00-91.00) 57.44 (19.00-93.00) 2.47´10-7 
OR= 1.06 (1.04 – 1.09) 

 
Mean BMI (kg/m2) 
(range) 
 

24.84 (12.04-41.35) 25.30 (15.22-39.45) 0.47 
OR=0.97 (0.88 – 1.06) 

 
Gender    

Male 31 180 
0.0015 

OR=2.72 (1.46 – 5.27) 
 

Female 
 

15 241 

 
Diabetes 
 

   

 
Yes 

 

 
10  

(8Type II, 1 Type I, 1 
unspecified) 

 

 
75  

(34 Type II, 41 
unspecified) 

 
0.44 

OR=1.34 (0.62 – 2.70) 

No 
 

36 346 

 
Ethnicity    

Caucasian 21 291 

6.56´10-4 
OR=2.02 (1.34 – 3.03) 

 

 
Unknown 

 
21 

 
60 

 
Asian 

 
3 

 
30 

 
Other 

 
2 

 
18 

Afro/Caribbean 0 22 
 

 
UKCTOCS 
 

   

 
No. samples - 72 - 
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Mean age at sample 
draw (yr) (range) 
 

- 62.95 (50.44-76.86) - 

 
Mean BMI (kg/m2) 
(range) 
 

- 26.53 (17.91-42.19) - 

 
Gender 
 

   

Male - - - 
 

Female 
 

- 72  

 
Diabetes 
 

   

 
Yes 

 
- 

 
3  

(3 Type II) 

- 

 
No 

 

 
- 

 
69 

 
Ethnicity    

 
Unknown 

 
0 72 - 

 820 
 821 
 822 

Table 2 Performance summary for selected models in symptomatic patients. The probability values used to 823 
calculate the performance metrics were generated with each model developed in the training set and reported in 824 
the main text. Probability values for symptomatic patients belonging to the training set and validation set were 825 
concatenated to generate the ROC curves. Only ADEPTS samples had symptoms information. A. L. Derang.: 826 
Asymptomatic LFT Derangement. B. Pain: Back Pain. C. B. Habit: Change in Bowel Habit. W. Loss: Weight Loss. 827 
95% confidence intervals are provided in parentheses. See also Supplementary Table 10 for the explicit 828 
performance ranks according to model, symptom and metric and Figure 5. 829 

 830 

Models Metric 
Symptom (Yes) 

A.L.Derang. 
 

A. Pain 
 

A. B. Habit 
 

W.Loss 
 

Jaundice 
 

CA19-9 

ROC 0.85 (0.62-1) 0.81 (0.65-0.96) 0.82 (0.57-1) 0.74 (0.58-0.90) 0.70 (0.53-0.86) 

Sens90 0.75 (0.38-1) 0.69 (0.44-0.94) 0.71 (0.42-1) 0.53 (0.24-0.76) 0.41 (0.14-0.73) 

PPV90 0.54 (0.37-0.61) 0.36 (0.26-0.43) 0.46 (0.34-0.55) 0.70 (0.50-0.77) 0.83 (0.64-0.90) 

NPV90 0.96 (0.90-1) 0.97 (0.95-0.99) 0.96 (0.93-1) 0.81 (0.73-0.90) 0.55 (0.46-0.73) 

Index  
signature 

ROC 0.98 (0.95-1) 0.98 (0.97-1) 0.97 (0.92-1) 0.95 (0.90-1) 0.89 (0.79-0.99) 

Sens90 1 (0.62-1) 0.94 (0.81-1) 0.86 (0.56-1) 0.94 (0.29-1) 0.73 (0.36-0.91) 

PPV90 0.61 (0.49-0.61) 0.43 (0.40-0.45) 0.51 (0.41-0.55) 0.8 (0.56-0.81) 0.90 (0.82-0.92) 

NPV90 1 (0.94-1) 0.99 (0.98-1) 0.98 (0.95-1) 0.97 (0.75-1) 0.73 (0.54-0.89) 

Reduced  
signature 

ROC 0.97 (0.93-1) 0.92 (0.88-0.99) 0.91 (0.83-0.98) 0.92 (0.85-0.99) 0.82 (0.67-0.97) 

Sens90 1 (0.63-1) 0.81 (0.38-1) 0.57 (0.14-1) 0.71 (0.35-0.94) 0.77 (0-0.95) 

PPV90 0.61 (0.49-0.94) 0.40 (0.23-0.45) 0.41 (0.15-0.55) 0.75 (0.6-0.8) 0.90 (0-0.92) 

NPV90 1(0.94-1) 0.98 (0.95-1) 0.95 (0.9-1) 0.88 (0.76-0.97) 0.76 (0.42-0.94) 
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 832 
Figures: 833 

 834 
Figure 1 Characteristics of the discovery and validation sets. Number of controls across the discovery and 835 
validation sets (A), number of PDAC cases per stage (B), and association of BMI, Age, Diabetes, Ethnicity and 836 
Gender with PDAC status (C-F). In C, D, E and F dot sizes correspond to odds ratios and are colour coded 837 
according to their respective values, i.e., blue if OR<1 and red if OR>1. p values were calculated according to a 838 
logistic regression model with a bias reduction method. Purple dashed lines correspond to -Log[0.05].  G Receiver 839 
Operating Curve (ROC) Area Under the Curve (AUC), Sensitivity (Sens), Positive Predictive Value (PPV) and 840 
Negative Predictive Value (NPV) at 90% Specificity (Spec) performance of single marker models, i.e. BMI and Age, 841 
in the validation set. H Similar to A but for Gender, Ethnicity and Diabetes. Performances were calculated with the 842 
respective single feature models developed in the discovery set. The ROC AUC significance threshold is also 843 
represented by a purple dashed line at 0.5. Error bars in figures corresponding to the validation set are the 95% 844 
Confidence Intervals (CI), calculated by stratified bootstrapping 2000 times. See Statistical Analysis in Methods 845 
(main text) for further details and Supplementary Table 6, 7 and 8. 846 



 31 

 847 
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 850 
 851 
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 853 
 854 
 855 
 856 
 857 
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Figure 2 Performance of individual base-learner classifiers, stack ensemble and state-of-the art algorithms. 858 
A Base-learners performance in the discovery set. Each base-learner classifier was developed by training with a 859 
recursive feature elimination technique (RFE) and logistic regression (glm) in samples belonging to each specific 860 
diagnosis class against the same 24 PDACs in the discovery set. The performance reported in A is, nevertheless, 861 
of each classifier in the whole discovery set. The performances reported in B correspond to the base-learners 862 
developed in the discovery set but applied to the whole validation set. In C and D the performance of the ensemble  863 
stack based on the base-learners presented in A and B, as well as of state-of-the-art algorithms (xgbTree, RRF 864 
and RFE glm) is reported in the discovery and validation sets, respectively. xgbTree, RRF and RFE glm were 865 
trained in the whole discovery set, which contrasts with the ensemble algorithm.  866 
 867 

 868 
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 869 

Figure 3 Features selected per diagnosis class (base-learner classifiers). The scaled importance is calculated 870 
within each base-learner (Figure 2A). Selected features are ranked from left to right according to the average 871 
scaled importance across base learners. See Figure 1, Supplementary Figure 1 and Supplementary Tables 3 and 872 
4 for the univariate predictive performances of each of the markers in the discovery and validation sets. See 873 
Methods section for details on model-agnostic algorithm for feature importance calculation. 874 
 875 

 876 

 877 
 878 
 879 
 880 
 881 
 882 
 883 
 884 
 885 
 886 
 887 
 888 
 889 
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 890 
Figure 4 Association between symptoms and PDAC. A Number of subjects with each symptom according to 891 
PDAC status, case or control. B Association of symptoms with PDAC status, p values were calculated according 892 
to a logistic regression model with a bias reduction method. Purple dashed lines correspond to -Log [0.05]. In B 893 
dot sizes correspond to odds ratios and are colour coded according to their respective values, i.e., blue if OR<1 894 
and red if OR>1. See also Supplementary Table 9. Only samples belonging to the ADEPS cohort were used as no 895 
information about symptoms was available for the UKCTOCS set of samples. 896 
 897 
 898 
 899 
 900 

 901 
 902 
 903 
 904 
Figure 5 Receiver operating curves for selected models in symptomatic patients. A Only CA19-9. B Full 905 
index signature. C Reduced index signature. The probability values used to calculate the performance metrics were 906 
generated with each model developed in the discovery set and reported in the main text. Probability values for 907 
symptomatic patients belonging to the discovery set and validation set were concatenated to generate the ROC 908 
curves. Only ADEPTS samples had symptoms information. A. L. Derang.: Asymptomatic LFT Derangement. B. 909 
Pain: Back Pain. C. B. Habit: Change in Bowel Habit. W. Loss: Weight Loss. See also Table 2 for numerical values 910 
for area under the curve and other metrics. 911 
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 914 
 915 
Figure 6 Prediction of PDAC in patients with specific symptoms and according to QCancer score values. 916 
The ensemble stack was selected as the best model according to Figure 2. A Performance of the stack in 917 
participants for which a Qscore had been calculated or above a specific threshold, bigger than 2, 2.5 or 3.0. B 918 
Performance of the Qscore taken as the predictor of PDAC risk in participants for which a Qscore had been 919 
calculated or above a specific threshold, bigger than 2, 2.5 or 3.0. C Number of subjects that had a calculated 920 
Qscore or are above a specific threshold, bigger than 2, 2.5 or 3.0. D Correlation between QCancer score and 921 
odds ratio of PDAC according to the stacked ensemble. E is in log scale. The QCancer score is identified as Qscore 922 
in the figure panels. 923 
 924 
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 989 

Supplementary Figures 990 
 991 
Supplementary Figure 1 Biomarker ranks in the discovery set. A Distribution and ranks of biomarkers by p 992 
values in the discovery set. Purple dashed line corresponds to -Log [0.05].  B Receiver Operating Curve (ROC) 993 
Area Under the Curve (AUC), Sensitivity (Sens), Positive Predictive Value (PPV) and Negative Predictive Value 994 
(NPV) at 90% Specificity (Spec) performance of single marker models in the validation set set. OR stands for odds-995 
ratio, with dot size proportional to the calculated values. Red and blue OR points represent OR > 1 (favours 996 
pancreatic ductal adenocarcinoma (PDAC) case status) and OR < 1 (favours Control status), respectively. p values 997 
were calculated according to a logistic regression model with a bias reduction method. Performances were 998 
calculated with the single feature models developed in the discovery set. The ROC AUC significance threshold is 999 
also represented by a purple dashed line at 0.5. Error bars in figures corresponding to the validation set correspond 1000 
to 95% Confidence Intervals (CI), calculated by stratified bootstrapping 2000 times. See statistical analysis section 1001 
in Methods (main text) for further details and Supplementary Table 3 and 4. 1002 
 1003 

 1004 
 1005 
 1006 
Supplementary Figure 2 Flow diagram for the stack ensemble classifier. The general linear stack model 1007 
presented in the main text was built according to this diagram, where base-learners are trained in groups of control 1008 
samples with a specific diagnosis and the same PDAC cases. The stacking procedure has 2 steps. First, the 1009 
probability output vectors for each base-learner are concatenated, thus leading to n probability vectors, where n is 1010 
the number of diagnosis subclasses. Second, these vectors are subsequently used to populate the diagonal blocks 1011 
of a large probability matrix. The off-diagonal probability blocks are generated by using the base models trained in 1012 
a specific diagnosis subclass plus the same PDACs, which therefore amounts to computing cross diagnosis 1013 
predictions. The resulting large matrix has n columns and is then used to train the meta-learner which outputs the 1014 
final probability vector. For the purposes of applying the resulting trained models to the validation set, the flow of 1015 
the diagram is the same as before, but the feature matrix will have a different number of samples. 1016 
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 1019 
 1020 
 1021 
 1022 
 1023 
Supplementary Figure 3 Enrichment analysis. g:Profiler terms for the set of features selected by the full stack 1024 
ensemble. A Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. C Reactome Pathway Database 1025 
(REAC). E WikiPathways (WP). G Gene ontology terms biological process (GO: BP). The respective adjusted p-1026 
values associated with each enrichment term or pathway are plotted in B, D, F and H. See also Figure 3. See 1027 
Statistical Analysis in Methods for further details. 1028 

 1029 
 1030 
 1031 
 1032 
 1033 
 1034 
 1035 
 1036 
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 1038 
 1039 
 1040 
 1041 
 1042 
 1043 
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Supplementary Figure 4 Performance of individual base-learner classifiers and stack ensemble for a 1044 
reduced set of biomarkers, CA19-9, Age, Diabetes, VWF, CPE, CTSV, CEACAM1 and CD160. A Base-learner 1045 
performance in the discovery. Each base-learner classifier was developed by training with a recursive feature 1046 
elimination technique (RFE) and logistic regression (glm) in samples belonging to each specific diagnosis class 1047 
against the same 24 PDACs in the discovery set. The performance reported in A is, nevertheless, of each classifier 1048 
in the whole discovery set. The performances reported in B correspond to the base-learners developed in the 1049 
discovery set but applied to the whole validation set. In C and D the performance of an ensemble GLM stack based 1050 
on the base-learners presented in A and B is reported in the discovery and validation sets, respectively. The ROC 1051 
AUC significance threshold is represented by a purple dashed line at 0.5. Error bars in figures correspond to 95% 1052 
Confidence Intervals (CI), calculated by stratified bootstrapping 2000 times. 1053 
 1054 
 1055 
 1056 
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Supplementary Figure 5 Feature importance for a reduced 8-marker model following the same principles 1066 
as those described in Figure 2 A and B. The reduced set of biomarkers was CA19-9, Age, Diabetes, VWF, CPE, 1067 
CTSV, CEACAM1 and CD160. See also performances in Supplementary Figure 4. Selected features are ranked 1068 
from left to right according to the average scaled importance across base learners. See Methods for details. 1069 
 1070 
 1071 
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 1073 
 1074 
Supplementary Figure 6 Matrix for associated symptoms for each sample. Each sample in the whole set 1075 
collected from ADEPTS cohort is represented by the columns. The colour coding corresponds to the diagnosis 1076 
class associated with each sample. Symptoms are represented in each row. Both columns and rows are clustered 1077 
according to their symptoms pattern. Black represents presence of sample with the respective symptoms and 1078 
diagnosis. 1079 

 1080 
 1081 
 1082 
 1083 
 1084 

 1085 

Supplementary Tables 1086 
 1087 

Supplementary Table 1 Quantitative ELISA assays` intra-assay coefficient of variation.  1088 

Assay Dilution factor CV(%) 
CA19-9(A) 1:4 6.9 

VWF 1:100 13.5 
THBS2 1:10 12.5 

PKM/PKM2 1:10 10.3 
IL6ST/IL6RB 1:100 - 

 1089 
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 1090 

 1091 

 1092 

 1093 

 1094 
Supplementary Table 2 Cancer-associated proteins measured on the Olink Oncology II panel used in this 1095 
project. The remaining biomarkers were done in-house. The protein names are listed to be consistent with those 1096 
provided by Olink. 1097 

 1098 

PODXL VEGF-A VEGFR-
2/KDR 

VEGFR-3/LFT4 RSPO3 IL6 IFN-
gamma-

R1/IFNGR1 
CXCL17 MK/MDK MIC-A/B WFDC2 ESM-1 MSLN CEACAM1 

ITGAV GPC1 SYND1/SDC1 PVRL4/NECTIN4 TXLNA Gal-1/GAL LYPD3 
IGF1R LYN ABL1 EPHA2 CDKN1A PPY SCF/KITLG 

EGF AREG/AR ErbB2/HER2 ErbB3/HER3 ErbB4/HER4 WISP-1/CCN4 WIF-1 

TRAIL/TNFSF10 TNFSF13 TNFRSF19 TNFRSF6B TLR3 SMAD5/MAD5 FADD 
KLK8/hK8 KLK11/hK11 KLK13 KLK14/hK14 CPE XPNPEP2 CTSV 

TFPI-2 SCAMP3 GZMB GZMH CYR61/CCN1 ADAM8 ADAM-TS 
15 

FCRLB TCL1A CD27 CD48 CD70 CD160 CD207 

ANXA1 S100A4 S100A11 VIM CRNN DLL1 SEZ6L 
FOLR3/FRgamma 5’-NT/NT5E LY9 CA9/CAIX FGF-BP1 ICOSLG FOLR1/FR-

alpha 

MIA CEACAM5/CEA SPARC HGF TGFR-
2/TGFRB2 

FASLG/FasL MetAP 2 

CXCL13 ITGB5 RET TGF-alpha/TGFA TNFRSF4 GPNMB FUR/FURIN 

MUC16       

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 
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 1109 

Supplementary Table 3 Odds ratios, p values, ROC AUC, sensitivity (Sens), positive predictive 1110 
value (PPV) and negative predictive value (NPV) for univariate logistic regression models 1111 
derived in the discovery set. The performances of these model in the validation are presented in 1112 
Supplementary Table 4. Markers are ranked according to the p values. Spec: specificity. 1113 

 1114 

 1115 
Marker OR p value ROC AUC Sens at 90% 

Spec 
PPV at 90% 

Spec 
NPV at 90% 

Spec 
CA19 - 9 1.85 (1.54 - 2.26) 1.87E-12 0.79 (0.66 - 0.91) 0.67 (0.5 - 0.83) 0.32 (0.26 - 0.38) 0.97 (0.96 - 0.99) 

KITLG 0.23 (0.14 - 0.37) 7.95E-11 0.79 (0.68 - 0.89) 0.5 (0.29 - 0.71) 0.26 (0.17 - 0.34) 0.96 (0.95 - 0.98) 

CRP 2.01 (1.59 - 2.61) 4.12E-10 0.84 (0.74 - 0.92) 0.58 (0.38 - 0.83) 0.34 (0.25 - 0.42) 0.96 (0.94 - 0.98) 

VWF 3.92 (2.28 - 7.78) 1.89E-09 0.84 (0.76 - 0.9) 0.5 (0.29 - 0.71) 0.26 (0.17 - 0.34) 0.96 (0.95 - 0.98) 

SDC1 4.42 (2.56 - 8.01) 8.47E-08 0.79 (0.66 - 0.89) 0.67 (0.46 - 0.83) 0.32 (0.25 - 0.38) 0.97 (0.96 - 0.99) 

KDR 0.01 (0.00 - 0.07) 2.02E-07 0.8 (0.72 - 0.87) 0.42 (0.21 - 0.67) 0.23 (0.13 - 0.32) 0.96 (0.94 - 0.97) 

TBIL 2.03 (1.55 - 2.75) 2.53E-07 0.72 (0.6 - 0.85) 0.54 (0.29 - 0.71) 0.32 (0.2 - 0.38) 0.96 (0.94 - 0.97) 

TNFRSF6B 2.62 (1.80 - 3.94) 3.12E-07 0.75 (0.64 - 0.86) 0.5 (0.29 - 0.71) 0.26 (0.17 - 0.34) 0.96 (0.95 - 0.98) 

FASLG 0.20 (0.10 - 0.39) 2.39E-06 0.77 (0.65 - 0.87) 0.46 (0.21 - 0.67) 0.25 (0.13 - 0.32) 0.96 (0.94 - 0.97) 

ESM-1 4.84 (2.35 - 10.69) 5.99E-06 0.76 (0.66 - 0.84) 0.29 (0.12 - 0.5) 0.17 (0.08 - 0.27) 0.95 (0.93 - 0.96) 

EPHA2 5.15 (2.56 - 10.97) 6.31E-06 0.73 (0.63 - 0.82) 0.29 (0.12 - 0.46) 0.17 (0.08 - 0.25) 0.95 (0.93 - 0.96) 

RET 0.18 (0.08 - 0.38) 7.01E-06 0.78 (0.68 - 0.87) 0.42 (0.21 - 0.62) 0.23 (0.13 - 0.31) 0.96 (0.94 - 0.97) 

TGFA 0.33 (0.18 - 0.55) 9.61E-06 0.79 (0.69 - 0.87) 0.33 (0.17 - 0.62) 0.19 (0.11 - 0.31) 0.95 (0.94 - 0.97) 

MUC16 2.39 (1.63 - 3.65) 1.02E-05 0.72 (0.59 - 0.83) 0.38 (0.21 - 0.58) 0.21 (0.13 - 0.3) 0.95 (0.94 - 0.97) 

ITGAV 0.05 (0.01 - 0.19) 1.29E-05 0.78 (0.68 - 0.87) 0.46 (0.17 - 0.67) 0.25 (0.11 - 0.32) 0.96 (0.94 - 0.97) 

EGF 0.55 (0.41 - 0.72) 3.77E-05 0.79 (0.71 - 0.87) 0.5 (0.21 - 0.71) 0.26 (0.13 - 0.34) 0.96 (0.94 - 0.98) 

ICOSLG 0.04 (0.01 - 0.20) 5.60E-05 0.77 (0.66 - 0.85) 0.29 (0.12 - 0.5) 0.17 (0.08 - 0.26) 0.95 (0.93 - 0.96) 

CEACAM5 2.05 (1.46 - 2.94) 6.15E-05 0.72 (0.61 - 0.83) 0.33 (0.17 - 0.58) 0.19 (0.11 - 0.3) 0.95 (0.94 - 0.97) 

CTSV 0.27 (0.13 - 0.54) 0.00019 0.73 (0.61 - 0.84) 0.29 (0.08 - 0.5) 0.17 (0.06 - 0.26) 0.95 (0.93 - 0.96) 

TFPI2 2.91 (1.65 - 5.38) 0.00024 0.7 (0.58 - 0.8) 0.29 (0.08 - 0.5) 0.17 (0.06 - 0.26) 0.95 (0.93 - 0.96) 

WIF1 0.17 (0.06 - 0.45) 0.00031 0.72 (0.61 - 0.82) 0.33 (0.12 - 0.5) 0.19 (0.08 - 0.26) 0.95 (0.93 - 0.96) 

TXLNA 2.21 (1.41 - 3.51) 0.00065 0.69 (0.55 - 0.81) 0.42 (0.17 - 0.62) 0.23 (0.11 - 0.31) 0.96 (0.94 - 0.97) 

LYPD3 0.24 (0.10 - 0.57) 0.0012 0.68 (0.57 - 0.79) 0.33 (0.17 - 0.58) 0.19 (0.11 - 0.3) 0.95 (0.94 - 0.97) 

CA9 2.21 (1.33 - 3.68) 0.0022 0.65 (0.52 - 0.77) 0.29 (0.12 - 0.5) 0.17 (0.08 - 0.26) 0.95 (0.93 - 0.96) 

FCRLB 2.24 (1.32 - 3.74) 0.0033 0.66 (0.53 - 0.78) 0.38 (0.17 - 0.58) 0.21 (0.11 - 0.3) 0.95 (0.94 - 0.97) 

TCL1A 0.54 (0.35 - 0.82) 0.0033 0.68 (0.57 - 0.78) 0.29 (0.12 - 0.5) 0.17 (0.08 - 0.26) 0.95 (0.93 - 0.96) 

MDK 2.42 (1.34 - 4.42) 0.0039 0.66 (0.54 - 0.77) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

CDKN1A 1.82 (1.19 - 2.75) 0.0066 0.63 (0.48 - 0.76) 0.33 (0.12 - 0.5) 0.19 (0.08 - 0.26) 0.95 (0.93 - 0.96) 

FURIN 0.25 (0.09 - 0.70) 0.0083 0.67 (0.54 - 0.79) 0.29 (0.08 - 0.5) 0.17 (0.06 - 0.26) 0.95 (0.93 - 0.96) 

TNFSF13 4.17 (1.43 - 12.15) 0.0093 0.64 (0.54 - 0.75) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

GAL 0.16 (0.04 - 0.65) 0.011 0.63 (0.51 - 0.74) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

TNFSF10 0.24 (0.08 - 0.72) 0.011 0.67 (0.55 - 0.77) 0.17 (0.04 - 0.38) 0.11 (0.03 - 0.21) 0.94 (0.93 - 0.95) 

CPE 0.31 (0.12 - 0.77) 0.012 0.66 (0.54 - 0.77) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

WFDC2 3.02 (1.27 - 7.34) 0.012 0.64 (0.53 - 0.75) 0.21 (0.04 - 0.42) 0.13 (0.03 - 0.23) 0.94 (0.93 - 0.96) 

PPY 0.74 (0.59 - 0.94) 0.014 0.67 (0.56 - 0.78) 0.21 (0.04 - 0.46) 0.13 (0.03 - 0.25) 0.94 (0.93 - 0.96) 
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METAP2 1.76 (1.12 - 2.77) 0.015 0.6 (0.44 - 0.74) 0.29 (0.12 - 0.5) 0.17 (0.08 - 0.26) 0.95 (0.93 - 0.96) 

XPNPEP2 0.70 (0.50 - 0.93) 0.018 0.6 (0.49 - 0.7) 0.17 (0.04 - 0.33) 0.11 (0.03 - 0.19) 0.94 (0.93 - 0.95) 

NECTIN4 2.71 (1.19 - 6.04) 0.018 0.61 (0.5 - 0.72) 0.21 (0.04 - 0.38) 0.13 (0.03 - 0.21) 0.94 (0.93 - 0.95) 

Creatinine 0.29 (0.10 - 0.86) 0.024 0.62 (0.49 - 0.73) 0.25 (0.08 - 0.42) 0.18 (0.07 - 0.27) 0.93 (0.92 - 0.95) 

KLK8 0.34 (0.13 - 0.88) 0.026 0.61 (0.47 - 0.74) 0.35 (0.08 - 0.54) 0.2 (0.06 - 0.28) 0.95 (0.93 - 0.96) 

CD207 0.35 (0.13 - 0.89) 0.028 0.62 (0.51 - 0.72) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

MIA 0.24 (0.07 - 0.92) 0.038 0.62 (0.49 - 0.73) 0.25 (0.08 - 0.42) 0.15 (0.06 - 0.23) 0.94 (0.93 - 0.96) 

GPNMB 9.28 (1.10 - 84.13) 0.040 0.63 (0.52 - 0.74) 0.17 (0.04 - 0.38) 0.11 (0.03 - 0.21) 0.94 (0.93 - 0.95) 

ERBB2 3.21 (1.06 - 9.50) 0.040 0.56 (0.41 - 0.71) 0.33 (0.17 - 0.54) 0.19 (0.11 - 0.28) 0.95 (0.94 - 0.96) 

DLL1 3.06 (1.05 - 9.11) 0.041 0.58 (0.45 - 0.7) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

TNFRSF19 0.45 (0.20 - 0.98) 0.044 0.65 (0.51 - 0.77) 0.33 (0.08 - 0.54) 0.19 (0.06 - 0.28) 0.95 (0.93 - 0.96) 

AR 1.47 (1.00 - 2.09) 0.053 0.63 (0.51 - 0.74) 0.21 (0.04 - 0.38) 0.13 (0.03 - 0.21) 0.94 (0.93 - 0.95) 

NT5E 1.76 (0.99 - 3.08) 0.053 0.63 (0.51 - 0.74) 0.17 (0.04 - 0.46) 0.11 (0.03 - 0.25) 0.94 (0.93 - 0.96) 

THBS2 1.60 (0.98 - 2.69) 0.060 0.62 (0.48 - 0.75) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

ADAM8 0.42 (0.16 - 1.04) 0.060 0.6 (0.48 - 0.73) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

GZMB 0.57 (0.30 - 1.06) 0.077 0.61 (0.48 - 0.74) 0.25 (0.08 - 0.5) 0.15 (0.06 - 0.26) 0.94 (0.93 - 0.96) 

IGF1R 0.37 (0.12 - 1.12) 0.078 0.64 (0.52 - 0.77) 0.29 (0.08 - 0.5) 0.17 (0.06 - 0.26) 0.95 (0.93 - 0.96) 

PKM 1.12 (0.98 - 1.30) 0.10 0.57 (0.43 - 0.72) 0.12 (0 - 0.46) 0.1 (0 - 0.29) 0.92 (0.91 - 0.95) 

KLK14 0.53 (0.25 - 1.16) 0.11 0.59 (0.48 - 0.7) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

ERBB3 0.32 (0.08 - 1.32) 0.11 0.59 (0.46 - 0.72) 0.25 (0.08 - 0.42) 0.15 (0.06 - 0.23) 0.94 (0.93 - 0.96) 

CRNN 0.67 (0.40 - 1.12) 0.13 0.64 (0.53 - 0.75) 0.21 (0.04 - 0.42) 0.13 (0.03 - 0.23) 0.94 (0.93 - 0.96) 

FOLR3 0.85 (0.64 - 1.05) 0.14 0.57 (0.47 - 0.68) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

CXCL13 0.59 (0.28 - 1.18) 0.14 0.58 (0.43 - 0.71) 0.29 (0.12 - 0.5) 0.17 (0.08 - 0.26) 0.95 (0.93 - 0.962) 

SEZ6L 0.39 (0.12 - 1.39) 0.15 0.63 (0.5 - 0.75) 0.29 (0.04 - 0.46) 0.17 (0.03 - 0.25) 0.95 (0.93 - 0.96) 

KLK13 0.67 (0.38 - 1.17) 0.16 0.58 (0.45 - 0.72) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

S100A11 0.57 (0.23 - 1.24) 0.16 0.54 (0.42 - 0.66) 0.21 (0.08 - 0.38) 0.13 (0.06 - 0.21) 0.94 (0.93 - 0.95) 

ITGB5 2.09 (0.72 - 6.18) 0.18 0.46 (0.33 - 0.59) 0.12 (0 - 0.25) 0.08 (0 - 0.15) 0.93 (0.93 - 0.94) 

IL6 1.18 (0.91 - 1.46) 0.18 0.61 (0.5 - 0.72) 0.21 (0.04 - 0.38) 0.13 (0.03 - 0.21) 0.94 (0.93 - 0.95) 

MICA/B 1.24 (0.91 - 1.88) 0.19 0.62 (0.49 - 0.74) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

CXCL17 1.40 (0.84 - 2.30) 0.19 0.55 (0.46 - 0.65) 0.08 (0 - 0.21) 0.06 (0 - 0.13) 0.93 (0.93 - 0.94) 

CD70 0.62 (0.30 - 1.27) 0.20 0.58 (0.46 - 0.69) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

CD160 0.63 (0.30 - 1.28) 0.20 0.57 (0.43 - 0.7) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

TLR3 0.70 (0.41 - 1.22) 0.20 0.59 (0.44 - 0.72) 0.17 (0 - 0.38) 0.11 (0 - 0.21) 0.94 (0.93 - 0.95) 

VIM 0.81 (0.55 - 1.17) 0.27 0.55 (0.44 - 0.66) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

IFNGR1 1.99 (0.53 - 6.82) 0.30 0.53 (0.39 - 0.65) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

FGFBP1 1.70 (0.59 - 4.53) 0.32 0.54 (0.39 - 0.68) 0.21 (0.08 - 0.46) 0.13 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

LY9 0.64 (0.24 - 1.70) 0.36 0.56 (0.43 - 0.69) 0.25 (0.08 - 0.46) 0.15 (0.06 - 0.25) 0.94 (0.93 - 0.96) 

FOLR1 0.68 (0.28 - 1.65) 0.39 0.59 (0.46 - 0.7) 0.04 (0 - 0.33) 0.03 (0 - 0.19) 0.93 (0.93 - 0.95) 

MSLN 1.25 (0.74 - 2.05) 0.40 0.58 (0.49 - 0.66) 0.04 (0 - 0.17) 0.03 (0 - 0.11) 0.93 (0.93 - 0.94) 

PODXL 2.39 (0.31 - 18.29) 0.40 0.53 (0.4 - 0.67) 0.21 (0.04 - 0.42) 0.13 (0.03 - 0.23) 0.94 (0.93 - 0.96) 

GZMH 1.23 (0.74 - 1.95) 0.41 0.47 (0.34 - 0.6) 0.04 (0 - 0.17) 0.03 (0 - 0.11) 0.93 (0.93 - 0.94) 

S100A4 0.81 (0.46 - 1.34) 0.42 0.57 (0.42 - 0.7) 0.33 (0.17 - 0.5) 0.19 (0.11 - 0.27) 0.95 (0.94 - 0.96) 

ERBB4 0.64 (0.20 - 2.08) 0.45 0.57 (0.43 - 0.69) 0.12 (0 - 0.38) 0.08 (0 - 0.21) 0.93 (0.93 - 0.95) 
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TGFBR2 0.71 (0.28 - 1.75) 0.46 0.59 (0.45 - 0.71) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

SMAD5 0.57 (0.15 - 2.95) 0.46 0.61 (0.52 - 0.71) 0.04 (0 - 0.12) 0.03 (0 - 0.08) 0.93 (0.93 - 0.94) 

VEGFA 0.78 (0.38 - 1.57) 0.49 0.52 (0.39 - 0.65) 0.17 (0.04 - 0.33) 0.11 (0.03 - 0.19) 0.94 (0.93 - 0.95) 

CD48 0.66 (0.19 - 2.29) 0.50 0.53 (0.4 - 0.66) 0.21 (0.04 - 0.38) 0.13 (0.03 - 0.21) 0.94 (0.93 - 0.95) 

RSPO3 1.16 (0.67 - 1.86) 0.57 0.49 (0.38 - 0.59) 0 (0 - 0) 0 (0 - 0) 0.93 (0.93 - 0.93) 

CCN4 0.82 (0.38 - 1.64) 0.59 0.55 (0.42 - 0.68) 0.17 (0.04 - 0.33) 0.11 (0.03 - 0.19) 0.94 (0.93 - 0.95) 

IL6ST 0.87 (0.60 - 2.13) 0.59 0.66 (0.52 - 0.8) 0.38 (0.21 - 0.58) 0.21 (0.13 - 0.3) 0.95 (0.94 - 0.97) 

LYN 1.22 (0.39 - 2.70) 0.69 0.53 (0.38 - 0.67) 0.25 (0.08 - 0.42) 0.15 (0.06 - 0.23) 0.94 (0.93 - 0.96) 

SCAMP3 0.94 (0.68 - 1.26) 0.70 0.5 (0.38 - 0.62) 0 (0 - 0) 0 (0 - 0) 0.93 (0.93 - 0.93) 

CCN1 1.11 (0.62 - 2.02) 0.72 0.52 (0.4 - 0.63) 0 (0 - 0) 0 (0 - 0) 0.93 (0.93 - 0.93) 

SPARC 0.61 (0.05 - 9.54) 0.72 0.48 (0.37 - 0.59) 0 (0 - 0) 0 (0 - 0) 0.93 (0.93 - 0.93) 

TNFRSF4 1.13 (0.55 - 2.19) 0.73 0.5 (0.37 - 0.64) 0.17 (0.04 - 0.38) 0.11 (0.03 - 0.21) 0.94 (0.93 - 0.95) 

ABL1 0.92 (0.55 - 1.46) 0.75 0.48 (0.34 - 0.6) 0.08 (0 - 0.21) 0.06 (0 - 0.13) 0.93 (0.93 - 0.94) 

CEACAM1 0.83 (0.34 - 4.06) 0.75 0.54 (0.42 - 0.65) 0.17 (0 - 0.29) 0.11 (0 - 0.17) 0.94 (0.93 - 0.95) 

FADD 1.07 (0.65 - 1.64) 0.79 0.55 (0.42 - 0.66) 0.08 (0 - 0.25) 0.06 (0 - 0.15) 0.93 (0.93 - 0.94) 

ADAMTS15 1.09 (0.58 - 2.06) 0.79 0.51 (0.39 - 0.64) 0.12 (0 - 0.25) 0.08 (0 - 0.15) 0.93 (0.93 - 0.943) 

CD27 1.09 (0.45 - 2.58) 0.84 0.52 (0.39 - 0.65) 0.12 (0 - 0.29) 0.08 (0 - 0.17) 0.93 (0.93 - 0.95) 

HGF 1.05 (0.47 - 2.22) 0.91 0.55 (0.41 - 0.7) 0.25 (0.08 - 0.42) 0.15 (0.06 - 0.23) 0.94 (0.93 - 0.96) 

KLK11 0.96 (0.40 - 2.23) 0.92 0.49 (0.39 - 0.61) 0.08 (0 - 0.25) 0.06 (0 - 0.15) 0.93 (0.93 - 0.94) 

ANXA1 0.98 (0.63 - 1.51) 0.94 0.51 (0.39 - 0.63) 0.04 (0 - 0.17) 0.03 (0 - 0.11) 0.93 (0.93 - 0.94) 

FLT4 0.95 (0.18 - 5.70) 0.96 0.52 (0.4 - 0.65) 0.08 (0 - 0.21) 0.06 (0 - 0.13) 0.93 (0.93 - 0.94) 

GPC1 1.00 (0.37 - 2.75) 1.00 0.54 (0.41 - 0.67) 0.17 (0.04 - 0.33) 0.11 (0.03 - 0.19) 0.94 (0.93 - 0.95) 
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 1116 

 1117 

 1118 

 1119 

 1120 

 1121 

 1122 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 

Supplementary Table 4 ROC AUC, sensitivity (Sens), positive predictive value (PPV) and 1130 
negative predictive value (NPV) in the validation set of the univariate logistic regression model 1131 
derived in the discovery set. Markers are ranked according to their respective p values in the 1132 
discovery set (see Supplementary Table 3). Spec: specificity. 1133 

 1134 

 1135 
Marker ROC AUC Sens at 90% Spec PPV at 90% Spec NPV at 90% Spec 

CA19 - 9 0.80 (0.66 - 0.93) 0.65 (0.48 - 0.87) 0.49 (0.41 - 0.56) 0.95 (0.92 - 0.98) 

KITLG 0.82 (0.72 - 0.90) 0.48 (0.22 - 0.70) 0.41 (0.24 - 0.50) 0.92 (0.89 - 0.95) 

CRP 0.85 (0.76 - 0.92) 0.59 (0.32 - 0.86) 0.47 (0.32 - 0.56) 0.94 (0.90 - 0.98) 

VWF 0.74 (0.64 - 0.84) 0.26 (0.04 - 0.52) 0.27 (0.06 - 0.43) 0.89 (0.87 - 0.93) 

SDC1 0.72 (0.59 - 0.83) 0.30 (0.09 - 0.61) 0.31 (0.11 - 0.47) 0.90 (0.87 - 0.94) 

KDR 0.77 (0.67 - 0.86) 0.39 (0.17 - 0.61) 0.36 (0.20 - 0.47) 0.91 (0.88 - 0.94) 

TBIL 0.67 (0.55 - 0.77) 0.23 (0.09 - 0.41) 0.25 (0.12 - 0.38) 0.89 (0.87 - 0.91) 

TNFRSF6B 0.72 (0.60 - 0.83) 0.39 (0.13 - 0.61) 0.36 (0.16 - 0.47) 0.91 (0.88 - 0.94) 

FASLG 0.74 (0.64 - 0.84) 0.26 (0.09 - 0.52) 0.27 (0.11 - 0.43) 0.89 (0.87 - 0.93) 

ESM1 0.73 (0.62 - 0.82) 0.30 (0.13 - 0.52) 0.31 (0.16 - 0.43) 0.90 (0.88 - 0.93) 

EPHA2 0.70 (0.56 - 0.82) 0.39 (0.17 - 0.61) 0.36 (0.20 - 0.47) 0.91 (0.88 - 0.94) 

RET 0.69 (0.59 - 0.78) 0.26 (0.09 - 0.43) 0.27 (0.11 - 0.39) 0.89 (0.87 - 0.92) 

TGFA 0.71 (0.59 - 0.81) 0.26 (0.09 - 0.48) 0.27 (0.11 - 0.41) 0.89 (0.87 - 0.92) 

MUC16 0.71 (0.58 - 0.84) 0.48 (0.22 - 0.70) 0.41 (0.24 - 0.50) 0.92 (0.89 - 0.95) 

ITGAV 0.77 (0.67 - 0.85) 0.39 (0.13 - 0.57) 0.36 (0.16 - 0.45) 0.91 (0.88 - 0.94) 

EGF 0.74 (0.61 - 0.85) 0.52 (0.13 - 0.70) 0.43 (0.16 - 0.50) 0.93 (0.88 - 0.95) 



 51 

ICOSLG 0.69 (0.59 - 0.79) 0.30 (0.09 - 0.48) 0.31 (0.11 - 0.41) 0.90 (0.87 - 0.92) 

CEACAM5 0.72 (0.60 - 0.83) 0.35 (0.13 - 0.52) 0.33 (0.16 - 0.43) 0.91 (0.88 - 0.93) 

CTSV 0.74 (0.63 - 0.84) 0.26 (0.09 - 0.57) 0.27 (0.11 - 0.45) 0.89 (0.87 - 0.94) 

TFPI2 0.67 (0.54 - 0.78) 0.22 (0.04 - 0.48) 0.24 (0.06 - 0.41) 0.89 (0.87 - 0.92) 

WIF1 0.63 (0.51 - 0.74) 0.17 (0.00 - 0.39) 0.20 (0.00 - 0.36) 0.88 (0.86 - 0.91) 

TXLNA 0.64 (0.51 - 0.75) 0.22 (0.09 - 0.43) 0.24 (0.11 - 0.39) 0.89 (0.87 - 0.92) 

LYPD3 0.67 (0.54 - 0.79) 0.22 (0.04 - 0.43) 0.24 (0.06 - 0.39) 0.89 (0.87 - 0.92) 

CA9 0.73 (0.64 - 0.82) 0.17 (0.04 - 0.35) 0.20 (0.06 - 0.33) 0.88 (0.87 - 0.91) 

FCRLB 0.69 (0.59 - 0.79) 0.26 (0.04 - 0.43) 0.27 (0.06 - 0.39) 0.89 (0.87 - 0.92) 

TCL1A 0.58 (0.45 - 0.70) 0.17 (0.04 - 0.39) 0.20 (0.06 - 0.36) 0.88 (0.87 - 0.91) 

MDK 0.70 (0.59 - 0.81) 0.35 (0.17 - 0.57) 0.33 (0.20 - 0.45) 0.91 (0.88 - 0.94) 

CDKN1A 0.62 (0.49 - 0.74) 0.13 (0.00 - 0.43) 0.16 (0.00 - 0.39) 0.88 (0.86 - 0.92) 

FURIN 0.64 (0.51 - 0.77) 0.22 (0.04 - 0.48) 0.24 (0.06 - 0.41) 0.89 (0.87 - 0.92) 

TNFSF13 0.64 (0.52 - 0.76) 0.22 (0.04 - 0.43) 0.24 (0.06 - 0.39) 0.89 (0.87 - 0.92) 

GAL 0.61 (0.47 - 0.72) 0.17 (0.04 - 0.39) 0.20 (0.06 - 0.36) 0.88 (0.87 - 0.91) 

TNFSF10 0.66 (0.54 - 0.77) 0.22 (0.04 - 0.39) 0.24 (0.06 - 0.36) 0.89 (0.87 - 0.91) 

CPE 0.64 (0.50 - 0.76) 0.22 (0.04 - 0.43) 0.24 (0.06 - 0.39) 0.89 (0.87 - 0.92) 

WFDC2 0.75 (0.62 - 0.86) 0.30 (0.09 - 0.61) 0.31 (0.11 - 0.47) 0.90 (0.87 - 0.94) 

PPY 0.62 (0.51 - 0.73) 0.17 (0.04 - 0.35) 0.20 (0.06 - 0.33) 0.88 (0.87 - 0.91) 

METAP2 0.62 (0.47 - 0.75) 0.26 (0.09 - 0.48) 0.27 (0.11 - 0.41) 0.89 (0.87 - 0.92) 

XPNPEP2 0.57 (0.45 - 0.69) 0.09 (0.00 - 0.30) 0.11 (0.00 - 0.31) 0.87 (0.86 - 0.90) 

NECTIN4 0.62 (0.49 - 0.75) 0.26 (0.04 - 0.48) 0.27 (0.06 - 0.41) 0.89 (0.87 - 0.92) 

Creatinine 0.44 (0.29 - 0.58) 0.09 (0.00 - 0.27) 0.12 (0.00 - 0.29) 0.87 (0.86 - 0.89) 

KLK8 0.65 (0.52 - 0.78) 0.26 (0.04 - 0.48) 0.27 (0.06 - 0.41) 0.89 (0.87 - 0.92) 

CD207 0.51 (0.38 - 0.64) 0.04 (0.00 - 0.17) 0.06 (0.00 - 0.20) 0.87 (0.86 - 0.88) 

MIA 0.51 (0.40 - 0.63) 0.04 (0.00 - 0.17) 0.06 (0.00 - 0.20) 0.87 (0.86 - 0.88) 

GPNMB 0.70 (0.58 - 0.81) 0.30 (0.09 - 0.52) 0.31 (0.11 - 0.43) 0.90 (0.87 - 0.93) 

ERBB2 0.47 (0.34 - 0.61) 0.13 (0.00 - 0.30) 0.16 (0.00 - 0.31) 0.88 (0.86 - 0.90) 

DLL1 0.65 (0.52 - 0.78) 0.26 (0.04 - 0.52) 0.27 (0.06 - 0.43) 0.89 (0.87 - 0.93) 

TNFRSF19 0.52 (0.39 - 0.65) 0.13 (0.00 - 0.30) 0.16 (0.00 - 0.31) 0.88 (0.86 - 0.90) 

AR 0.70 (0.57 - 0.81) 0.22 (0.04 - 0.52) 0.24 (0.06 - 0.43) 0.89 (0.87 - 0.93) 

NT5E 0.68 (0.55 - 0.80) 0.22 (0.04 - 0.48) 0.24 (0.06 - 0.41) 0.89 (0.87 - 0.92) 

THBS2 0.73 (0.61 - 0.84) 0.43 (0.22 - 0.65) 0.39 (0.24 - 0.49) 0.92 (0.89 - 0.95) 

ADAM8 0.50 (0.38 - 0.62) 0.09 (0.00 - 0.26) 0.11 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

GZMB 0.60 (0.47 - 0.73) 0.22 (0.09 - 0.39) 0.24 (0.11 - 0.36) 0.89 (0.87 - 0.91) 

IGF1R 0.51 (0.38 - 0.64) 0.09 (0.00 - 0.22) 0.11 (0.00 - 0.24) 0.87 (0.86 - 0.89) 

PKM 0.61 (0.46 - 0.75) 0.23 (0.05 - 0.45) 0.25 (0.06 - 0.40) 0.89 (0.86 - 0.92) 

KLK14 0.51 (0.37 - 0.65) 0.22 (0.04 - 0.39) 0.24 (0.06 - 0.36) 0.89 (0.87 - 0.91) 

ERBB3 0.61 (0.50 - 0.72) 0.13 (0.00 - 0.35) 0.16 (0.00 - 0.33) 0.88 (0.86 - 0.91) 

CRNN 0.68 (0.57 - 0.78) 0.17 (0.04 - 0.35) 0.20 (0.06 - 0.33) 0.88 (0.87 - 0.91) 

FOLR3 0.54 (0.44 - 0.65) 0.09 (0.00 - 0.22) 0.11 (0.00 - 0.24) 0.87 (0.86 - 0.89) 

CXCL13 0.44 (0.31 - 0.58) 0.00 (0.00 - 0.13) 0.00 (0.00 - 0.16) 0.86 (0.86 - 0.88) 

SEZ6L 0.61 (0.48 - 0.73) 0.17 (0.04 - 0.35) 0.20 (0.06 - 0.33) 0.88 (0.87 - 0.91) 
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KLK13 0.63 (0.51 - 0.74) 0.09 (0.00 - 0.26) 0.11 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

S100A11 0.58 (0.45 - 0.70) 0.17 (0.00 - 0.35) 0.20 (0.00 - 0.33) 0.88 (0.86 - 0.91) 

ITGB5 0.50 (0.36 - 0.62) 0.00 (0.00 - 0.13) 0.00 (0.00 - 0.16) 0.86 (0.86 - 0.88) 

IL6 0.69 (0.58 - 0.80) 0.13 (0.00 - 0.39) 0.16 (0.00 - 0.36) 0.88 (0.86 - 0.91) 

MICA/B 0.58 (0.45 - 0.69) 0.13 (0.00 - 0.30) 0.16 (0.00 - 0.31) 0.88 (0.86 - 0.90) 

CXCL17 0.52 (0.41 - 0.64) 0.04 (0.00 - 0.17) 0.06 (0.00 - 0.20) 0.87 (0.86 - 0.88) 

CD70 0.49 (0.35 - 0.61) 0.09 (0.00 - 0.26) 0.11 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

CD160 0.51 (0.36 - 0.65) 0.09 (0.00 - 0.26) 0.11 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

TLR3 0.68 (0.54 - 0.80) 0.43 (0.17 - 0.65) 0.39 (0.20 - 0.49) 0.92 (0.88 - 0.95) 

VIM 0.49 (0.36 - 0.62) 0.13 (0.00 - 0.26) 0.16 (0.00 - 0.27) 0.88 (0.86 - 0.89) 

IFNGR1 0.54 (0.40 - 0.69) 0.13 (0.00 - 0.35) 0.16 (0.00 - 0.33) 0.88 (0.86 - 0.91) 

FGFBP1 0.62 (0.49 - 0.75) 0.22 (0.09 - 0.43) 0.24 (0.11 - 0.39) 0.89 (0.87 - 0.92) 

LY9 0.49 (0.36 - 0.62) 0.04 (0.00 - 0.17) 0.06 (0.00 - 0.20) 0.87 (0.86 - 0.88) 

FOLR1 0.51 (0.37 - 0.63) 0.09 (0.00 - 0.22) 0.11 (0.00 - 0.24) 0.87 (0.86 - 0.89) 

MSLN 0.67 (0.56 - 0.79) 0.35 (0.00 - 0.52) 0.33 (0.00 - 0.43) 0.91 (0.86 - 0.93) 

PODXL 0.47 (0.34 - 0.61) 0.09 (0.00 - 0.26) 0.11 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

GZMH 0.47 (0.33 - 0.60) 0.13 (0.00 - 0.30) 0.16 (0.00 - 0.31) 0.88 (0.86 - 0.90) 

S100A4 0.54 (0.41 - 0.66) 0.13 (0.00 - 0.26) 0.16 (0.00 - 0.27) 0.88 (0.86 - 0.89) 

ERBB4 0.48 (0.34 - 0.60) 0.09 (0.00 - 0.22) 0.11 (0.00 - 0.24) 0.87 (0.86 - 0.89) 

TGFBR2 0.49 (0.36 - 0.63) 0.00 (0.00 - 0.17) 0.00 (0.00 - 0.20) 0.86 (0.86 - 0.88) 

SMAD5 0.62 (0.51 - 0.73) 0.04 (0.00 - 0.22) 0.06 (0.00 - 0.24) 0.87 (0.86 - 0.89) 

VEGFA 0.53 (0.40 - 0.65) 0.09 (0.00 - 0.26) 0.11 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

CD48 0.51 (0.39 - 0.64) 0.04 (0.00 - 0.22) 0.06 (0.00 - 0.24) 0.87 (0.86 - 0.89) 

RSPO3 0.48 (0.35 - 0.61) 0.09 (0.00 - 0.26) 0.11 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

CCN4 0.62 (0.49 - 0.74) 0.22 (0.04 - 0.43) 0.24 (0.06 - 0.39) 0.89 (0.87 - 0.92) 

IL6ST 0.68 (0.52 - 0.81) 0.39 (0.22 - 0.61) 0.36 (0.24 - 0.47) 0.91 (0.89 - 0.94) 

LYN 0.52 (0.39 - 0.65) 0.22 (0.04 - 0.39) 0.24 (0.06 - 0.36) 0.89 (0.87 - 0.91) 

SCAMP3 0.49 (0.38 - 0.61) 0.00 (0.00 - 0.17) 0.00 (0.00 - 0.20) 0.86 (0.86 - 0.88) 

CCN1 0.50 (0.40 - 0.60) 0.00 (0.00 - 0.04) 0.00 (0.00 - 0.06) 0.86 (0.86 - 0.87) 

SPARC 0.52 (0.40 - 0.64) 0.04 (0.00 - 0.26) 0.06 (0.00 - 0.27) 0.87 (0.86 - 0.89) 

TNFRSF4 0.64 (0.51 - 0.76) 0.26 (0.00 - 0.48) 0.27 (0.00 - 0.41) 0.89 (0.86 - 0.92) 

ABL1 0.51 (0.39 - 0.63) 0.00 (0.00 - 0.13) 0.00 (0.00 - 0.16) 0.86 (0.86 - 0.88) 

CEACAM1 0.54 (0.41 - 0.66) 0.17 (0.04 - 0.35) 0.20 (0.06 - 0.33) 0.88 (0.87 - 0.91) 

FADD 0.55 (0.44 - 0.66) 0.00 (0.00 - 0.13) 0.00 (0.00 - 0.16) 0.86 (0.86 - 0.88) 

ADAMTS15 0.52 (0.39 - 0.65) 0.13 (0.00 - 0.26) 0.16 (0.00 - 0.27) 0.88 (0.86 - 0.89) 

CD27 0.61 (0.47 - 0.74) 0.26 (0.09 - 0.52) 0.27 (0.11 - 0.43) 0.89 (0.87 - 0.93) 

HGF 0.51 (0.38 - 0.64) 0.13 (0.00 - 0.30) 0.16 (0.00 - 0.31) 0.88 (0.86 - 0.90) 

KLK11 0.59 (0.46 - 0.70) 0.13 (0.00 - 0.30) 0.16 (0.00 - 0.31) 0.88 (0.86 - 0.90) 

ANXA1 0.50 (0.37 - 0.62) 0.09 (0.00 - 0.22) 0.11 (0.00 - 0.24) 0.87 (0.86 - 0.89) 

FLT4 0.50 (0.36 - 0.62) 0.13 (0.00 - 0.26) 0.16 (0.00 - 0.27) 0.88 (0.86 - 0.89) 

GPC1 0.57 (0.42 - 0.71) 0.26 (0.09 - 0.48) 0.27 (0.11 - 0.41) 0.89 (0.87 - 0.92) 
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Supplementary Table 5 Stack logistic regression model coefficient estimates and respective 1139 
95% confidence interval (CI) limits and p values. See statistical analysis sub-section in Methods for 1140 
the detailed description of the stacking procedure. This model was developed in the discovery set. 1141 

 1142 
 Coefficient Estimate CI 2.5% CI 97.5% p value 

Intercept -1.47 -2.34 -0.73 0.00033 

Diagnosis     

Healthy 2.50 1.75 3.45 5.41´10-9 

Chronic Pancreatitis 2.30 1.57 3.20 2.26´10-8 

IgG4 Disease 2.08 1.26 3.07 4.98´10-6 

Irritable Bowel Syndrome 1.92 1.08 2.86 1.61´10-5 

Other Biliary Duct Disease 2.29 1.15 3.56 0.00016 

Sphincter of Oddi Dysfunction 1.64 0.73 2.65 0.00063 

No Relevant Diagnosis -1.73 -3.23 -0.39 0.015 

Other Cancer 0.77 0.076 1.51 0.032 

Pancreatic Cyst -1.52 -3.02 -0.17 0.035 

Gastritis/Reflux Disease 0.53 -0.44 1.53 0.28 

Familial Pancreatic Cancer 0.49 -0.41 1.41 0.29 

Acute Pancreatitis 0.34 -0.29 1.027 0.31 

Liver Disease 0.38 -0.35 1.14 0.31 

Isolated LFTs Derangement -0.63 -2.03 0.60 0.34 

Non-Specific Abdominal Pain 0.301 -0.47 1.05 0.43 

Gallstone Disease 0.18 -0.67 1.07 0.68 

 1143 

 1144 

 1145 

 1146 

 1147 

 1148 

 1149 

 1150 



 54 

Supplementary Table 6 Discovery set data and univariate association with PDAC status. Odds ratios (OR), 1151 
95% confidence intervals (CI) and p values were calculated according to a logistic regression model with a bias 1152 
reduction method (see statistical section in Methods). 1153 

 1154 
Variable Cases Controls OR p value 

Number of samples 24 333 - - 

Mean age at sample draw (yr) (range) 70.79 (43.00-91.00) 58.39(19.00-89.00) 1.07 (1.03 - 1.11) 4.68e-05 

Mean BMI (kg/m2) (range) 25.46 (19.81-41.35) 25.41 (15.22-42.19) 1.01 (0.89-1.12) 0.87 

Gender    

 

4.98 (2.08 – 13.50) 

 

Male 18 121  

0.00023 

 
Female 6 212 

Diabetes          

yes 5 

 

52 

 

 

 

1.51 (0.51 – 3.84) 

 
 
 
 

0.43 
 

no 281 19 

Ethnicity     

Caucasian 11 189  

 

1.17 (0.70 – 2.02) 

 
 
 
 

0.56 
 

Unknown 9 99 

Asian 3 15 

Other 1 13 

Afro/Caribbean 0 17 

 1155 
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 1161 

 1162 

Supplementary Table 7 Validation set data and univariate association with PDAC status. Odds 1163 
ratios (OR), 95% confidence intervals (CI) and p values were calculated according to a logistic regression 1164 
model with a bias reduction method (see statistical section in Methods). 1165 

 1166 

 1167 
Variable Cases Controls OR p value 

Number of Samples 23 159 - - 

Mean age at sample draw (yr) (range) 68.61 (53.00 - 83.00) 57.94 (21.00 - 93.00) 1.06 (1.02 -1.04) 0.00071 

Mean BMI (kg/m2) (range) 24.18 (12.04 - 31.62) 25.64 (17.60 - 38.30) 0.90 (0.78-1.01) 0.080 

Gender    

 

2.65 (1.11 – 6.58) 

 

Male 14 58  

0.028 

 
Female 9 101 

Diabetes          

yes 5 

 

52 

 

 

 

1.57 (0.51 – 4.23) 

 
 
 
 

0.41 
 

no 281 19 

Ethnicity     

Caucasian 10 102  

 

2.66 (1.42 – 5.17) 

 
 
 
 

0.0020 
 

Unknown 12 32 

Asian 3 15 

Other 1 5 

Afro/Caribbean 0 5 
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 1173 

Supplementary Table 8 Type and number of subjects with other cancers in the ADEPTS cohort. 1174 
See also Figure 1. 1175 

 1176 
Other Cancer Number of subjects 

Possible gallbladder cancer 1 

Low grade dysplasia on ampulla of Vater 
(Incidental finding) 

1 

Hilar cholangiocarcinoma, treated Nov 
2017 

1 

Low anal moderately differentiated 
adenocarcinoma 

1 

Cholangiocarcinoma, primary sclerosing 
cholangitis 

1 

PNET (insulinoma) 1 

Bowel cancer in 2011  1 

Prostate cancer 1 

 1177 
 1178 
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 1180 

 1181 

 1182 

 1183 

 1184 

 1185 

 1186 

 1187 

 1188 

 1189 

 1190 

Supplementary Table 9 Values corresponding to Figure 4. Only ADEPTS samples were considered 1191 
for this association study. Given that symptoms were not considered in the training of the classifiers, 1192 
we concatenate ADEPTS samples in the discovery and validation sets to verify the associations of 1193 
symptoms and PDAC. A univariate logistic regression model with bias correction was used for each 1194 
symptom to test the association with PDAC. 1195 

 1196 

 
 

Symptoms 

Number of subjects  
 

OR (95% CI) 

 
 

p value 
Yes No 

Control Case Control Case 

Jaundice 18 22 401 23 20.78 (9.98 - 44.35) 3.22´10-15 

Weight Loss 39 17 380 28 5.91 (2.96 - 11.62) 1.44´10-06 

Asymptomatic 96 3 323 42 0.28 (0.07- 0.74) 0.0077 

Reflux 38 0 381 45 0.11 (0.00 - 0.79) 0.022 

Bloating 31 0 388 45 0.14 (0.00 - 0.99) 0.048 

Dyspepsia 30 0 389 45 0.14 (0.00 - 1.03) 0.054 

Abdominal Pain 198 16 221 29 0.62 (0.33 - 1.16) 0.14 

Nausea 20 0 399 45 0.21 (0.00 - 1.60) 0.17 

Vomiting 19 4 400 41 2.23 (0.67 - 6.03) 0.17 
Asymptomatic 

LFT Derangement 52 8 367 37 1.59 (0.67 - 3.39) 0.28 

Anaemia 24 1 395 44 0.54 (0.06 - 2.18) 0.44 

Back Pain 1 0 418 45 3.07 (0.02 - 58.34) 0.54 

Heartburn 9 0 410 45 0.47 (0.00 - 3.85) 0.57 

Change In Bowel Habit 58 7 361 38 1.20 (0.49 - 2.62) 0.67 

Rectal Bleeding 10 1 409 44 1.31 (0.14 - 5.80) 0.76 

Dysphagia 16 1 403 44 0.82 (0.09 - 3.42) 0.82 
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 1200 
 1201 
 1202 
 1203 
 1204 
 1205 
 1206 

Supplementary Table 10 Performance model rank summary for selected models in symptomatic patients. 1207 
The probability values used to calculate the performance metrics were generated with each model developed in 1208 
the training set and reported in the main text. Probability values for symptomatic patients belonging to the training 1209 
set and validation set were concatenated to generate the ROC curves. Only ADEPTS samples had symptoms 1210 
information. A. L. Derang.: Asymptomatic LFT Derangement. B. Pain: Back Pain. C. B. Habit: Change in Bowel 1211 
Habit. W. Loss: Weight Loss. Here, only the ranks of the performances are provided. For the respective 1212 
performance values see Table 2 in the main text. 1213 

 1214 
  Symptom (Yes)  

  

Models Metric A.L.Derang. 
 

A.Pain 
 

A.B. Habit 
 

W. Loss 
 

Jaundice 
 

Geometric 
mean rank 

Mean 
across all 
metrics 

CA19-9 

ROC 3 3 3 3 3 3.00 

2.83 
Sens90 3 3 2 3 3 2.77 

PPV90 3 3 2 3 3 2.77 

NPV90 3 3 2 3 3 2.77 

Index 
signature 

ROC 1 1 1 1 1 1.00 

1.16 
Sens90 2 1 1 1 2 1.32 

PPV90 2 1 1 1 1 1.15 

NPV90 1 1 1 1 2 1.15 

Reduced 
signature 

ROC 2 2 2 2 2 2.00 

1.79 
Sens90 1 2 3 2 1 1.64 

PPV90 1 2 3 2 2 1.89 

NPV90 1 2 3 2 1 1.64 

 1215 

 1216 

 1217 

 1218 

 1219 

 1220 

 1221 

 1222 
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Supplementary Table 11 Pairwise area under receiver operating characteristic curve comparison p-values 1223 
for the selected models in Table 2 (main text). Only ADEPTS samples had symptoms information. A. L. Derang.: 1224 
Asymptomatic LFT Derangement. B. Pain: Back Pain. C. B. Habit: Change in Bowel Habit. W. Loss: Weight Loss. 1225 
For the respective performance values see Table 2 in the main text. Models in rows for each symptom are 1226 
compared with those in the columns for the same symptom. 10000 bootstraps were constructed to test the 1227 
significance of the difference in performance being lower. 1228 
 1229 

Symptom (Yes)  Reduced signature Index signature 
A.L.Derang. CA19-9 3.89´10-07 7.70´10-26  

 Reduced signature - 0.25 

A. Pain CA19-9 2.19´10-15 2.83´10-93 

 Reduced signature - 1.08´10-06 

A. B. Habit CA19-9 0.0018 1.48´10-28 

 Reduced signature - 0.020 

W.Loss CA19-9 2.04´10-09 1.38´10-14 

 Reduced signature  0.018 

Jaundice CA19-9 0.013 3.34´10-07 

 Reduced signature - 0.069 
 1230 

 1231 

 1232 

 1233 
 1234 

 1235 
 1236 
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