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ABSTRACT

Background: Hypertrophic cardiomyopathy (HCM) affects 1 in every 200 individuals and isthe
leading cause of sudden cardiac death in young adults. HCM can be identified using an
electrocardiogram (ECG) raw voltage data and deep learning approaches, but their point-of-care
application islimited by theinaccessibility of these signal data. We developed a deep learning-
based approach that overcomes this limitation and detects HCM from images of 12-lead ECGs
across layouts.

Methods: We identified ECGs from patients with HCM features present on cardiac magnetic
resonance imaging (CMR) or those within 30 days of an echocardiogram documenting thickened
interventricular septum (end-diastolic interventricular septum thickness > 15mm). Patients with
CMR-confirmed HCM were considered as cases during the final model evaluation. The model
was validated within clinical settingsat YNHH and externally on ECG images from the
prospective, population-based UK Biobank cohort. We localized class-discriminating signalsin
ECG images using gradient-weighted class activation mapping.

Results: Overall, 124,553 ECGs from 66,987 individuals (HCM cases and controls) were used
for model development. The model demonstrated high discrimination for HCM across various
ECG image formats and calibrationsin internal validation (area under receiving operation
characteristics[AUROC] 0.96) and external sets of ECG images from UK Biobank (AUROC
0.94). A positive screen for HCM was associated with a 100-fold higher odds of CMR-confirmed
HCM (OR 102.4, 95% Confidence Interval, 57.4 — 182.6) in the held-out set. Class-
discriminative patterns localized to the anterior and lateral leads (V4-V5).

Conclusions: We developed and externally validated a deep learning model that identifies HCM
from ECG images with excellent discrimination. This approach represents an automated,
efficient, and accessible screening strategy for HCM.
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INTRODUCTION

While hypertrophic cardiomyopathy (HCM) is among the leading causes of sudden cardiac
death, scalable solutions for screening for the disease have remained elusive.** HCM isa
genetically determined disease that affects up to 1 in every 200 people globally.®* An early
diagnosis of HCM can enable regular healthcare follow-up, rigorous cardiovascular risk
management, and timely initiation of highly effective risk-reducing therapies.>® The diagnosis of
HCM has relied on cardiac imaging, such as echocardiography and cardiac magnetic resonance
imaging (CMR).>® However, given the requirement of expensive technology and extensive
clinical expertise in deploying and interpreting these modalities, using echocardiography or

CMR as a screening strategy is not feasible.®’

Given the inaccessibility of advanced cardiac imaging, deep learning or artificial
intelligence (Al)-enhanced interpretation of electrocardiograms (Al-ECG) has been proposed as
an aternative for the early detection of HCM .2 While ECG abnormalities, such as prominent Q
waves, repolarization changes, left axis deviation, or giant negative T waves, can be apparent in
over 90% of patients with the disease, these changes are not specific to HCM.***! Deep learning-
based approaches, such as convolutional neural networks (CNNs) can leverage HCM -specific
pathological signatures to identify people the disease using clinical ECGs.®°*? Current models,
however, use raw ECG voltage data as the inputs, which are often stored in vendor-specific
formats and rarely accessible to clinicians at the point-of-care. Moreover, for identifying patients
with HCM in development cohorts, a combination of diagnosis codes and other administrative
data sources, such as visits to the HCM clinic, have been used.®*? Such administrative-code-
based phenotyping of diseases in the electronic health record is prone to misclassification and

variability due to vast differences in health-system-specific coding practices for HCM.*3
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Therefore, thereis an unmet need for the devel opment of models that use ubiquitous and
interoperable data formats for disease diagnosis and rely on objective imaging-based biological
features for defining the presence of disease to enable AI-ECG’ s use as a practical, generalizable,
and scalable screening modality for HCM.

In this study, we report the devel opment and validation of a deep learning-based

approach for identifying CMR-confirmed HCM using images of clinical 12-lead ECGs.

METHODS

The Yale Institutional Review Board approved the study protocol and waived the need for
informed consent as the study represents a secondary analysis of existing data. Patients who
opted out of research studies at the Yae New Haven Hospital (Y NHH) were not included. An

online version of the modd is publicly available for research use at https.//www.cards-

lab.org/ecgvision-hcm. This web application represents a prototype of the eventual application of

the model, with instructions for required image standards and a version that demonstrates an

automated image standardization pipeline.

Data Sour ce and Study Population
We used 12-lead ECG signal waveform data collected during the clinical care of patients at the
YNHH between 2012 and 2021. These ECGs were recorded as standard 12-lead recordings
sampled at a frequency of 500 Hz for 10 seconds. These were recorded on multiple different
machines, primarily the Philips PageWriter and GE MAC machines.

We identified the earliest MRI reports for 1,061 patients containing any mention of HCM.

Each of these reports was manually reviewed by three cardiologists, and 904 people were
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identified as having confirmed or possible HCM. Of these, 779 reports included a confirmed
HCM diagnosis and 125 were identified as possible HCM, defined as the inclusion of HCM as
one of the reported differential diagnoses, or the presence of features potentially suggestive, but
not conclusive for HCM. The data from these patients were split into mutually exclusive training,
validation, and test setsin an 85:5:10 ratio. Only MRI-confirmed HCM cases were retained in
validation and testing, while confirmed and possible HCM cases were included in the training
cohort. For each of these patients, all ECGs recorded up to a year before the MRI, and any time
after the MRI were considered, except for those ECGs after a septal reduction procedure,
including alcohol septal ablation or ventricular myectomy. To further augment the training
cohort, we incorporated ECGs from patients whose transthoracic echocardiograms (TTE)
demonstrated severe ventricular hypertrophy (LVH), defined by interventricular septal thickness
in diastole (1 Sd) of greater than 15mm. We posited that these may represent individuals with
possible HCM. ECGs performed within 30 days before or after a TTE demonstrating severe
LVH wereincluded as cases in the training set, but were not considered cases in the test set,
which only included CMR-confirmed HCM. For patients with more than one recorded ECG
filling these criteria, a maximum of five most recent ECGs were used to create cohortsto avoid
overrepresenting patients undergoing frequent ECGs.

To derive a control cohort for the training set, we identified ECGs recorded within 30 days
of aTTE in acohort of patients who did not have a diagnosis code recorded for HCM (Table S2)
and were not in the cohort of patients with possible positive HCM cases based on MRI reports or
IV Sd values. Thus, patients with any ICD code for HCM (Table S2), any mention of HCM in

cardiac MRI reports, or any TTE with IVSd > 15mm were not included in the control cohort. We
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randomly sampled control ECGs so the train set had a 10% prevalence of HCM ECGs to allow
the model to learn signatures of HCM on ECG successfully.

To identify a control cohort for the validation and test sets, we used ECGs from any
patients who did not have any diagnosis code suggestive of conditions causing cardiomyopathy,
along with an inpatient hospitalization for heart failure (T able S2). These patients were also not
present in the cohort of patients with confirmed or possible HCM cases based on MRI reports.
Since HCM more commonly affects men and is diagnosed in the younger population, it is
important to ensure that the model identifies the pathological signature of the HCM and does not
rely on age- and sex-based ECG features for the HCM prediction. Thus, the validation and test
controls were age- and sex-matched to HCM ECGs at a 10:1 prevalence. We identified 10
control ECGs from patients within 5 years of age, and of the same sex, as each HCM case ECG.

We ensured no patient overlap between training, validation, and test sets.

I mage Generation

We generated ECG images to recapitul ate the variation in ECG layouts in areal-world setting.
Our approach to image plotting has been previously described and represents the processing
steps of ECG machines to convert acquired waveform data to printed outputs.*>2 Briefly, all
ECGs were analyzed to determine whether they had 10 seconds of continuous recordings across
al 12 leads. The 10-second samples were preprocessed with a one-second median filter,
subtracted from the original waveform to remove basdline drift in each lead. The process of
converting ECG signals to images was independent of model development, ensuring that the

model did not learn any aspects of the processing that generated images from the signals.
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ECG signals were transformed into ECG images using the Python library ecg-plot.*
Images were generated with a calibration of 10 mm/mV, which is standard for printed ECGsin
most real-world settings. Using the Python Image Library (PIL v9.2.0), we converted all images
to greyscale, followed by down-sampling to 300x300 pixels regardless of their original
resolution. Given that real-world ECG images may vary in the layout of leads, we created a
dataset with four different plotting schemes for each signal waveform recording (Figure 1). The
first format was based on the standard printed ECG format in the United States. This format
consisted of four columns printed sequentially, each containing 2.5-second intervals from three
leads. The full 10-second recording of the lead | signal was included as the rhythm strip. The
second format, a two-rhythm format, added lead Il as an additional rhythm strip to the standard
format. The third layout was the alternate format, which consisted of two columns, the first with
six simultaneous 5-second recordings from the limb leads and the second with six sSsmultaneous
5-second recordings from the precordial leads, without a corresponding rhythm lead. The fourth
format was a shuffled format, which had precordial leadsin the first two columns and limb leads
in the third and fourth. All images were rotated a random amount between -10 and 10 degrees
before being input into the model to mimic variations seen in uploaded ECGs and to aid in the

prevention of overfitting.

Mode Architectureand Training

We built a convolutional neural network model based on the EfficientNet-B3 architecture.”® The
EfficientNet-B3 model requiresimages to be sampled at 300 x 300 square pixels, includes 384
layers, and has over 10 million trainable parameters. To allow label-efficient model development,

we initialized the model using weights from a pretrained EfficientNet-B3 model that leveraged a
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novel self-supervised biometric contrastive learning approach, wherein the model was trained to
identify individual patient-specific patternsin ECGs regardless of their interpretation.?* None of
the ECGs on the self-supervised pretraining task represented individuals in the model
development. For training, we first unfroze the last four layers and trained the model with a
learning rate of 0.01 for 2 epochs. Then, we unfroze all layers and trained the model with a
learning rate of 5 x 10°® for 6 epochs. We used an Adam optimizer, gradient clipping, and a
minibatch size of 64 throughout training. The optimizer and learning rates were chosen after
hyperparameter optimization. For both stages of training the model, we stopped training when
validation loss did not improve in 3 consecutive epochs. A custom class-balanced |oss function
(weighted binary cross-entropy) based on the effective number of samples was used given that

the case and control labels were not equally balanced.

Evaluation of Hypertrophy in Patients without Confirmed HCM

Type 1 error, or a high false positive rate, isamajor concern for screening strategies for low-
prevalence conditions like HCM. Furthermore, given that HCM is often underdiagnosed, it is
important to evaluate the phenotypic characteristics of false positive cases. Therefore, among
patients without CM R-confirmed HCM, we applied the model to 5,000 randomly selected ECGs
recorded within 30 days of a TTE. These ECGs were taken from patients who had previously not
been analyzed in development or evaluation sets. We extracted the end-diastolic interventricular
septal wall thickness (1V Sd), available as a continuous measure from TTES. To evaluate the
instances of model-positive screens in patients without CMR-confirmed HCM, we compared the

IV Sd measurements in false positive and true negative screens.
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L ocalization of Model Predictive Cues

To obtain a heatmap highlighting the portions of an ECG image that were important for predicting
HCM, we used Gradient-weighted Class Activation Mapping (Grad-CAM).? We calculated the
gradients on the final stack of filtersin our EfficientNet-B3 model for each prediction and
performed a global average pooling of the gradients in each filter, emphasi zing those that
contributed to a prediction. We then multiplied these filters by their importance weights and
combined them across filters to generate Grad-CAM heatmaps. Among the 25 positive cases with
the most confident model predictions for HCM across ECG formats, we averaged class activation
maps to determine the most important image areas for the prediction of HCM. We took an
arithmetic mean across the heatmaps for a given image format and overlayed this average
heatmap across a representative ECG before the conversion of the image to grayscale. The Grad-
CAM intengities were converted from their original scale (0 — 1) to acolor range using the jet
colormap array in the Python library matplotlib, which was then overlaid on the original ECG
image with an alpha of 0.3. The activation map, a 10x10 array, was upsampled to the original
image size using the bilinear interpolation built into TensorFow v2.8.0. We also evaluated the
Grad-CAM for individual ECGsin the UK Biobank to evaluate the consistency of the information

on individual examples.

External Validation

We used data from the UK Biobank, under research application #71033, to pursue external
validation of our model. UK Biobank represents the largest population-based cohort of 502,468
people in the United Kingdom with protocolized imaging and laboratory testing, along with

linked electronic health records. Given the mean age at diagnosis for HCM among adultsis51 £


https://doi.org/10.1101/2023.12.23.23300490
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2023.12.23.23300490; this version posted December 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

16 years,” we evaluated our model anong ECGs from participants where a majority were < 70
years old, representing the population where an AlI-ECG model may be used for identifying

HCM. We used linked e ectronic health records for the participants to identify the presence of
HCM diagnosis codes. In patients without HCM, we also used CM R-derived |eft-ventricular mass
index (LVMI) to compare the characteristics of participants with a positive and negative AI-ECG

screen for HCM. LVH was defined asLVMI > 70 in men and LVMI > 55 in women.?*%

Statistical Analysis

Categorical variables were reported as number (percentage, %), and continuous variables as
mean (standard deviation [SD]) or median (interquartile range [IQR]), as appropriate. The
model’ s performance was presented as area under the receiver operating characteristic curve
(AUROC) and area under the precision-recall curve (AUPRC). The 95% confidence intervals
(CI) for AUROC and AUPRC were calculated using Del.ong’ s algorithm and bootstrapping with
1000 iterations, respectively.”®?’ Furthermore, we reported sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and F1 score of the model at the model
threshold for 90% sensitivity in the validation set. The statistical significance level was set at P <

0.05. All statistical analyses were executed using Python 3.11.2 and R version 4.2.0.

RESULTS

Study Population

We used data from 126,203 12-lead ECGs obtained from 68,109 patientsat Y NHH. The data
from these patients were split into train, validation, and test sets at a patient level, as described in

the methods. Individualsin the model development population (training and validation sets) had
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amedian age of 63.2 years (IQR 51.2-74.1) at the time of ECG recording, and 33257 (49.6%)
were women. Overall, 48475 (72.4%) were non-Hispanic White, 7978 (11.9%) were non-
Hispanic Black, 6029 (9.0%) were Hispanic, 1300 (1.9%) were Asian, 376 (0.6%) were from
other races, and information was missing for 2829 (4.2%). In the development population, there
were 12,680 ECGs from 4745 patients with CM R-confirmation of HCM or echocardiographic

parameters consistent with HCM (Table 1).

Detection of HCM

In the age- and sex-matched held-out test set comprising standard format images, the model for
detecting HCM achieved an AUROC of 0.96 (Figure 2). A probability threshold for predicting
HCM was chosen based on a sensitivity of 0.90 or higher in the validation subset. With this
threshold, the model had sensitivity and specificity of 0.91 and 0.91 in the held-out test set and
PPV and NPV of 0.51 and 0.99, respectively. Overall, an ECG suggestive of HCM portended
over 100-fold higher odds (OR 102.4, 95% ClI, 57.4 — 182.6) of HCM (Figure 2). The modd’s
performance was comparable across subgroups of age, sex, and race (Table 2 and Figure 2). The
model performance was also comparable across the four original layouts of ECG imagesin the
held-out set with an AUROC of 0.95 - 0.96 for detecting HCM. Sensitivity analyses
demonstrated consistent model performance on ECGs without paced rhythms, atrial fibrillation

and flutter, conduction disorders, and in the presence of LVH (Table 2).

Evaluation of LVH Phenotype in Model-predicted False Positives
We applied the model to 5,000 randomly selected ECGs recorded within 30 daysof aTTE in

patients outside our development and held-out test sets. Of these, 647 (12.9%) were classified as
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false positives and 4,353 (87.1%) as true negatives. The median 1V Sd among the false-positive
subset was 11mm (IQR 9.7 — 12.4), compared with 9.5mm (IQR 8.4 — 10.8) among false

negatives (p < 0.001) (Figure 3A).

L ocalization of Predictive Cuesfor HCM

Class activation heatmaps of the 25 positive cases with the most confident model predictions for
HCM prediction across four ECG layouts are presented in Figure 4. For all four formats of
images, the region corresponding to leads V4 and V5 were the most important areas for
prediction of HCM. Representative images of Grad-CAM analysisin sampled individuals with
positive screens in UK Biobank, the external validation site, showed similar patterns (Figure

5B).

External Validation

We applied the model to the UK Biobank validation set, consisting of 32,885 ECGs from
prospectively enrolled individuals, including 18 (0.05%) with an ICD code for HCM. The model
had an AUROC of 0.94 (0.89 —0.99) on these images (Figure 5A), with a sensitivity of 0.61 and
specificity of 0.96 at the threshold set in the devel opment population. Of the 32,867 ECGs in this
set without an HCM diagnosis, 32,859 were from individuals who had undergone cardiac MRIs.
The model classified 1,322 (4.0%) as false positives and 31,537 (96.0%) astrue negatives. Of the
false positive screens, 153 (11.6%) had LVH, compared with 313 (1.0%) among true negative

screens (Figure 3B).

DISCUSSION


https://doi.org/10.1101/2023.12.23.23300490
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2023.12.23.23300490; this version posted December 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

We developed and validated an automated deep learning model for identifying HCM solely from
ECG images. The model isrobust to variations in the layouts of ECG waveforms, making it
suitable for implementation in various settings. Moreover, the model has excellent discrimination
and sengitivity, representing characteristics ideal for screening. The model was developed and
tested in adiverse population with high performance in subgroups of age, sex, and race. The
model performance was consistent in the UK Biobank, a population-based cohort, despite a
different, diagnosis code-based definition of HCM. An evaluation of the class-discriminating
signals localized it to the anterior and lateral leads regardless of the ECG layout, topologically
corresponding to the left ventricle. Therefore, an ECG image-based approach can represent a
screening strategy for HCM, particularly in low-resource settings.

ECG-image-based deep learning models represent anovel application of Al that has the
potential to improve clinical care and public health by offering a feasible modality for the early
detection of HCM. Previoudly, various criteria have been proposed for the identification of HCM
based on clinical interpretation of visible ECG features, such as abnormal Q or T waves,
repolarization changes, or high QRS complexes.’® However, the accuracy of these clinical ECG-
based criteriais limited, ranging from 55% to 80%.%*° Moreover, the visible ECG abnormalities
are not specific for HCM and are often present in various clinical conditions causing left
ventricular hypertrophy, or rarely even as physiological variants.'** More recently, deep
learning models utilizing raw ECG voltage signals have been proposed for the detection of
HCM 292 While these models have excellent performance in internal validation, their
devel opment has often relied on diagnosis codes and visits to a specialty HCM clinic for the
identification of HCM cases.®*? These practices for recording diagnosis and administrative codes

are often health-system-specific, and the use of diagnosis codes has been shown to misclassify
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up to one-third of HCM cases.*®** Thus, to ensure the generalizability of deep learning modelsin
diverse settings, it is critical to incorporate objective imaging-based biologic features for the
identification of disease.®*® Our use of CMR for the identification of disease represents a robust
definition for identifying HCM, and enables the model to differentiate HCM from LVH-causing
HCM mimics such as severe AS or hypertension.®’° Thisis also demonstrated by consistently
high discrimination of the model for HCM in the patient subgroup with increased septal wall
thickness.

Using images to detect HCM signifies an advance over signal-based models, allowing for
accessible implementation of a potential ECG-based screening approach. Digital or printed ECG
images represent the most commonly available format, especially in low-resource settings.
Moreover, ECG images are an interoperable data stream that is not tied to proprietary formats
from specific ECG machine vendors, making them readily available to clinicians at the point-of-
care. Currently, the guidelines for universal screening for HCM are equivocal, given the limited
affordability of advanced cardiac imaging and the high number of false-positive and negative
screens on clinically apparent ECG anomalies.® However, an accurate and accessible
approach to HCM diagnosisusing Al can potentially make HCM screening economically viable,
especially for people at elevated risk of sudden cardiac death, such as young athletes.™***
Moreover, using ECG images in our model overcomes the implementation challenges of black
box algorithms. The consistent localization of the risk-discriminative signalsin anterior and
lateral leads of ECG images, regardless of the lead location on printed images, indicates the left
ventricular origin of the underlying pathology. Visual representations consistent with clinical
knowledge could explain parts of the model prediction process and address the hesitancy in using

these toolsin clinical practice.®
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Our study has several limitations. First, our model was developed using retrospective data
from a single center, including ECGs from patients with clinical indication for both ECGs and
advanced cardiac imaging such as CMR or echocardiography. While the Yae New Haven
Health System serves a large and diverse population in Connecticut and Rhode Island,
prospective validation of the models is necessary before widespread deployment in a screening
setting. Second, despite the model’ s high discrimination for HCM, its implementation for
community-based screening can result in high false positive rates. Since screening for low
prevalence conditions inherently limits the yield for diagnostic modalities, arole for universal
HCM screening must be established before widespread deployment of the mode.*"*® Third,
despite localizing the class-discriminative signals in the ECG image to the left ventricular areas,
heatmap analysis may not necessarily capture all the model predictive features, such asthe
duration of ECG segments, intervals, or ECG waveform morphol ogies that might have been used
in modd predictions. Fourth, the model demonstrated a lower sensitivity and higher specificity
on the UK-Biobank cohort, which is composed of younger and generally healthier individuals.
However, we relied on diagnosis codes to identify HCM cases during testing in the UK Biobank.
Our analysis of participants screened as false positives screens showed significantly higher
LVMI than true negatives, suggesting that the diagnosis-code-based classification could have
missed some cases of HCM. Regardless, depending on the intended result of the screening
approach and resource constraints with downstream testing, prediction thresholds for HCM may

need to be recalibrated when deployed in such settings.

CONCLUSIONS
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We developed and validated a high-performing deep learning-based moded that detects HCM
from images of clinical 12-lead ECGs. This approach represents an accessible strategy for HCM

screening, especialy in low-resource settings.
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FIGURES

Figure 1. Model Development and Study Design Abbreviations. CMR, Cardiac Magnetic

Resonance Imaging; HCM, Hypertrophic Cardiomyopathy; 1V Sd, End-diastolic Interventricular

Septal Thickness
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Figure 2. Model performance measures (A) Receiver operating characteristic curves across
image formatsin the held-out test set. B) Diagnostic odds ratios acr oss age, gender, and

race subgroups on standard format imagesin the held-out test set. Abbreviations: AUROC,
area under recelver-operating characteristic curve*
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Figure 3. (A) Distribution of interventricular septal thicknessin Yale New Haven Hospital
patientswithout hypertrophic cardiomyopathy. (B). Distribution of left ventricular mass
index in UK Biobank without hypertrophic cardiomyopathy.
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Figure 4. Gradient-weighted Class Activation Mapping (Grad-CAMSs) acr 0ss
Electrocardiogram formats. A) Standard format B) Two rhythm leads C) Standard
shuffled format D) Alternate format. The heatmaps represent averages of the 25 positive cases
with the most confident model predictions for HCM.
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Figure 5. Model Performancein the UK Biobank (A) Receiver Operating Characteristic
Curves. B) Examples of Gradient-weighted Class Activation Mapping (Grad-CAM)
analysis of electrocar diograms from two individualswith HCM in UK Biobank.
Abbreviations: AUROC, area under receiver-operating characteristic curve

A. B
1.0}
7
kd
.
.
-
.
.
.
.
13 e
.
.
.
r
Ed
.
-
@ r
- s
& 0.6(] L
g -
=1 #
4 <
8 .
g .
Ena at
.
.
.
o’
.
.
o,
.
.
. .
0.2 .
o,
.
.
.
.
o’
e — UK Biobank (AUROC = 0.940)
.
0.0 . . . :
0.0 0.2 04 06 [IX:] 1.0

False Positive Rate


https://doi.org/10.1101/2023.12.23.23300490
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Basdline characteristics of study population. Data presented as median [IQR] for age and number (per cent) for other
variables. Abbreviations. CMR, cardiac magnetic resonance imaging; ECGs, electrocardiograms, HCM, hypertrophic

cardiomyopathy; 1V Sd, interventricular septal thicknessin diastole.

_ Train Validation Test

Characteristic : - :

Patients ECGs Patients ECGs Patients ECGs
Number 66339 123640 648 913 1122 1650
Sex; N(%)
Female 33044 (49.8) 58390 (47.2) 213 (32.9) 291 (31.9) 372 (33.2) 542 (32.8)
Male 33013 (49.8) 64675 (52.3) 423 (65.3) 606 (66.4) 729 (65.0) 1076 (65.2)
Missing 282 (0.4) 575 (0.5) 12(1.9) 16 (1.8) 21 (1.9 32(1.9
Age (years); Median{IQR] [51?2?,"73;1.2] [52?'715.01 [52.588,677.4] [53.62c?é557.6] [44?86:.697.2] [45?2';3.4]
Race; N(%)
Asian 1289 (1.9) 2286 (1.8) 11 (1.7) 15 (1.6) 27 (2.4) 35(2.1)
Black 7892 (11.9) 15984 (12.9) 86 (13.3) 122 (13.4) 146 (13.0) 216 (13.1)
Hispanic 5964 (9.0) 11297 (9.1) 65 (10.0) 84 (9.2 121 (10.8) 170 (10.3)
White 48038 (72.4) 88711 (71.7) 437 (67.4) 628 (68.8) 743 (66.2) 1107 (67.1)
Other 371 (0.6) 702 (0.6) 5(0.8) 7(0.8) 9(0.8) 14 (0.8)
Unknown 2785 (4.2) 4660 (3.8) 44 (6.8) 57 (6.2 76 (6.8) 108 (6.5)
HCM; N(%) 4715 (7.1) 12597 (10.0) 30 (4.6) 83(9.1) 59 (5.3) 150 (9.1)
CMR-Confirmed HCM 505 (0.8) 1887 (1.5) 30 (4.6) 83(9.1) 59 (5.3) 150 (9.1)
CMR-Possible HCM 79(0.2) 287 (0.2) - - - -
IVSd > 15mm 4131 (6.2) 10190 (8.3) - - - -
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Table 2. Performance of model on test images acr oss demogr aphic subgroupsin the age sex matched held-out test set.
Abbreviations: PPV, positive predictive value; NPV, negative predictive value; AUROC, area under receiver operating characteristic
curve; AUPRC, area under precision recall curve; A-Fib, atria fibrillation; ECG, eectrocardiogram; LBBB, left bundle branch block;

RBBB, right bundle branch block; LVH, left ventricular hypertrophy.

L abels Number PPV NPV  Specificity Sensitivity AUROC AUPRC F1 Score
All 1650 0.511 0.99 0.913 0.907 0.959 (0.941-0.977) 0.754 (0.678-0.828) 0.654
Male 1076 (65.2%)  0.482  0.992 0.900 0.93 0.958 (0.933-0.983)  0.743 (0.642-0.839) 0.635
Female 542 (32.8%) 0589  0.985 0.940 0.86 0.966 (0.947-0.986)  0.807 (0.691-0.901) 0.699
>=65 506 (30.7%) 0.388  0.997 0.846 0.978 0.958 (0.938-0.978)  0.633 (0.506-0.793) 0.556
<65 1144 (69.3%) 0.607  0.987 0.943 0.875 0.96 (0.937-0.983) 0.796 (0.705-0.87) 0.717
Hispanic 170 (10.3%) 0.462 1 0.957 1 1(1-1) 1(1-1) 0.632
White 1107 (67.1%) 0.48 0.986 0.909 0.867 0.943 (0.917-0.97) 0.673 (0.568-0.77) 0.618
Black 216 (13.1%) 0.661  0.993 0.882 0.975 0.986 (0.974-0.999) 0.941 (0.871-0.986) 0.788
Asian 35 (2.1%) 04 1 0.897 1 0.983 (0.935-1) 0.833(0.333- 1.0) 0.571
Other 14 (0.8%) 0 1 0.946 - - - -
Unknown 108 (6.5%) 0.444 1 0.928 1 0.971 (0.933-1) 0.560 (0.25-1.0) 0.615
Paced ECGs 28 (1.7%) 0.409 1 0.316 1 0.655 (0.45-0.86) 0.406 (0.234-0.716) 0.581
Not Paced ECGs 1622 (9.8%) 0.52 0.99 0.921 0.901 0.961 (0.943-0.98) 0.803 (0.74-0.863) 0.66
A-Fib or Flutter 75 (4.5%) 0.324 1 0.641 1 0.886 (0.812-0.961) 0.424 (0.237-0.708) 0.489
EI?JQ;I b or 1575 (95.5%)  0.539 0.99 0.925 0.899 0.962 (0.943-0.981)  0.795 (0.718-0.86) 0.674
LBBB 19 (1.2%) 0.353 1 0.14 1 0.872 (0.706-1) 0.719 (0.365-1.0) 0.522
No LBBB 1600 (97.0%) 0523  0.992 0.921 0.920 0.963 (0.945-0.982) 0.772 (0.692-0.841) 0.667
RBBB 71 (4.3%) 0.5 1 0.855 1 0.996 (0.988-1) 0.98 (0.904-1) 0.667
No RBBB 1548 (93.8%) 0.512  0.992 0.916 0.919 0.961 (0.943-0.98)  0.758 (0.679-0.836) 0.658
LVH 221 (13.4%) 0649  0.982 0.735 0.973 0.959 (0.934-0.984) 0.916 (0.855-0.965) 0.778
No LVH 1429 (86.6%) 0.413  0.991 0.933 0.842 0.942 (0.91-0.974)  0.543 (0.442-0.669) 0.554
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A. Standard Format C. Standard Shuffled Format
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