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ABSTRACT 

Background: Hypertrophic cardiomyopathy (HCM) affects 1 in every 200 individuals and is the 

leading cause of sudden cardiac death in young adults. HCM can be identified using an 

electrocardiogram (ECG) raw voltage data and deep learning approaches, but their point-of-care 

application is limited by the inaccessibility of these signal data. We developed a deep learning-

based approach that overcomes this limitation and detects HCM from images of 12-lead ECGs 

across layouts. 

Methods: We identified ECGs from patients with HCM features present on cardiac magnetic 

resonance imaging (CMR) or those within 30 days of an echocardiogram documenting thickened 

interventricular septum (end-diastolic interventricular septum thickness > 15mm). Patients with 

CMR-confirmed HCM were considered as cases during the final model evaluation. The model 

was validated within clinical settings at YNHH and externally on ECG images from the 

prospective, population-based UK Biobank cohort. We localized class-discriminating signals in 

ECG images using gradient-weighted class activation mapping.  

Results: Overall, 124,553 ECGs from 66,987 individuals (HCM cases and controls) were used 

for model development. The model demonstrated high discrimination for HCM across various 

ECG image formats and calibrations in internal validation (area under receiving operation 

characteristics [AUROC] 0.96) and external sets of ECG images from UK Biobank (AUROC 

0.94). A positive screen for HCM was associated with a 100-fold higher odds of CMR-confirmed 

HCM (OR 102.4, 95% Confidence Interval, 57.4 – 182.6) in the held-out set. Class-

discriminative patterns localized to the anterior and lateral leads (V4-V5). 

Conclusions: We developed and externally validated a deep learning model that identifies HCM 

from ECG images with excellent discrimination. This approach represents an automated, 

efficient, and accessible screening strategy for HCM. 
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INTRODUCTION 

While hypertrophic cardiomyopathy (HCM) is among the leading causes of sudden cardiac 

death, scalable solutions for screening for the disease have remained elusive.1,2 HCM is a 

genetically determined disease that affects up to 1 in every 200 people globally.3,4 An early 

diagnosis of HCM can enable regular healthcare follow-up, rigorous cardiovascular risk 

management, and timely initiation of highly effective risk-reducing therapies.2,5 The diagnosis of 

HCM has relied on cardiac imaging, such as echocardiography and cardiac magnetic resonance 

imaging (CMR).5,6 However, given the requirement of expensive technology and extensive 

clinical expertise in deploying and interpreting these modalities, using echocardiography or 

CMR as a screening strategy is not feasible.6,7  

Given the inaccessibility of advanced cardiac imaging, deep learning or artificial 

intelligence (AI)-enhanced interpretation of electrocardiograms (AI-ECG) has been proposed as 

an alternative for the early detection of HCM.8,9 While ECG abnormalities, such as prominent Q 

waves, repolarization changes, left axis deviation, or giant negative T waves, can be apparent in 

over 90% of patients with the disease, these changes are not specific to HCM.10,11 Deep learning-

based approaches, such as convolutional neural networks (CNNs) can leverage HCM-specific 

pathological signatures to identify people the disease using clinical ECGs.8,9,12 Current models, 

however, use raw ECG voltage data as the inputs, which are often stored in vendor-specific 

formats and rarely accessible to clinicians at the point-of-care. Moreover, for identifying patients 

with HCM in development cohorts, a combination of diagnosis codes and other administrative 

data sources, such as visits to the HCM clinic, have been used.9,12 Such administrative-code-

based phenotyping of diseases in the electronic health record is prone to misclassification and 

variability due to vast differences in health-system-specific coding practices for HCM.13,14 
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Therefore, there is an unmet need for the development of models that use ubiquitous and 

interoperable data formats for disease diagnosis and rely on objective imaging-based biological 

features for defining the presence of disease to enable AI-ECG’s use as a practical, generalizable, 

and scalable screening modality for HCM.  

In this study, we report the development and validation of a deep learning-based 

approach for identifying CMR-confirmed HCM using images of clinical 12-lead ECGs.  

 

METHODS 

The Yale Institutional Review Board approved the study protocol and waived the need for 

informed consent as the study represents a secondary analysis of existing data. Patients who 

opted out of research studies at the Yale New Haven Hospital (YNHH) were not included. An 

online version of the model is publicly available for research use at https://www.cards-

lab.org/ecgvision-hcm. This web application represents a prototype of the eventual application of 

the model, with instructions for required image standards and a version that demonstrates an 

automated image standardization pipeline. 

 

Data Source and Study Population 

We used 12-lead ECG signal waveform data collected during the clinical care of patients at the 

YNHH between 2012 and 2021. These ECGs were recorded as standard 12-lead recordings 

sampled at a frequency of 500 Hz for 10 seconds. These were recorded on multiple different 

machines, primarily the Philips PageWriter and GE MAC machines.  

 We identified the earliest MRI reports for 1,061 patients containing any mention of HCM. 

Each of these reports was manually reviewed by three cardiologists, and 904 people were 
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identified as having confirmed or possible HCM. Of these, 779 reports included a confirmed 

HCM diagnosis and 125 were identified as possible HCM, defined as the inclusion of HCM as 

one of the reported differential diagnoses, or the presence of features potentially suggestive, but 

not conclusive for HCM. The data from these patients were split into mutually exclusive training, 

validation, and test sets in an 85:5:10 ratio. Only MRI-confirmed HCM cases were retained in 

validation and testing, while confirmed and possible HCM cases were included in the training 

cohort. For each of these patients, all ECGs recorded up to a year before the MRI, and any time 

after the MRI were considered, except for those ECGs after a septal reduction procedure, 

including alcohol septal ablation or ventricular myectomy. To further augment the training 

cohort, we incorporated ECGs from patients whose transthoracic echocardiograms (TTE) 

demonstrated severe ventricular hypertrophy (LVH), defined by interventricular septal thickness 

in diastole (IVSd) of greater than 15mm. We posited that these may represent individuals with 

possible HCM. ECGs performed within 30 days before or after a TTE demonstrating severe 

LVH were included as cases in the training set, but were not considered cases in the test set, 

which only included CMR-confirmed HCM. For patients with more than one recorded ECG 

filling these criteria, a maximum of five most recent ECGs were used to create cohorts to avoid 

overrepresenting patients undergoing frequent ECGs. 

 To derive a control cohort for the training set, we identified ECGs recorded within 30 days 

of a TTE in a cohort of patients who did not have a diagnosis code recorded for HCM (Table S2) 

and were not in the cohort of patients with possible positive HCM cases based on MRI reports or 

IVSd values. Thus, patients with any ICD code for HCM (Table S2), any mention of HCM in 

cardiac MRI reports, or any TTE with IVSd > 15mm were not included in the control cohort. We 
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randomly sampled control ECGs so the train set had a 10% prevalence of HCM ECGs to allow 

the model to learn signatures of HCM on ECG successfully.  

 To identify a control cohort for the validation and test sets, we used ECGs from any 

patients who did not have any diagnosis code suggestive of conditions causing cardiomyopathy, 

along with an inpatient hospitalization for heart failure (Table S2). These patients were also not 

present in the cohort of patients with confirmed or possible HCM cases based on MRI reports. 

Since HCM more commonly affects men and is diagnosed in the younger population, it is 

important to ensure that the model identifies the pathological signature of the HCM and does not 

rely on age- and sex-based ECG features for the HCM prediction. Thus, the validation and test 

controls were age- and sex-matched to HCM ECGs at a 10:1 prevalence. We identified 10 

control ECGs from patients within 5 years of age, and of the same sex, as each HCM case ECG. 

We ensured no patient overlap between training, validation, and test sets. 

 

Image Generation 

We generated ECG images to recapitulate the variation in ECG layouts in a real-world setting. 

Our approach to image plotting has been previously described and represents the processing 

steps of ECG machines to convert acquired waveform data to printed outputs.15–18 Briefly, all 

ECGs were analyzed to determine whether they had 10 seconds of continuous recordings across 

all 12 leads. The 10-second samples were preprocessed with a one-second median filter, 

subtracted from the original waveform to remove baseline drift in each lead. The process of 

converting ECG signals to images was independent of model development, ensuring that the 

model did not learn any aspects of the processing that generated images from the signals.  
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 ECG signals were transformed into ECG images using the Python library ecg-plot.19 

Images were generated with a calibration of 10 mm/mV, which is standard for printed ECGs in 

most real-world settings. Using the Python Image Library (PIL v9.2.0), we converted all images 

to greyscale, followed by down-sampling to 300x300 pixels regardless of their original 

resolution. Given that real-world ECG images may vary in the layout of leads, we created a 

dataset with four different plotting schemes for each signal waveform recording (Figure 1). The 

first format was based on the standard printed ECG format in the United States. This format 

consisted of four columns printed sequentially, each containing 2.5-second intervals from three 

leads. The full 10-second recording of the lead I signal was included as the rhythm strip. The 

second format, a two-rhythm format, added lead II as an additional rhythm strip to the standard 

format. The third layout was the alternate format, which consisted of two columns, the first with 

six simultaneous 5-second recordings from the limb leads and the second with six simultaneous 

5-second recordings from the precordial leads, without a corresponding rhythm lead. The fourth 

format was a shuffled format, which had precordial leads in the first two columns and limb leads 

in the third and fourth. All images were rotated a random amount between -10 and 10 degrees 

before being input into the model to mimic variations seen in uploaded ECGs and to aid in the 

prevention of overfitting. 

 

Model Architecture and Training 

We built a convolutional neural network model based on the EfficientNet-B3 architecture.20 The 

EfficientNet-B3 model requires images to be sampled at 300 x 300 square pixels, includes 384 

layers, and has over 10 million trainable parameters. To allow label-efficient model development, 

we initialized the model using weights from a pretrained EfficientNet-B3 model that leveraged a 
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novel self-supervised biometric contrastive learning approach, wherein the model was trained to 

identify individual patient-specific patterns in ECGs regardless of their interpretation.21 None of 

the ECGs on the self-supervised pretraining task represented individuals in the model 

development. For training, we first unfroze the last four layers and trained the model with a 

learning rate of 0.01 for 2 epochs. Then, we unfroze all layers and trained the model with a 

learning rate of 5 x 10-6 for 6 epochs. We used an Adam optimizer, gradient clipping, and a 

minibatch size of 64 throughout training. The optimizer and learning rates were chosen after 

hyperparameter optimization. For both stages of training the model, we stopped training when 

validation loss did not improve in 3 consecutive epochs. A custom class-balanced loss function 

(weighted binary cross-entropy) based on the effective number of samples was used given that 

the case and control labels were not equally balanced.  

 

Evaluation of Hypertrophy in Patients without Confirmed HCM 

Type 1 error, or a high false positive rate, is a major concern for screening strategies for low-

prevalence conditions like HCM.  Furthermore, given that HCM is often underdiagnosed, it is 

important to evaluate the phenotypic characteristics of false positive cases. Therefore, among 

patients without CMR-confirmed HCM, we applied the model to 5,000 randomly selected ECGs 

recorded within 30 days of a TTE. These ECGs were taken from patients who had previously not 

been analyzed in development or evaluation sets. We extracted the end-diastolic interventricular 

septal wall thickness (IVSd), available as a continuous measure from TTEs. To evaluate the 

instances of model-positive screens in patients without CMR-confirmed HCM, we compared the 

IVSd measurements in false positive and true negative screens.  
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Localization of Model Predictive Cues 

To obtain a heatmap highlighting the portions of an ECG image that were important for predicting 

HCM, we used Gradient-weighted Class Activation Mapping (Grad-CAM).22 We calculated the 

gradients on the final stack of filters in our EfficientNet-B3 model for each prediction and 

performed a global average pooling of the gradients in each filter, emphasizing those that 

contributed to a prediction. We then multiplied these filters by their importance weights and 

combined them across filters to generate Grad-CAM heatmaps. Among the 25 positive cases with 

the most confident model predictions for HCM across ECG formats, we averaged class activation 

maps to determine the most important image areas for the prediction of HCM. We took an 

arithmetic mean across the heatmaps for a given image format and overlayed this average 

heatmap across a representative ECG before the conversion of the image to grayscale. The Grad-

CAM intensities were converted from their original scale (0 – 1) to a color range using the jet 

colormap array in the Python library matplotlib, which was then overlaid on the original ECG 

image with an alpha of 0.3. The activation map, a 10x10 array, was upsampled to the original 

image size using the bilinear interpolation built into TensorFlow v2.8.0. We also evaluated the 

Grad-CAM for individual ECGs in the UK Biobank to evaluate the consistency of the information 

on individual examples. 

 

External Validation 

We used data from the UK Biobank, under research application #71033, to pursue external 

validation of our model. UK Biobank represents the largest population-based cohort of 502,468 

people in the United Kingdom with protocolized imaging and laboratory testing, along with 

linked electronic health records. Given the mean age at diagnosis for HCM among adults is 51 ± 
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16 years,23 we evaluated our model among ECGs from participants where a majority were < 70 

years old, representing the population where an AI-ECG model may be used for identifying 

HCM. We used linked electronic health records for the participants to identify the presence of 

HCM diagnosis codes. In patients without HCM, we also used CMR-derived left-ventricular mass 

index (LVMI) to compare the characteristics of participants with a positive and negative AI-ECG 

screen for HCM. LVH was defined as LVMI > 70 in men and LVMI > 55 in women.24,25 

 

Statistical Analysis 

Categorical variables were reported as number (percentage, %), and continuous variables as 

mean (standard deviation [SD]) or median (interquartile range [IQR]), as appropriate. The 

model’s performance was presented as area under the receiver operating characteristic curve 

(AUROC) and area under the precision-recall curve (AUPRC). The 95% confidence intervals 

(CI) for AUROC and AUPRC were calculated using DeLong’s algorithm and bootstrapping with 

1000 iterations, respectively.26,27 Furthermore, we reported sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), and F1 score of the model at the model 

threshold for 90% sensitivity in the validation set. The statistical significance level was set at P < 

0.05. All statistical analyses were executed using Python 3.11.2 and R version 4.2.0. 

 

RESULTS 

Study Population 

We used data from 126,203 12-lead ECGs obtained from 68,109 patients at YNHH. The data 

from these patients were split into train, validation, and test sets at a patient level, as described in 

the methods. Individuals in the model development population (training and validation sets) had 
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a median age of 63.2 years (IQR 51.2-74.1) at the time of ECG recording, and 33257 (49.6%) 

were women. Overall, 48475 (72.4%) were non-Hispanic White, 7978 (11.9%) were non-

Hispanic Black, 6029 (9.0%) were Hispanic, 1300 (1.9%) were Asian, 376 (0.6%) were from 

other races, and information was missing for 2829 (4.2%). In the development population, there 

were 12,680 ECGs from 4745 patients with CMR-confirmation of HCM or echocardiographic 

parameters consistent with HCM (Table 1).  

 

Detection of HCM 

In the age- and sex-matched held-out test set comprising standard format images, the model for 

detecting HCM achieved an AUROC of 0.96 (Figure 2). A probability threshold for predicting 

HCM was chosen based on a sensitivity of 0.90 or higher in the validation subset. With this 

threshold, the model had sensitivity and specificity of 0.91 and 0.91 in the held-out test set and 

PPV and NPV of 0.51 and 0.99, respectively. Overall, an ECG suggestive of HCM portended 

over 100-fold higher odds (OR 102.4, 95% CI, 57.4 – 182.6) of HCM (Figure 2). The model’s 

performance was comparable across subgroups of age, sex, and race (Table 2 and Figure 2). The 

model performance was also comparable across the four original layouts of ECG images in the 

held-out set with an AUROC of 0.95 – 0.96 for detecting HCM. Sensitivity analyses 

demonstrated consistent model performance on ECGs without paced rhythms, atrial fibrillation 

and flutter, conduction disorders, and in the presence of LVH (Table 2).  

 

Evaluation of LVH Phenotype in Model-predicted False Positives 

We applied the model to 5,000 randomly selected ECGs recorded within 30 days of a TTE in 

patients outside our development and held-out test sets. Of these, 647 (12.9%) were classified as 
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false positives and 4,353 (87.1%) as true negatives. The median IVSd among the false-positive 

subset was 11mm (IQR 9.7 – 12.4), compared with 9.5mm (IQR 8.4 – 10.8) among false 

negatives (p < 0.001) (Figure 3A).  

 

Localization of Predictive Cues for HCM 

Class activation heatmaps of the 25 positive cases with the most confident model predictions for 

HCM prediction across four ECG layouts are presented in Figure 4. For all four formats of 

images, the region corresponding to leads V4 and V5 were the most important areas for 

prediction of HCM. Representative images of Grad-CAM analysis in sampled individuals with 

positive screens in UK Biobank, the external validation site, showed similar patterns (Figure 

5B).  

 

External Validation 

We applied the model to the UK Biobank validation set, consisting of 32,885 ECGs from 

prospectively enrolled individuals, including 18 (0.05%) with an ICD code for HCM. The model 

had an AUROC of 0.94 (0.89 – 0.99) on these images (Figure 5A), with a sensitivity of 0.61 and 

specificity of 0.96 at the threshold set in the development population. Of the 32,867 ECGs in this 

set without an HCM diagnosis, 32,859 were from individuals who had undergone cardiac MRIs. 

The model classified 1,322 (4.0%) as false positives and 31,537 (96.0%) as true negatives. Of the 

false positive screens, 153 (11.6%) had LVH, compared with 313 (1.0%) among true negative 

screens (Figure 3B). 

 

DISCUSSION 
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We developed and validated an automated deep learning model for identifying HCM solely from 

ECG images. The model is robust to variations in the layouts of ECG waveforms, making it 

suitable for implementation in various settings. Moreover, the model has excellent discrimination 

and sensitivity, representing characteristics ideal for screening. The model was developed and 

tested in a diverse population with high performance in subgroups of age, sex, and race. The 

model performance was consistent in the UK Biobank, a population-based cohort, despite a 

different, diagnosis code-based definition of HCM. An evaluation of the class-discriminating 

signals localized it to the anterior and lateral leads regardless of the ECG layout, topologically 

corresponding to the left ventricle. Therefore, an ECG image-based approach can represent a 

screening strategy for HCM, particularly in low-resource settings. 

ECG-image-based deep learning models represent a novel application of AI that has the 

potential to improve clinical care and public health by offering a feasible modality for the early 

detection of HCM. Previously, various criteria have been proposed for the identification of HCM 

based on clinical interpretation of visible ECG features, such as abnormal Q or T waves, 

repolarization changes, or high QRS complexes.10 However, the accuracy of these clinical ECG-

based criteria is limited, ranging from 55% to 80%.28,29 Moreover, the visible ECG abnormalities 

are not specific for HCM and are often present in various clinical conditions causing left 

ventricular hypertrophy, or rarely even as physiological variants.10,30 More recently, deep 

learning models utilizing raw ECG voltage signals have been proposed for the detection of 

HCM.8,9,12 While these models have excellent performance in internal validation, their 

development has often relied on diagnosis codes and visits to a specialty HCM clinic for the 

identification of HCM cases.9,12 These practices for recording diagnosis and administrative codes 

are often health-system-specific, and the use of diagnosis codes has been shown to misclassify 
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up to one-third of HCM cases.13,14 Thus, to ensure the generalizability of deep learning models in 

diverse settings, it is critical to incorporate objective imaging-based biologic features for the 

identification of disease.8,18 Our use of CMR for the identification of disease represents a robust 

definition for identifying HCM, and enables the model to differentiate HCM from LVH-causing 

HCM mimics such as severe AS or hypertension.8,10 This is also demonstrated by consistently 

high discrimination of the model for HCM in the patient subgroup with increased septal wall 

thickness. 

Using images to detect HCM signifies an advance over signal-based models, allowing for 

accessible implementation of a potential ECG-based screening approach. Digital or printed ECG 

images represent the most commonly available format, especially in low-resource settings. 

Moreover, ECG images are an interoperable data stream that is not tied to proprietary formats 

from specific ECG machine vendors, making them readily available to clinicians at the point-of-

care. Currently, the guidelines for universal screening for HCM are equivocal, given the limited 

affordability of advanced cardiac imaging and the high number of false-positive and negative 

screens on clinically apparent ECG anomalies.31–33 However, an accurate and accessible 

approach to HCM diagnosis using AI can potentially make HCM screening economically viable, 

especially for people at elevated risk of sudden cardiac death, such as young athletes.11,34,35 

Moreover, using ECG images in our model overcomes the implementation challenges of black 

box algorithms. The consistent localization of the risk-discriminative signals in anterior and 

lateral leads of ECG images, regardless of the lead location on printed images, indicates the left 

ventricular origin of the underlying pathology. Visual representations consistent with clinical 

knowledge could explain parts of the model prediction process and address the hesitancy in using 

these tools in clinical practice.36 
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Our study has several limitations. First, our model was developed using retrospective data 

from a single center, including ECGs from patients with clinical indication for both ECGs and 

advanced cardiac imaging such as CMR or echocardiography. While the Yale New Haven 

Health System serves a large and diverse population in Connecticut and Rhode Island, 

prospective validation of the models is necessary before widespread deployment in a screening 

setting. Second, despite the model’s high discrimination for HCM, its implementation for 

community-based screening can result in high false positive rates. Since screening for low 

prevalence conditions inherently limits the yield for diagnostic modalities, a role for universal 

HCM screening must be established before widespread deployment of the model.37,38 Third, 

despite localizing the class-discriminative signals in the ECG image to the left ventricular areas, 

heatmap analysis may not necessarily capture all the model predictive features, such as the 

duration of ECG segments, intervals, or ECG waveform morphologies that might have been used 

in model predictions. Fourth, the model demonstrated a lower sensitivity and higher specificity 

on the UK-Biobank cohort, which is composed of younger and generally healthier individuals. 

However, we relied on diagnosis codes to identify HCM cases during testing in the UK Biobank. 

Our analysis of participants screened as false positives screens showed significantly higher 

LVMI than true negatives, suggesting that the diagnosis-code-based classification could have 

missed some cases of HCM. Regardless, depending on the intended result of the screening 

approach and resource constraints with downstream testing, prediction thresholds for HCM may 

need to be recalibrated when deployed in such settings. 

 

CONCLUSIONS 
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We developed and validated a high-performing deep learning-based model that detects HCM 

from images of clinical 12-lead ECGs. This approach represents an accessible strategy for HCM 

screening, especially in low-resource settings. 
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FIGURES  

Figure 1. Model Development and Study Design Abbreviations: CMR, Cardiac Magnetic 

Resonance Imaging; HCM, Hypertrophic Cardiomyopathy; IVSd, End-diastolic Interventricular 

Septal Thickness 
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Figure 2. Model performance measures (A) Receiver operating characteristic curves across 
image formats in the held-out test set. B) Diagnostic odds ratios across age, gender, and 
race subgroups on standard format images in the held-out test set. Abbreviations: AUROC, 
area under receiver-operating characteristic curve* 
 
 

*Note: Diagnostic odds ratios were not available for Hispanic, Asian, or other Races because 
there were no FN screens in the held-out test set  

ss 
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Figure 3. (A) Distribution of interventricular septal thickness in Yale New Haven Hospital 
patients without hypertrophic cardiomyopathy. (B). Distribution of left ventricular mass 
index in UK Biobank without hypertrophic cardiomyopathy.  
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Figure 4. Gradient-weighted Class Activation Mapping (Grad-CAMs) across 
Electrocardiogram formats. A) Standard format B) Two rhythm leads C) Standard 
shuffled format D) Alternate format. The heatmaps represent averages of the 25 positive cases 
with the most confident model predictions for HCM. 
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Figure 5. Model Performance in the UK Biobank (A) Receiver Operating Characteristic 
Curves. B) Examples of Gradient-weighted Class Activation Mapping (Grad-CAM) 
analysis of electrocardiograms from two individuals with HCM in UK Biobank. 
Abbreviations: AUROC, area under receiver-operating characteristic curve 
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Table 1. Baseline characteristics of study population. Data presented as median [IQR] for age and number (percent) for other 
variables. Abbreviations: CMR, cardiac magnetic resonance imaging; ECGs, electrocardiograms; HCM, hypertrophic 
cardiomyopathy; IVSd, interventricular septal thickness in diastole. 
 

Characteristic 
Train Validation Test 

Patients ECGs Patients ECGs Patients ECGs 

Number 66339 123640 648 913 1122 1650 

Sex; N(%)       

Female 33044 (49.8) 58390 (47.2) 213 (32.9) 291 (31.9) 372 (33.2) 542 (32.8) 

Male 33013 (49.8) 64675 (52.3) 423 (65.3) 606 (66.4) 729 (65.0) 1076 (65.2) 

Missing 282 (0.4) 575 (0.5) 12 (1.9) 16 (1.8) 21 (1.9) 32 (1.9) 

Age (years); Median[IQR] 
63.3 

[51.2,74.2] 
64.1 

[52.5,75.0] 
58.7 

[52.8,67.4] 
60.5 

[53.2,67.6] 
56.9 

[44.8,67.2] 
58.4 

[45.6,68.4] 
Race; N(%)       

Asian 1289 (1.9) 2286 (1.8) 11 (1.7) 15 (1.6) 27 (2.4) 35 (2.1) 

Black 7892 (11.9) 15984 (12.9) 86 (13.3) 122 (13.4) 146 (13.0) 216 (13.1) 

Hispanic 5964 (9.0) 11297 (9.1) 65 (10.0) 84 (9.2) 121 (10.8) 170 (10.3) 

White 48038 (72.4) 88711 (71.7) 437 (67.4) 628 (68.8) 743 (66.2) 1107 (67.1) 

Other 371 (0.6) 702 (0.6) 5 (0.8) 7 (0.8) 9 (0.8) 14 (0.8) 

Unknown 2785 (4.2) 4660 (3.8) 44 (6.8) 57 (6.2) 76 (6.8) 108 (6.5) 

HCM; N(%) 4715 (7.1) 12597 (10.0) 30 (4.6) 83 (9.1) 59 (5.3) 150 (9.1) 

CMR-Confirmed HCM 505 (0.8) 1887 (1.5) 30 (4.6) 83 (9.1) 59 (5.3) 150 (9.1) 

CMR-Possible HCM 79 (0.1) 287 (0.2) - - - - 

IVSd > 15mm 4131 (6.2) 10190 (8.3) - - - - 
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Table 2. Performance of model on test images across demographic subgroups in the age sex matched held-out test set. 
Abbreviations: PPV, positive predictive value; NPV, negative predictive value; AUROC, area under receiver operating characteristic 
curve; AUPRC, area under precision recall curve; A-Fib, atrial fibrillation; ECG, electrocardiogram; LBBB, left bundle branch block; 
RBBB, right bundle branch block; LVH, left ventricular hypertrophy. 

 

Labels Number PPV NPV Specificity Sensitivity AUROC AUPRC F1 Score 
All 1650 0.511 0.99 0.913 0.907 0.959 (0.941-0.977) 0.754 (0.678-0.828) 0.654 
Male 1076 (65.2%) 0.482 0.992 0.900 0.93 0.958 (0.933-0.983) 0.743 (0.642-0.839) 0.635 
Female 542 (32.8%) 0.589 0.985 0.940 0.86 0.966 (0.947-0.986) 0.807 (0.691-0.901) 0.699 
>=65 506 (30.7%) 0.388 0.997 0.846 0.978 0.958 (0.938-0.978) 0.633 (0.506-0.793) 0.556 
<65 1144 (69.3%) 0.607 0.987 0.943 0.875 0.96 (0.937-0.983) 0.796 (0.705-0.87) 0.717 
Hispanic 170 (10.3%) 0.462 1 0.957 1 1 (1-1) 1 (1-1) 0.632 
White 1107 (67.1%) 0.48 0.986 0.909 0.867 0.943 (0.917-0.97) 0.673 (0.568-0.77) 0.618 
Black 216 (13.1%) 0.661 0.993 0.882 0.975 0.986 (0.974-0.999) 0.941 (0.871-0.986) 0.788 
Asian 35 (2.1%) 0.4 1 0.897 1 0.983 (0.935-1) 0.833 (0.333 - 1.0) 0.571 
Other 14 (0.8%) 0 1 0.946 - - - - 
Unknown 108 (6.5%) 0.444 1 0.928 1 0.971 (0.933-1) 0.560 (0.25-1.0) 0.615 
Paced ECGs 28 (1.7%) 0.409 1 0.316 1 0.655 (0.45-0.86) 0.406 (0.234-0.716) 0.581 
Not Paced ECGs 1622 (9.8%) 0.52 0.99 0.921 0.901 0.961 (0.943-0.98) 0.803 (0.74-0.863) 0.66 
A-Fib or Flutter 75 (4.5%) 0.324 1 0.641 1 0.886 (0.812-0.961) 0.424 (0.237-0.708) 0.489 
No A-Fib or 
Flutter 

1575 (95.5%) 0.539 0.99 0.925 0.899 0.962 (0.943-0.981) 0.795 (0.718-0.86) 0.674 

LBBB 19 (1.2%) 0.353 1 0.154 1 0.872 (0.706-1) 0.719 (0.365-1.0) 0.522 
No LBBB 1600 (97.0%) 0.523 0.992 0.921 0.920 0.963 (0.945-0.982) 0.772 (0.692-0.841) 0.667 
RBBB 71 (4.3%) 0.5 1 0.855 1 0.996 (0.988-1) 0.98 (0.904-1) 0.667 
No RBBB 1548 (93.8%) 0.512 0.992 0.916 0.919 0.961 (0.943-0.98) 0.758 (0.679-0.836) 0.658 
LVH 221 (13.4%) 0.649 0.982 0.735 0.973 0.959 (0.934-0.984) 0.916 (0.855-0.965) 0.778 
No LVH 1429 (86.6%) 0.413 0.991 0.933 0.842 0.942 (0.91-0.974) 0.543 (0.442-0.669) 0.554 
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