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Abstract 17 

The dynamics of pathogen genetic diversity, including the emergence of lineages with increased 18 

fitness, is a foundational concept of disease ecology with key public health implications. However, the 19 

identification of distinct lineages and estimation of associated fitness remain challenging, and are 20 

rarely done outside densely sampled systems. Here, we present a scalable framework that summarizes 21 

changes in population composition in phylogenies, allowing for the automatic detection of lineages 22 

based on shared fitness and evolutionary relationships. We apply our approach to a broad set of 23 

viruses and bacteria (SARS-CoV-2, H3N2 influenza, Bordetella pertussis and Mycobacterium 24 

tuberculosis) and identify previously undiscovered lineages, as well as specific amino acid changes 25 

linked to fitness changes, the findings of which are robust to uneven and limited observation. This 26 

widely-applicable framework provides an avenue to monitor evolution in real-time to support public 27 

health action and explore fundamental drivers of pathogen fitness.  28 

 29 

One sentence summary 30 

Using an agnostic framework we shed light on changes in population composition in phylogenetic 31 

trees, allowing for the automatic detection of circulating lineages and estimation of fitness dynamics.  32 
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Main text 33 

For most pathogens, there are constantly changing patterns of strain composition. Pressures to evade 34 

host immunity, environmental shifts or changing abilities to infect and disseminate in hosts result in 35 

the emergence of some lineages and the extinction of others. These dynamic patterns of genetic 36 

diversity are a fundamental aspect of disease ecology. They also have potentially critical public health 37 

implications, including signifying immune or vaccine escape or improved transmissibility. It has, 38 

however, been difficult to identify and quantify lineages with differential levels of fitness, especially 39 

outside highly genetically sampled pathogen systems such as SARS-CoV-2 or influenza(1–3). 40 

Identifying lineages with improved fitness would allow focused public health response, through e.g., 41 

targeted vaccination, as well as provide key insights into the underlying ecology of disease systems. 42 

Existing methods to monitor the fitness of strains at the population level mostly rely on a priori 43 

lineage definitions, for example, Pango lineages(4) or Nextstrain Clades(5), the global clades for 44 

influenza(6), or strains defined by pre-determined single mutations for Bordetella pertussis(7). Strain 45 

fitness can be estimated using models that capture the changing proportion of individual lineages 46 

through time, typically with multinomial logistic models. These models are computationally efficient 47 

and provide key insights, for example, to track the effect of amino-acid substitutions(8), or vaccine 48 

implementation(3, 9) on fitness. However, these approaches rely on an ability to group individual 49 

sequences into different lineages, which is usually based on consensus opinion, arbitrary thresholds 50 

in amino acid difference and importantly, unlinked to underlying differences in fitness. This is 51 

problematic as it means we are not reliably capturing emergent lineages with increased fitness. 52 

Phylogenetic tree-based methods provide an alternative strategy to uncover strain fitness. 53 

Strains with increased fitness will transmit more frequently, leading to a higher branching rate in the 54 

phylogeny and more sampled descendants. The fitness of lineages can therefore be inferred from their 55 

branching pattern in a phylogeny using phylodynamic approaches such as birth-death models(10). 56 

Multi-type birth-death models extend this idea by allowing the birth and death rate of lineages, and 57 

thereby fitness, to depend on a lineage’s state or type, which may be known (e.g. genotype, 58 

mutations(11, 12)) or inferred(13). However, these models are computationally challenging to run, 59 

especially given the large amount of data now being generated. They are also susceptible to sampling 60 

biases in both space and time, which are common in phylogenetic analyses. There are alternative 61 

approaches that focus on the broad population structure(14) or changes in effective population 62 

size(15) but are not able to capture lineage fitness. Other works(2, 10, 16) have been done at a more 63 

granular level, but do not allow for a broad understanding of fitness changes through time. 64 

Here we present a novel agnostic framework that summarizes the changes in population 65 

composition in phylogenetic trees through time, allowing for the automatic detection of circulating 66 

lineages based on differences in fitness, which we quantify and link back to specific amino acid 67 

changes. We apply this approach to SARS-CoV-2, influenza H3N2, Bordetella pertussis (B. pertussis) 68 

and Mycobacterium tuberculosis (M. tuberculosis). We selected these respiratory pathogens as they 69 

present a diverse set of viruses and bacteria at both local and global scales, and include both well-70 

studied and understudied threats to human health. Taking each pathogen in turn, we use our novel 71 

analytical framework to make critical insights into the set of discrete lineages circulating over time, 72 

their individual fitness, as well as the genomic changes linked to quantified shifts in fitness. 73 

 74 

Tracking population composition in timed phylogenetic trees. Our framework builds on a genetic 75 

distance-based index that measures the epidemic success of each node (internal or terminal) in a time-76 

resolved phylogeny (Figure 1A)(16). This measure is based on the expectation that nodes sampled 77 
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from an emerging fitter lineage will be phylogenetically closer than the rest of the population at that 78 

time. The index of each node is derived from the distance distribution from that node to all other 79 

nodes that circulate at that time, weighted by a kernel with a set timescale. This weight allows us to 80 

track lineage emergence dynamically, focusing on short distances between nodes (containing 81 

information about recent population dynamics) rather than long distances (containing information 82 

about past evolution). The timescale is tailored to the specific pathogen studied and its choice will 83 

depend on the molecular signal, as well as the transmission rate. Using the principles of coalescent 84 

theory in structured populations(17–19), we derive the expected index dynamics through time in the 85 

case of an emerging successful lineage (Figure 1A, derivation in Supplementary Material). The 86 

dynamics of this index summarize changes in the composition of populations over time, linked to 87 

fitness at the population level (Figure 1B-E and S1). 88 

 89 

Agnostic identification of pathogen lineages. We developed a tree partitioning algorithm using 90 

generalized additive models that finds the set of lineages that best explains the index dynamics (Figure 91 

1B-E and S2). We assessed the generality of our approach across viruses and bacteria by analyzing four 92 

pathogens: SARS-CoV-2 (N=3129 global whole genome sequences), influenza H3N2 (N=1476 global 93 

hemagglutinin [HA] sequences), B. pertussis (N=1248 whole genome sequences from France) and M. 94 

tuberculosis (N=998 whole genome sequences from Samara, Russia(20)). All four are respiratory 95 

pathogens whose spread and fitness have been previously studied using genomic data. We found that 96 

our framework was able to capture the lineage dynamics of each pathogen considered (Figure 1B-E). 97 

Using this framework on SARS-CoV-2 worldwide, we agnostically tracked the changes in population 98 

composition (Figure 1B), with each main variant of concern having a clear change in index dynamics. 99 

Further, we found that our framework was able to capture population changes for the variety of 100 

pathogens considered. Clade replacement was tracked in the influenza H3N2 time-resolved worldwide 101 

phylogeny (Figure 1C), despite the gene marker length being small (1698 bp). Going beyond RNA 102 

viruses, we tested our model on two bacteria, B. pertussis in France and M. tuberculosis in Samara, 103 

Russia, with largely different diversity and time scales (Figure 1D-E). In both cases, our framework was 104 

able to track changes in the population composition, allowing us to refine the a priori-defined lineages. 105 

Our framework provides an insightful summary of the changes in population structure, by only 106 

following the index dynamics. 107 

 108 

Pathogen lineages agnostically identified in the context of previous studies. For each pathogen, we 109 

explored how our automatic classification relates to previously identified lineages (Figure 2). We 110 

computed the Adjusted Rand-Index (ARI) to measure the agreement between classifications, 111 

accounting for random clustering(21). A value of 1 corresponds to perfect agreement with previously 112 

identified lineages, whereas a value of 0 would be expected if clusters were assigned at random. 113 

Overall, we found that our agnostic identification of lineages was in agreement with current 114 

classifications (mean ARI of 0.75 across pathogens, min 0.62, max 0.94). The five SARS-CoV-2 variants 115 

of concern that spread globally were perfectly delineated by our framework (Alpha [B.1.1.7; 20I], Beta 116 

[B.1.351; 20H], Gamma [P.1.*; 20J], Delta [B.1.617.2/AY.*; 21A/21J], and Omicron [BA.1.1.529/BA.*; 117 

21K])(22, 23), and the majority of sub-variants were correctly called as well (ARI = 0.80, Figure 2A). We 118 

noted that sub-variants that reached a maximum proportion of less than 5% in our global dataset were 119 

indistinguishable from others. This highlights the power of our framework in finding lineages that 120 

emerge at the geographical scale of the dataset, i.e. globally. Replicating the analysis to SARS-CoV-2 121 

datasets by continent, we re-identify the variants of interest that mainly spread within those 122 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.23.23300456doi: medRxiv preprint 

https://paperpile.com/c/k7dCuT/umiNX+z9H8+cOcu
https://paperpile.com/c/k7dCuT/umiNX+z9H8+cOcu
https://paperpile.com/c/k7dCuT/umiNX+z9H8+cOcu
https://paperpile.com/c/k7dCuT/umiNX+z9H8+cOcu
https://paperpile.com/c/k7dCuT/umiNX+z9H8+cOcu
https://paperpile.com/c/k7dCuT/hCM7
https://paperpile.com/c/k7dCuT/hCM7
https://paperpile.com/c/k7dCuT/hCM7
https://paperpile.com/c/k7dCuT/3Nca
https://paperpile.com/c/k7dCuT/3Nca
https://paperpile.com/c/k7dCuT/3Nca
https://paperpile.com/c/k7dCuT/chfE+Xjzk
https://paperpile.com/c/k7dCuT/chfE+Xjzk
https://paperpile.com/c/k7dCuT/chfE+Xjzk
https://paperpile.com/c/k7dCuT/chfE+Xjzk
https://paperpile.com/c/k7dCuT/chfE+Xjzk
https://doi.org/10.1101/2023.12.23.23300456
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

continents, e.g. Eta/B.1.525 in Africa, Mu/B.1.621 in the Americas and EU1 in Europe (Figure S3-4)(24–123 

26). We found similar results for H3N2, with the global subclades being well-matched (ARI of 0.62). 124 

Our agnostic framework mainly differed from the existing classification when considering global clades 125 

at a very low frequency in our dataset (for example clades 1*, only 2% of sequences). This further 126 

highlights that our framework is focusing on the broad population changes. B. pertussis's population 127 

composition is less well-studied. To date, only a few clades have been reported, defined by changes 128 

in alleles of the promoter of the pertussis toxin (ptxP) and fimbriae 3 gene (fim3)(7). Our framework 129 

was able to find these major clades (ARI = 0.63). We further found three new lineages that emerged. 130 

These three lineages have clear distinct index dynamics (Figure 1D, pink, red and purple lineages), but 131 

have not been previously identified. Further, we recovered most of the known M. tuberculosis lineages 132 

and sublineages (ARI = 0.92). Specifically, the main global lineages were found(20, 27, 28), with the 133 

exception of the distinction between the Central Asian Strain (CAS) and East African Indian (EAI) 134 

lineages, which are both present in very small numbers in the dataset and therefore indistinguishable. 135 

The SNP-defined sub-lineages were mostly recovered(29), with some discrepancy in lineages such as 136 

Harleem, Ural and Latin American-Mediterranean (LAM), which can be attributed to the index focusing 137 

on signal of lineage expansion rather than a SNP definition. Therefore, our analysis was able to track 138 

the expansion of those lineages specifically in Samara, Russia, rather than the global sub-lineages that 139 

might have first expanded elsewhere. This highlights the granularity of our framework, which is able 140 

to track lineage expansion at a local level. To investigate how our framework compares to existing 141 

ones, we compared the (sub-)lineages in SARS-CoV-2, the pathogen system with the most well-142 

characterized lineages, from our approach with that identified using fastbaps(14) and 143 

treestructure(15). We found that by specifically considering the fitness of the lineages, we could more 144 

consistently recover the known lineages (Figure S5). 145 

 146 

Quantifying the fitness of each detected lineage. We developed a multinomial logistic model that 147 

takes into account the birth of lineages to fit the proportion of each lineage through time and quantify 148 

their fitness. We assume each lineage has a constant fitness through time, defined as its relative 149 

growth rate in the population. By taking into account lineage emergence based on their Most Recent 150 

Common Ancestor (MRCA), our model does not estimate proportions for lineages that do not exist yet 151 

in the population, as opposed to implementations in other studies, e.g., (8). This simple model 152 

captured the lineage dynamics of each pathogen (Figure 3A-D and S6-9). We found that the underlying 153 

fitness of each emerging lineage was non-null, in line with the lineages called being indeed differently 154 

fit (Figure S10). We further computed the inferred real-time fitness of each lineage in the population. 155 

Indeed, while our model estimates a constant fitness parameter for each lineage, their actual fitness 156 

through time depends on what other lineages are circulating at that time. We found that the SARS-157 

CoV-2 lineage 1, corresponding to Omicron XBB1.5, had the best maximal real-time fitness, followed 158 

by lineages 5 and 7, corresponding to Omicron BA.5 and BA.1 (Figure 3E, S10). H3N2 lineages' fitness 159 

was more homogeneous across the population, with lineages persisting on average 3.9 years after 160 

their emergence (Figure 3F, S10)(30, 31). For B. pertussis, our results are consistent with those of 161 

previous studies(3). However, we note that three lineages (labeled 1, 2 and 3) emerged following the 162 

implementation of a new acellular vaccine in France in 1998(32) (Figure 3G, S10). We found that these 163 

three lineages have the highest fitness of all B. pertussis strains, pointing towards a potential immune 164 

pressure on lineage dynamics from the new vaccine. M. tuberculosis lineage fitness was the most 165 

stable of the four pathogens explored, reflecting its long-lasting diverse population. The only 166 

exception is the comparatively recent emergence of lineages 1 and 2(20) (Figure 3H, S10). These 167 
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lineages are rising sharply in the population, and have a relative fitness per year of 1.0057, 168 

95%CI:[1.0055, 1.0060] and 1.00087, 95%CI:[1.00077, 1.00098], respectively. 169 

 170 

Lineage-defining mutations. We explored whether specific changes in the genomes were linked to 171 

lineage fitness by identifying lineage-defining mutations (Figure 4). We defined such mutations as (i) 172 

present in at least 80% of the sequences in that lineage and (ii) not present in the ancestral lineage. 173 

While we focus on mutations, we note our framework is applicable to other covariates, both for the 174 

analysis of genotypes (e.g. indels, or gene gain/loss), or phenotype (e.g. resistance to antimicrobial 175 

drugs). For each pathogen, we looked at where those mutations are located in their genomes, and 176 

how functionally relevant each of them are. For SARS-CoV-2, we found that the highest density of 177 

lineage-defining amino-acid substitutions was located in the Receptor Binding Domain (RBD) of the 178 

spike protein, with low densities in ORF1a, ORF1b, and ORF10 (Figure 4A-E-I, S11, S12). Our lineage-179 

defining mutations were consistent with those described in a previous analysis that estimated 180 

nucleotide positions linked with shifts in fitness across 6 million SARS-CoV-2 genomes(8). We found 181 

that our screening recovered the fittest mutations (Figure 4I). We obtained similar results with H3N2, 182 

for which most of the lineage-defining amino-acid substitutions are located in the HA1 domain (Figure 183 

4B-F-J, S13). We then investigated specifically if the mutations that we found were located in 184 

previously described antigenic sites(33). We found that indeed, the antigenic sites had the highest 185 

proportion of amino acid substitutions compared to the rest of the gene, and that within those, the 186 

Koel sites had the highest proportions of substitutions(34) (Figure 4J). Our framework also gave 187 

interesting results in B. pertussis and M. tuberculosis. We recovered the main previously-described 188 

pertussis lineage-defining mutations, namely in ptxP and fim3 (Figure 4C-G-K). Further, we found a 189 

selection of other associated mutations that had not been previously described, with two distinct non-190 

synonymous mutations in sphB1 being of particular interest as they suggest parallel evolution (Figure 191 

S14). sphB1 encodes a protease which is involved in the extracellular release of the pertussis 192 

filamentous haemagglutinin, a B. pertussis acellular vaccine antigen and key host-interaction 193 

factor(35). Overall, we found that virulence-associated genes had the highest proportion of lineage-194 

defining mutations (Figure 4K). Lastly, we investigated the mutations associated with the most recent 195 

clades of M. tuberculosis (clades 1 and 2 from Figure 3H). As reported previously(20) we found that 196 

antimicrobial resistance-associated genes had the highest proportion of lineage-defining mutations 197 

(Figure 4D-H-L, S15). 198 

 199 

Tracking lineages in real-time. Our framework enables us to track population composition changes 200 

through time, with a direct link to fitness. As our method relies on the estimation of the pairwise 201 

distance distribution for each node in a tree, the number of sequences does not impact the index 202 

dynamics, as long as sequences are representative of the diversity (Figure 5A). To demonstrate this 203 

robustness to sampling biases in time, we conducted a sensitivity analysis using the SARS-CoV-2 204 

dataset by repeatedly removing a subset of genomes, including in a temporally uneven manner, and 205 

re-estimated the circulating lineages each time. We found that our framework was still able to detect 206 

virtually all the lineages, even when using heavily biased datasets (Figure 5B, mean ARI of 0.90). Finally, 207 

we explored how fast after emergence our framework was able to detect lineages. We truncated our 208 

full global SARS-CoV-2 dataset every two weeks and reran the detection algorithm. We found that our 209 

model was able to capture each lineage, with a median delay of 2.2 months after emergence, with 210 

only 10 sequences required (Figure 5C). Considering that the SARS-CoV-2 dataset used in this study 211 

comes from NextStrain and was composed of only 3129 sequences (approximately 0.02% of all 212 
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sequences available on GISAID at the time of the study), the time to lineage identification could be 213 

further shortened. 214 

 215 

Conclusion. In this study, we presented a novel framework that can agnostically track changes in 216 

population composition in phylogenetic trees, even in situations of heavily biased availability of 217 

sequences. Across a broad range of pathogens, we have shown we can recover the main known 218 

circulating lineages for each pathogen, as well as identify new, previously unknown lineages, with 219 

significant changes in fitness. We can quantify the relative fitness of each lineage and identify genetic 220 

changes linked to the emergence of new, fitter lineages. This framework can have important 221 

implications for public health surveillance. There is increased interest in the systematic sequencing of 222 

pathogens detected in healthcare settings. By integrating such sequencing efforts into our framework, 223 

public health agencies will be able to identify emergent strains in a timely manner, which can be used 224 

to promote targeted interventions. Our framework is also able to make fundamental insights into 225 

pathogen ecology. By quantifying the relative fitness advantage of new strains, our framework can 226 

help us identify potential drivers of emergence, including the role of population immunity from natural 227 

infection or vaccination. Finally, by identifying the specific genomic changes linked to fitness changes, 228 

this work provides testable biological hypotheses into genetic variants in each pathogen that are 229 

driving the changes in population fitness of that pathogen.  230 
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Figures  248 

 249 

 250 
Figure 1: Tracking changes in population composition by following index dynamics. 251 

(A) Schematics describing the principles of index computation. From left to right: example of a time-252 

resolved phylogenetic tree with a background population (gray) and an emerging lineage (green); 253 

pairwise distance distribution from terminal node A, or terminal node B, respectively, to the rest of 254 

the population, with the dashed blue line denoting the geometric weighting; and expected index 255 

dynamics over time. See methods for details. (B-D) For each pathogen, we present the index dynamics 256 

computed at each node (terminal or internal). Colors represent the different lineages identified by 257 

their different index dynamics (Figure S2). Dynamics colored by known lineages are presented in 258 

Figure S1. 259 
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 260 
Figure 2: Comparison of the identified lineages to the known population composition. 261 

For each pathogen, we present a heatmap comparing the known population structure (x-axis) to the 262 

automatic clades found by our framework (y-axis). Darker colors represent more agreement between 263 

both classifications. We also compare the timed-resolved phylogenetic trees colored by respective 264 

lineage classifications: automatic clades on the left, and previously identified lineages on the right. 265 

The colors of the automatic clades are the same as in Figure 1. For M. tuberculosis, LAM denotes the 266 

Latin American-Mediterranean lineage, EAI denotes the East African Indian lineage and CAS denotes 267 

the Central Asian Strain lineage. 268 
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 269 
Figure 3: Estimation of the fitness of each lineage. 270 

(A-D) Model fits per pathogen. For each pathogen, we present the fits for the five most prevalent 271 

groups. The fits for all groups are presented in Figure S6-9. Colored dots represent data, bars denote 272 

95% confidence intervals. Colored lines and shaded areas represent the median and 95% credible 273 

interval of the posterior. (E-H) Relative fitness of each group, over time. Estimates for all groups are 274 

presented in Figure S10. Crosses indicate the group's MRCA. Open circles indicate the last isolate from 275 

each group, in our datasets.  276 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.23.23300456doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.23.23300456
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 277 
Figure 4: Lineage-defining genetic mutations. 278 

For each pathogen, we present a summary of the genetic evolution of the lineages. (A-D) For each 279 

pathogen, we present the lineage trees representing the genealogical relationship between them. 280 

Colors indicate groups. (E-H) Lineage-defining mutations along the genome of each pathogen 281 

considered. For SARS-CoV-2 (E) and H3N2 (F) viruses we plot the density of lineage-defining mutations 282 

along the full genome (SARS-CoV-2) or HA polyprotein (H3N2). Colors indicate the main ORFs. For B. 283 

pertussis (G) and M. tuberculosis (H) we plot for each mutation the maximum proportion of that 284 

mutation that is present in any group (B. pertussis) or in groups 1 and 2 (M. tuberculosis). The dashed 285 

lines represent the 0.8 cutoff. The lists of mutations identified can be found in Data Files S5-8. (I-L) 286 

Functional relevance of the mutations identified. (I) For SARS-CoV-2, we compare the substitution 287 

analyzed by Obermeyer and colleagues(8) (black), and the mutations found to be lineage-defining in 288 

our study (red). (J) For H3N2, we plot the proportion of positions that are lineage-defining within each 289 

HA polyprotein subunit, and antigenic sites(33, 34)(insert). (K) For B. pertussis, we plot the proportion 290 

of mutations that are lineage-defining within each functional category(36) (L) Same as K, for M. 291 

tuberculosis(37). The lists of lineage-defining mutations for each pathogen can be found in DataFiles 292 

S5-8. 293 
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 294 
Figure 5: Robustness of the framework to sampling intensities and time to lineage detection. 295 

(A-B) Robustness to downsampling. We kept only 150 sequences from the global SARS-CoV-2 tree, 296 

either sampled uniformly through time (A) or in a temporally uneven manner (B). From left to right:  297 

Index dynamics computed on the subsampled trees, colored by detected lineages, with temporal 298 

distribution of sequences in inserts; pairwise comparison of the index computed at nodes (internal 299 

and terminal) in the trees from the full dataset (x-axis) and subsampled datasets (y-axis); heatmap 300 

comparing the automatic clades found by our framework on the full dataset (x-axis) to the automatic 301 

clades found on the subsampled datasets (y-axis). Darker colors on the heatmap denote more 302 

agreement between both classifications. (C) Time to lineage detection. The full global SARS-CoV-2 303 

dataset was censored every two weeks and reran the detection algorithm. From left to right: detection 304 

time of each group, with open circles denoting the group's MRCA in our tree, the green triangles 305 

denoting the first sequence of the group in our dataset, and the black dots denoting the first detection 306 

of the group by our framework; time from first sequence isolated in our dataset to group detection; 307 

number of sequences within each group at the time of detection. The dashed lines denote the median 308 

time to detection, or number of sequences at detection, respectively.   309 
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Materials and methods 1 

 2 

Sequence data  3 

For each pathogen, we compiled a dataset to investigate the changes in the population composition. 4 

For SARS-CoV-2 and Influenza H3N2, we extracted the datasets from the publicly available NextStrain 5 

timed-resolved phylogenies accessed on 14 April 2023(38). These datasets are sub-samples from all 6 

publicly available sequences in GISAID, to represent the diversity as much as possible (we used the 7 

'all-time' dataset for SARS-CoV-2 and the '12y' one for H3N2). In all, we have 3129 whole genome 8 

SARS-CoV-2 sequences sampled from 26 December 2019 to 3 April 2023, and 1476 Influenza 9 

Hemagglutinin (HA) sequences from 1 January 2005 to 3 April 2023 (Data File S1-2). For B. pertussis, 10 

we used 1248 sequences from 1953 to 2022, collected by the National Reference Center (NRC) for 11 

Whooping Cough and Other Bordetella Infections in France (Data File S3). This dataset is composed of 12 

1023 sequences previously published and 225 newly sequenced isolates. The new isolates have been 13 

sequenced with the same methods as previously described(3). This dataset is representative of the B. 14 

pertussis diversity in France as the NRC is receiving isolates from 42 sentinelle hospitals throughout 15 

France. For M. tuberculosis,  we used 997 previously published sequences, isolated in 2008-2010 in 16 

Samara, Russia(20). This dataset is also representative of M. tuberculosis sequence diversity at that 17 

location as isolates were prospectively collected from individual patients living in the region and 18 

representative of the entire population (Data File S4). 19 

 20 

 21 

Multi-sequence alignment for each pathogen 22 

We compiled alignments of all sequences being used. For SARS-CoV-2, we used the precomputed 23 

multi-sequence alignment provided by GISAID. For H3N2, we aligned all HA sequences using 24 

MAFFT(39), with default settings. The alignment was then manually checked. For B. pertussis and M. 25 

tuberculosis, we worked from raw reads. Briefly, adapters and barcodes were stripped from the fastq 26 

data and the reads were quality filtered and trimmed using a Phred quality threshold score of 30 using 27 

Cutadapt(40). We checked the quality of each fastq file using FastQC(41). Reads were mapped against 28 

the complete Tohama I reference genome (Accession number: NC_002929), or the complete H37Rv 29 

reference genome (Accession number: NC_000962.3), using BWA-MEM algorithm(42), for B. pertussis 30 

and M. tuberculosis, respectively. Extraction of Single Nucleotide Polymorphisms (SNP) was achieved 31 

with the GATK HaplotypeCaller, with ERC GVCF settings(43). We kept variants that were present in at 32 

least 75% of reads, with a Phred quality score higher than 30, a minimum read depth of 5, a minimum 33 

mapping quality of 20 and a String Odd Ratio (SOR) of less than 3. We masked all positions that were 34 

covered by less than 5 reads. Further, we filtered out regions which are notoriously difficult to map 35 

and/or sequence, similarly to previous studies(3, 44). Namely, for B. pertussis we filtered out repeated 36 

regions (IS481, IS1002 and IS1663)(36), and phage regions using Phaster(45); for M. tuberculosis, we 37 

filtered out the functional categories “PE/PPE” or “insertion sequences and phages''(44). For B. 38 

pertussis, we also checked for recombination in our alignment using Gubbins(46). As a result, we 39 

obtained an alignment of 4701 SNPs for B. pertussis and 30533 SNPs for M. tuberculosis. 40 

 41 

 42 

Reconstruction of timed resolved phylogenies 43 

For each pathogen, we obtained timed-resolved phylogenies. For SARS-CoV-2 and H3N2, we used the 44 

NextStrain trees, accessed on 14 April 2023(38). For B. pertussis and M. tuberculosis, we reconstructed 45 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.23.23300456doi: medRxiv preprint 

https://paperpile.com/c/k7dCuT/MbTv
https://paperpile.com/c/k7dCuT/MbTv
https://paperpile.com/c/k7dCuT/MbTv
https://paperpile.com/c/k7dCuT/fNOY
https://paperpile.com/c/k7dCuT/fNOY
https://paperpile.com/c/k7dCuT/fNOY
https://paperpile.com/c/k7dCuT/hCM7
https://paperpile.com/c/k7dCuT/hCM7
https://paperpile.com/c/k7dCuT/hCM7
https://paperpile.com/c/k7dCuT/Kdr5
https://paperpile.com/c/k7dCuT/Kdr5
https://paperpile.com/c/k7dCuT/Kdr5
https://paperpile.com/c/k7dCuT/IYEa
https://paperpile.com/c/k7dCuT/IYEa
https://paperpile.com/c/k7dCuT/IYEa
https://paperpile.com/c/k7dCuT/zYAn
https://paperpile.com/c/k7dCuT/zYAn
https://paperpile.com/c/k7dCuT/zYAn
https://paperpile.com/c/k7dCuT/oXGU
https://paperpile.com/c/k7dCuT/oXGU
https://paperpile.com/c/k7dCuT/oXGU
https://paperpile.com/c/k7dCuT/yZpn
https://paperpile.com/c/k7dCuT/yZpn
https://paperpile.com/c/k7dCuT/yZpn
https://paperpile.com/c/k7dCuT/sobU+fNOY
https://paperpile.com/c/k7dCuT/sobU+fNOY
https://paperpile.com/c/k7dCuT/sobU+fNOY
https://paperpile.com/c/k7dCuT/sobU+fNOY
https://paperpile.com/c/k7dCuT/sobU+fNOY
https://paperpile.com/c/k7dCuT/Dgex
https://paperpile.com/c/k7dCuT/Dgex
https://paperpile.com/c/k7dCuT/Dgex
https://paperpile.com/c/k7dCuT/v7GB
https://paperpile.com/c/k7dCuT/v7GB
https://paperpile.com/c/k7dCuT/v7GB
https://paperpile.com/c/k7dCuT/sobU
https://paperpile.com/c/k7dCuT/sobU
https://paperpile.com/c/k7dCuT/sobU
https://paperpile.com/c/k7dCuT/2eqO
https://paperpile.com/c/k7dCuT/2eqO
https://paperpile.com/c/k7dCuT/2eqO
https://paperpile.com/c/k7dCuT/MbTv
https://paperpile.com/c/k7dCuT/MbTv
https://paperpile.com/c/k7dCuT/MbTv
https://doi.org/10.1101/2023.12.23.23300456
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

the timed phylogenies specifically for this study, using the SNP-based alignments. We first built 46 

maximum-likelihood trees using IQ-tree(47), using a GTR+F+G substitution model. To assess the 47 

branch support, we used the ultrafast bootstrap approximation provided in IQ-tree, performing 1000 48 

replicates for each dataset with the bnni option to reduce the risk of overestimating the branch 49 

support(48). 50 

 51 

For B. pertussis, the time-tree was reconstructed using BEAST v1.10.4(49), under a GTR substitution 52 

model(18) accounting for the number of constant sites, a relaxed lognormal clock model(50) and a 53 

skygrid population size model(51). Three independent Markov chains were run for 150 000 000 54 

generations each, with parameter values sampled every 10,000 generations. Runs were optimized 55 

using the GPU BEAGLE library(52). Chains were manually checked for convergence (ESS values > 200) 56 

using the Tracer software(53). We manually removed a 10% burn-in. 57 

 58 

For M. tuberculosis, as all sequences were isolated in 2008-2010, we could not infer a clock rate, but 59 

instead, we used a previously estimated clock rate(54) of 4.6 x 10-8 mutations/site/year. We used the 60 

software Bactdating(55) to perform a bayesian reconstruction of the timed-tree. We used a fixed 61 

mean mutation rate, a relaxed clock rate and a constant effective population size. We ran the chain 62 

for 10,000,000 iterations and checked for convergence (ESS values > 200). 63 

 64 

 65 

Index definition 66 

We developed an analytical framework that summarizes the changes in population composition in 67 

phylogenetic trees at every time point. Our framework builds on a genetic distance-based index, the 68 

Timed Haplotype Density (THD)(16), that measures the epidemic success of individual sequences in a 69 

dataset. This measure is based on the expectation that sequences sampled from an emerging, fitter, 70 

lineage will be phylogenetically closer than the rest of the population at that time. We extend this 71 

method to track population changes in phylogenetic trees through time. 72 

 73 

We define the Index of each isolate 𝑖 in its population at time 𝑡 as: 74 

 𝐼𝑛𝑑𝑒𝑥(𝑖) =  ∑ 𝐷 𝑖(𝑑, 𝑡) ⋅ 𝑏𝑑

∞

𝑑 = 0

  75 

[Eq. 1] 76 

With 𝐷𝑖(𝑑, 𝑡) the distance distribution (in number of mutations or evolutionary time) from the isolate 77 

𝑖 to the rest of the population at that time 𝑡 (Figure 1) and 𝑏𝑑, the kernel setting the weight of each 78 

distance 𝑑. 𝑏 is the bandwidth, 𝑏 ∈ [0,1], which is a parameter to set, linked to the timescale. We 79 

compute this index on each node in a tree (internal and terminal). 80 

 81 

The weight allows us to track lineage emergence dynamically, focusing on short distances between 82 

nodes (containing information about recent population dynamics) rather than long distances 83 

(containing information about past evolution). The kernel is governed by the bandwidth 𝑏, which is a 84 

parameter to set. As 𝑏 is dimensionless, it is hard to set. Instead, we use the notion of timescale 50 to 85 

choose it: the TMRCA such that pairs of isolates with shorter TMRCAs account for 50% of the kernel 86 

density(16). This timescale is tailored to the specific pathogen studied and its choice will depend on 87 

the molecular signal, as well as the transmission rate.  88 
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 89 

Our definition is virtually the same as the one used by Wirth and colleagues(16), with two critical 90 

differences: instead of computing the index by summing on each isolate in the population we now 91 

sum over the pairwise distance distribution, and we consider the collection time of each sequence to 92 

only compute the distance from 𝑖 to the rest of the population that is circulating at that time. 93 

 94 

This index is similar to the Local Branching Index (LBI)(10), which is defined as total surrounding tree 95 

length exponentially discounted with increasing distance from the isolate 𝑖. In our case, rather than 96 

considering the tree length, we compute the distance between nodes.  97 

 98 

This index definition enables us to write an expectation of the index dynamics over time, as theoretical 99 

pairwise distance distributions can be approximated for different populations. 100 

 101 

 102 

Linking the Index dynamics to population history. 103 

The pairwise distance distribution 𝐷𝑖(𝑑, 𝑡), or more generally 𝐷(𝑑, 𝑡), can be seen as the probability, 104 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡), for any pair of sequences sampled at time 𝑡, to coalesce some time 𝑠 =

𝑑

𝜇𝑙
 in the past, 105 

with 𝜇 being the rate at which the pathogen accumulates mutations per site and per unit of time, and 106 

𝑙 the length of its genome.  107 

𝐷(𝑑, 𝑡)  =  𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡) 108 

Therefore, at any time point, writing the probability of coalescing in the past enables us to compute 109 

the index in the population. We can update equation 1:  110 

 𝐼𝑛𝑑𝑒𝑥(𝑡) = ∫ 𝑃𝑐(
𝑢

𝜇𝑙
, 𝑡) ⋅ 𝑏𝑢   𝑑𝑢 

𝜇𝑙𝑡

0

 111 

[Eq. 2] 112 

We note that at time 𝑡, the maximum number of mutations accumulated is equal to 𝜇𝑙𝑡. For simplicity, 113 

we assume a linear accumulation of mutations through time in all the analytical expressions, though 114 

one could consider that mutations accumulate randomly given a Poisson distribution with rate 115 

1/(𝜇𝑙𝑡). 116 

 117 

This probability 𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡) is closely linked to the effective population size. For example, in the 118 

simplest case of the structured coalescent process(17), if we consider two individuals from a constant 119 

population of size 𝑁𝑒 , we can write their probability of coalescing some time 𝑠 in the past as: 120 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =

1

𝐾
 

1

𝑁𝑒
𝑒𝑥𝑝(−

𝑠

𝑁𝑒
),                𝑖𝑓 𝑠   ≤    𝑡 ⇔  𝑑  ≤   𝜇𝑙𝑡  121 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =  0,                                               𝑖𝑓 𝑠 >  𝑡 ⇔  𝑑 > 𝜇𝑙𝑡 122 

[Eq. 3] 123 

With 𝐾 the normalization constant, so that  ∫ 𝑃𝑐(
𝑢

𝜇𝑙
, 𝑡) 𝑑𝑢 

∞

0
=  1. 124 

In Figure S16, we show conceptually how, for different effective population sizes, the probability of 125 

coalescing changes, and how it impacts the index dynamics. Formal derivations are presented below 126 

in the supplementary text. 127 

 128 
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 129 

Index computation on timed tree with sequences sampled through time 130 

We use equation 1 to compute the index of each node (internal or terminal) in a timed-phylogenetic 131 

tree. To do this, for each node 𝑖, we compute its distance to all the other nodes present in the tree at 132 

that time (red crossed on schematic below). All the nodes that fall within the interval of time [𝑡𝑖 −133 

𝑡 𝑤𝑖𝑛𝑑;  𝑡𝑖 + 𝑡 𝑤𝑖𝑛𝑑] are considered to be circulating at the same time as 𝑖; with 𝑡𝑖  being the collection 134 

time of the node 𝑖, and 𝑡𝑤𝑖𝑛𝑑  the predefined time window width that is tailored to each pathogen. We 135 

also consider extant branches in the computation, as they are evidence of past circulation. 136 

 137 
 138 

For computation efficiency, similarly to Wirth and colleagues(16), we then compute: 139 

  𝐼𝑛𝑑𝑒𝑥(𝑖) =  ∑ 𝐼(𝑡𝑗 >  𝑡𝑖 − 𝑡 𝑤𝑖𝑛𝑑  & 𝑡𝑗 <  𝑡𝑖 + 𝑡 𝑤𝑖𝑛𝑑) 𝑑(𝑖, 𝑗) 𝑏𝑑(𝑖,𝑗)
𝑗 ∈ 𝑛𝑜𝑑𝑒𝑠   140 

Where nodes is the set of all nodes in the tree, and 𝐼 is an indicator function. 141 

This computation is efficient as it only requires i) the precomputation of the indicator function, ii) the 142 

precomputation of the distance matrix and iii) a matrix multiplication. 143 

 144 

For the pathogens presented in our study we used: 145 

- SARS-CoV-2: a timescale of 0.15 𝑦𝑒𝑎𝑟𝑠, and a window of time 𝑡 𝑤𝑖𝑛𝑑 = 15 𝑑𝑎𝑦𝑠 146 

- H3N2: a timescale of 0.4 𝑦𝑒𝑎𝑟𝑠, and a window of time 𝑡 𝑤𝑖𝑛𝑑 = 0.25 𝑦𝑒𝑎𝑟s 147 

- B. pertussis: a timescale of 2 𝑦𝑒𝑎𝑟𝑠, and a window of time 𝑡 𝑤𝑖𝑛𝑑 = 1 𝑦𝑒𝑎𝑟s 148 

- M. tuberculosis: a timescale of 30 𝑦𝑒𝑎𝑟𝑠, and a window of time 𝑡 𝑤𝑖𝑛𝑑 = 15 𝑦𝑒𝑎𝑟𝑠 149 

 150 

We illustrate the impact of the timescale on the index dynamics in Figure S17 on the global SARS-CoV-151 

2 tree.  152 
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Agnostic detection of lineages 153 

We develop a framework that is able to find the set of lineages in the tree that best explains the 154 

index dynamics. To do this, we build an algorithm based on generalized additive models (gam) that 155 

jointly uses the phylogenetic relationships between nodes in the tree and their index. 156 

 157 

In this section, for modelling purposes, we define lineages as monophyletic clades formed by one 158 

internal node and all its descendants. Here, these lineages can overlap, meaning that some isolates 159 

can be included in multiple lineages. We assume the tree to be binary. For a rooted binary tree with 160 

𝒏 terminal nodes, there are 𝒏 − 𝟐 internal nodes that are not the root, and therefore 𝒏 − 𝟐 lineages 161 

possibilities, which is substantial. To keep the algorithm tractable, we limit the potential list of lineages 162 

to those starting with a internal node that has at least 𝑵𝒐𝒇𝒇  offspring, which is chosen. We note the 163 

set of internal nodes to test 𝜫. Further, to increase the accuracy of the detection, we only consider 164 

internal nodes that have predefined characteristics: 165 

- For B. pertussis and M. tuberculosis, as we constructed the bootstrap support of each node 166 

(see above), we only consider internal nodes that have a bootstrap support of at least 50% to 167 

be the potential start of lineages. This threshold is low, but effectively removes nodes that are 168 

not well supported. 169 

- For SARS-CoV-2 and H3N2, instead of bootstrap support, we consider a minimum number of 170 

mutations. We only consider internal nodes that have a least 1 mutation on their directly 171 

upstream branch. 172 

 173 

The log index of each lineage 𝒍 is modelled using a cubic spline 𝑺𝒍(𝒕, 𝒌) with a pre-defined number of 174 

knots 𝒌. This allows us to model the log index of each node 𝒊, sampled at time 𝒕𝒊,  given the lineage 175 

that it belongs to: 176 

𝒍𝒐𝒈(𝑰𝒏𝒅𝒆𝒙𝒊) ~ 𝜷𝟎 + 𝑺𝟎(𝒕𝒊  , 𝒌) + ∑ 𝑰(𝒊 ∈ 𝒍) 𝑺𝒍(𝒕𝒊 , 𝒌)

𝑳

𝒍=𝟏

 177 

Where 𝛽0 is the intercept, 𝑳 is the total number of lineages, 𝑆0(𝑡 , 𝑘) and 𝑆𝑙(𝑡 , 𝑘) are penalized cubic 178 

regression splines with 𝑘 knots(56). One 'null' spline 𝑆0(𝑡 , 𝑘) is estimated to model the initial 179 

population, together with one spline for each of the 𝑳 lineages. If 𝑳 = 0, then no 𝑆𝑙(𝑡 , 𝑘) is estimated. 180 

𝐼() is the identity function.  181 

 182 

Briefly, the algorithm runs as follows. We start by a null model 𝑀0 that fits the index dynamics with 183 

one spline 𝑆0(𝑡 , 𝑘) (i.e. unstructured population with one single index dynamic, 𝐿 = 0). We store the 184 

deviance explained 𝐷𝑒𝑣0 by the model 𝑀0. We then sequentially consider models with increasing 185 

complexity 𝑀𝐿: we start by first trying models with one lineage, 𝐿 =  1. We go through the list of 186 

internal nodes 𝛱 that could be the start of a new lineage. When the deviance explained 𝐷𝑒𝑣1 by the 187 

best model 𝑀1 is increased compared to the one of previous null model 𝐷𝑒𝑣0, we keep the lineage 188 

(effectively the node from 𝛱) that explains best the dynamics. We then continue this procedure for 189 

increasing 𝐿. For each number 𝐿, we go through the list of internal nodes 𝛱 that could be the start of 190 

a new lineage. When the deviance explained 𝐷𝑒𝑣𝐿 by the model 𝑀𝐿  is increased compared to the one 191 

of previous model 𝐷𝑒𝑣𝐿−1, we keep the lineage (effectively the node from 𝛱) that explains best the 192 

dynamics. 193 

 194 
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The algorithm is implemented in R v4.1.2, using the package mgcv v1.8(57) to implement the gam 195 

models.  196 

 197 

As for any clustering algorithm, choosing the best number of lineages that describe the index dynamics 198 

is a challenging question. We took the approach of the elbow plot. We plot the deviances 𝐷𝑒𝑣𝐿 199 

explained by each best model 𝑀𝐿 , as a function of the number of lineages 𝑳. This approach enables us 200 

to see how well all the models are performing, and to choose the number 𝑳 of lineages at which the 201 

deviance explained does not increase substantially anymore (Figure S18). From this selected best 202 

number of lineages 𝑳𝒃𝒆𝒔𝒕, we then compute the equivalent set of non-overlapping lineages presented 203 

in this paper (Figures 1-5 and S2). We make sure the minimum number of nodes per non-overlapping 204 

lineage is at least 𝑁𝑚𝑖𝑛  by merging the small lineages to its closest phylogenetically. 205 

 206 

For the pathogens presented in our study we found: 207 

- SARS-CoV-2: 14 lineages, average number of sequences per group of 447, with a set minimum 208 

number of 𝑁𝑚𝑖𝑛 =  10   209 

- H3N2: 20 lineages, average number of sequences per group of 147, with a set minimum 210 

number of 𝑁𝑚𝑖𝑛 = 5   211 

- B. pertussis: 8 lineages, average number of nodes per group of 311, with a set minimum 212 

number of 𝑁𝑚𝑖𝑛 = 30   213 

- M. tuberculosis: 12 lineages, average number of sequences per group of 181, with a set 214 

minimum number of 𝑁𝑚𝑖𝑛 = 30   215 

 216 

To compare the automatic lineages found by our framework to those previously identified, we 217 

compute a contingency matrix 𝐶. Let 𝑈 be the partition of the isolates by our framework, and 𝑉 the 218 

partition based on literature. Each element 𝐶𝑖,𝑗 is the number of isolates in both clusters 𝑢𝑖 and𝑣𝑗. In 219 

Figure 2 we plot this matrix as a heatmap, normalized by column 𝑗. We computed the Adjusted Rand-220 

Index (ARI) to measure the agreement between partitions, accounting for random clustering(21). A 221 

value of 1 corresponds to perfect agreement with previously identified lineages, whereas a value of 0 222 

would be expected if clusters were assigned at random. 223 

 224 

We illustrate the impact of the timescale on the lineage detection in Figure S16 on the global SARS-225 

CoV-2 tree. 226 

 227 

 228 

Quantifying the fitness of each lineage  229 

We developed a multinomial logistic model that takes into account the birth of lineages to fit the 230 

proportion of each lineage through time and quantify their fitness.  231 

 232 

The proportion 𝑝•,𝑡 of sequences at time 𝑡 from each lineage is computed as the number of nodes 233 

(internal and terminal) divided by the total number of nodes (internal and terminal) in the population 234 

at that time. This proportion 𝑝•,𝑡 is modelled by:  235 

𝑝•,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝑙𝑜𝑔(𝛼•) + 𝛽•𝑡) 236 

With 𝛼• being the vector of intercept, denoting the initial relative prevalence of each lineage in the 237 

population and 𝛽• the vector of relative growth rates of each lineage. We assume each lineage 𝑖 has a 238 
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constant relative growth rate 𝛽𝑖 in the population, i.e. each lineage has a constant relative fitness 239 

through time. We compute all the relative growth rates with reference to the oldest lineage. 240 

 241 

We use a Laplace prior for the growth rate coefficient(8): 242 

𝛽•  ∼  𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1) 243 

 244 

We take into account lineage birth by only allowing 𝑝𝑖,𝑡, the lineage 𝑖  proportion in the population at 245 

time 𝑡, to be non-negative after the lineage's Most Recent Common Ancestor (MRCA). Formally, this 246 

is done by parameterizing 𝛼• as follows. We divide the lineages into two types, either 'ancestral', or 247 

'non-ancestral': 248 

- An 'ancestral' lineage is a lineage that is present at the beginning of the time series considered. 249 

The total number of ancestral lineages in noted 𝐺. For those lineages, we sample directly their 250 

starting proportions with prior: 251 

𝛼𝑖  ∼  𝑠𝑖𝑚𝑝𝑙𝑒𝑥(𝐺) ;       𝑖𝑓 𝑖 ∈ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠  252 

- A 'non-ancestral' lineage is a lineage that appears after some time - for example the Omicron 253 

variant. For those lineages, we assume that their starting frequency, at the time of emergence, 254 

is a function of the proportion of their parents in the population at that time. Thus, we write:  255 

𝛼𝑖  =  𝛾𝑖 𝑝𝑗,𝑡𝑀𝑅𝐶𝐴 𝑖
 ;            𝑖𝑓 𝑖 ∉ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠  256 

Where 𝑗 is the parent lineage of lineage 𝑖, 𝑝𝑗,𝑡𝑀𝑅𝐶𝐴 𝑖
is the proportion of the parent lineage 𝑗 at 257 

the time emergence 𝑡𝑀𝑅𝐶𝐴 𝑖 of the offspring lineage 𝑖, and 𝛾𝑖  is the share of the parent lineage 258 

that is becoming the new lineage. We sample  𝛾𝑖  with a strong prior as we expect that the 259 

starting proportion of new lineages should be small: 260 

 𝛾𝑖  ~ 𝑏𝑒𝑡𝑎(1, 99);         𝑖𝑓 𝑖 ∉ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠  261 

Finally, we update the parent 𝑗 proportion as follows:  262 

𝑝𝑗,𝑡𝑀𝑅𝐶𝐴 𝑖+𝛿 =  (1 − 𝛾𝑖) 𝑝𝑗,𝑡𝑀𝑅𝐶𝐴 𝑖
 263 

While this parameterization is more complex than the previous efforts using a similar model(8), it 264 

enables us to take into account that lineages appear through time, which make the model more 265 

biologically relevant (e.g., by not estimating the proportion of Omicron in the population in 2020). We 266 

chose to parametrize the starting proportions of the new lineages as a function of their parent's 267 

proportions so that i) the model is biologically sound, i.e. the starting proportion of a new lineage 268 

cannot be greater than the one of its parent, and ii) the starting proportions are constrained by the 269 

proportion of their parents, which makes is statistically easier to fit. 270 

 271 

We use a multinomial likelihood to fit the count of sequences per lineage through time 𝑦•,𝑡 :  272 

𝑦•,𝑡 ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(∑ 𝑦𝑖,𝑡  , 𝑝•,𝑡

𝑖

 ) 273 

 274 

We further computed the inferred real-time growth rate (i.e. fitness) 𝑟𝑖 (𝑡) of each lineage 𝑖  in the 275 

population (Figure 3E-H), to control for the varying presence of all circulating lineages through time. 276 

Indeed, while our model estimates a constant fitness parameter for each lineage, their actual fitness 277 

through time depends on what other lineages are circulating at that time. 278 

𝑟𝑖 (𝑡) = 𝑝𝑖,𝑡 ∑ 𝑝𝑗,𝑡 (𝛽𝑖 − 𝛽𝑗)

𝑗 ≠ 𝑖

   279 

 280 
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These results are more useful compared to the usual presentation of the parameters, which by default 281 

display the relative fitness compared to the ancestral lineage, in this case 19A (the lineage that 282 

includes the first SARS-CoV-2 sequences isolated in Wuhan, China). 283 

 284 

The model was implemented in Stan, using the cmdstanr package(58). We ran this model on 3 285 

independent chains with 1,000 iterations and 50% burn-in for each pathogen. We used 2.5 and 97.5 286 

quantiles from the resulting posterior distributions for 95% credible intervals of the parameters. 287 

 288 

We fit the counts per lineage in windows of 1 month for SARS-CoV-2, 0.2 year for H3N2, 1 year for B. 289 

pertussis and 20 years for M. tuberculosis, with 𝑡 counted in years for all pathogens. 290 

 291 

 292 

Defining mutations of each lineage 293 

We explored whether specific changes in the genomes were linked to lineage fitness by identifying 294 

lineage-defining mutations. We defined such mutations as: 295 

- Mutations that are present in more than 80% of the nodes in that lineage  296 

- While those mutations are not present in the set of defining mutations of the ancestral 297 

lineage. 298 

For all pathogen, we reconstructed the mutations at each node in the trees using the ancestral state 299 

reconstruction implemented in the library ape. To maximize the correct assignment for nodes, we only 300 

consider nodes for which the state's probability was >0.9. Mutations were then classified as 301 

synonymous, non-synonymous, or extragenic. For M. tuberculosis and B. pertussis we also classified 302 

each mutation by functional category(36, 37). 303 

 304 

We computed the density of lineage-defining mutations along the SARS-CoV-2 full genome and H3N2 305 

HA polyprotein with a kernel density estimate (Figure 4E-F). We used a gaussian kernel with a 306 

bandwidth of 50 base pairs (bp) for SARS-CoV-2, and a bandwidth of 2.5 amino acid (AA) for H3N2. For 307 

B. pertussis and M. tuberculosis we plot for each mutation the maximum proportion of that mutation 308 

that is present in the set of groups considered. 309 

 310 

To assess the function relevance of the mutations identified for each pathogen (DataFiles S5-8), we 311 

compared them to the literature.  312 

For SARS-CoV-2, we matched the amino acid substitution we found to the ones that Obermeyer 313 

and colleagues analyzed(8). The authors analyzed 6.4 million genomes up to January 20, 2022 and 314 

estimated the fitness effect of 2904 substitutions. Although our global dataset is from an extended 315 

period of time (up to 3 April 2023), 84% (N=156) of the lineage-defining mutations were analyzed by 316 

Obermeyer and colleagues. 317 

For H3N2, we computed the proportion of positions that are lineage-defining within each HA 318 

polyprotein subunit, and antigenic sites(33, 34). A position is lineage-defining if it has at least one AA 319 

substitution that is lineage-defining. The proportion is computed as follows:  320 

𝜋𝐿  =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑔𝑒 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑤𝑖𝑡ℎ𝑖𝑛 𝐿

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝐿
 321 

Where L is the set of positions to be analyzed (subunits or antigenic sites). 322 

For the bacteria B. pertussis and M. tuberculosis we employ a similar metric, by grouping mutations 323 

by gene functional categories. We compute:   324 
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𝜋𝐹  =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐴 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑔𝑒 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑤𝑖𝑡ℎ𝑖𝑛 𝐹

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐴 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝐹
 325 

Where 𝐹 is the gene functional category considered(36, 37). As a sensitivity analysis, we also 326 

replicated this computation on synonymous nucleotide changes, as we expect these mutations to be 327 

neutral, and therefore not linked to any particular functional category (Figure S19). We found that, 328 

indeed, there was no particular functional category that had significantly more lineage-defining 329 

synonymous mutations than others, for both bacteria. 330 

 331 

To further check our findings visually, we plotted the lineage-defining mutations for each pathogen 332 

next to their phylogenetic trees (Figures S12-15). To make sure the figures were interpretable, we 333 

plotted only the mutations in the spike protein for SARS-CoV-2 (Figure S12), the HA1 subunit for H3N2 334 

(Figure S13), and the mutations defining lineages 1 and 2 for M. tuberculosis (Figure S14). For B. 335 

pertussis, we plotted all mutations (AA substitutions and promoter mutations) (Figure S15). 336 

 337 

 338 

Robustness to sampling strategies 339 

To demonstrate the robustness to sampling biases in time, we conducted a sensitivity analysis using 340 

the global SARS-CoV-2 dataset. We selected two random sets of 150 sequences from the 3129 341 

sequences in our full dataset. We selected them either uniformly through time, or in a temporally 342 

uneven manner. To do so, we divided the sequences in 15 time-windows of equal length (79 days). 343 

For the uniform sampling, we included 10 sequences per time bin, random selected. For the biased 344 

sampling, we included the following number of sequences per bin (see insert on Figure 5B):  345 

- windows 1 and 2: 1 sequence per bin; 346 

- windows 3 to 5: 2 sequences per bin;  347 

- windows 6 to 9: 25 sequence per bin; 348 

- windows 10 to 15: 7 sequences per bin.  349 

After selecting the sequences, we pruned from the tree the ones that were not selected. We then 350 

performed the same analysis as described above. We also compared the groups found. 351 

 352 

 353 

Analysis of time to detection  354 

We explored how fast after emergence our framework was able to detect lineages. To do this we 355 

truncated our full global SARS-CoV-2 dataset every two weeks. Overall, we obtained 81 datasets. Two 356 

examples of the index dynamics on censored data on 2021.26 and 2022.50 are presented in Figure 357 

S20. We then re-ran the detection algorithm on each dataset. To obtain the best set of lineages 358 

automatically for each dataset, we chose the set at which the log deviance explained did not increase 359 

by more than 0.01%. 360 

 361 

 362 

Simulation study to assess validity of our approach. 363 

To demonstrate the validity of our framework, we simulate trees for different population structures. 364 

We use the sim2.bd.origin function from the TreeSim package(59). It simulates trees based on a birth-365 

death model, with set rates of speciation (birth, 𝜆) and extinction (death, 𝜇). A constant effective 366 

population size can be simulated by 𝜆 = 𝜇. An exponentially growing effective population can be 367 

simulated by 𝜆 > 𝜇. To simulate a tree with an emerging lineage, we first simulate separately two 368 
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trees, one with constant effective population size, and one with an exponentially growing effective 369 

population size. Then, we randomly select one tip from the first tree and use this tip as the root of the 370 

second tree. 371 

In Figure S21, we present those simulations, for three types of effective population sizes: constant, 372 

growing, and structured with an emerging lineage. We compare the simulation obtained with the 373 

formal expected dynamics (see derivations below). Overall, the simulations verify the validity of our 374 

approach. Parameters used: time window: 2 years, timescale: 1 year, mutation rate: 4 mutations per 375 

year. 376 

 377 

We also reproduced sampling bias to check that our formal expected dynamics are correct even in 378 

that case. We sampled the sequences generated either taking 10% of the sequences from year 2-8 or 379 

only sequences from years 4-6 and 8-10 (and not years 1-3 or 6-8), mimicking common surveillance 380 

system biases. In Figure S22, we present those simulations, with 50 replicates each time. Overall, the 381 

simulations verify the validity of our approach. Parameters used: time window: 2 years, timescale: 1 382 

year, mutation rate: 4 mutations per year. 383 

 384 

 385 

Expected behavior of the index in a constant effective population size 386 

In the simplest case of the structured coalescent process(17), if we consider two individuals from a 387 

population of constant size 𝑁𝑒 , we can write their probability of coalescing some time 𝑠 in the past as 388 

(Figure S12C):  389 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =

1

𝐾
 

1

𝑁𝑒
𝑒𝑥𝑝(−

𝑠

𝑁𝑒
),                𝑖𝑓 𝑠   ≤    𝑡 ⇔  𝑑  ≤   𝜇𝑙𝑡  390 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =  0,                                               𝑖𝑓 𝑠 >  𝑡 ⇔  𝑑 > 𝜇𝑙𝑡 391 

[Eq. 3] 392 

With 𝐾 the normalization constant, so that  ∫ 𝑃𝑐(
𝑢

𝜇𝑙
, 𝑡) 𝑑𝑢 

∞

0
=  1. 393 

𝐾 = 𝜇𝑙 (1 − 𝑒𝑥𝑝(−
𝑡

𝜇𝑙 𝑁𝑒
))    394 

 395 

We can plug Equation 3 in the index definition from Equation 2, making sure we take𝑠 =
𝑑

𝜇𝑙
 ⇔  𝑑 =396 

𝑠𝜇𝑙  . After simplification it follows that:  397 

𝐼𝑛𝑑𝑒𝑥(𝑡) =
(𝑏⋅𝑒𝑥𝑝(−

1

𝜇𝑙 𝑁𝑒
)) 𝜇𝑙𝑡−1

(𝜇𝑙 𝑁𝑒𝑙𝑛(𝑏) −1) (1−𝑒𝑥𝑝(−
𝑡

𝑁𝑒
))

,    𝑡 > 0  398 

[Eq. 4] 399 

Which is the behavior of the index as a function of time, in a constant population size.  400 

 401 

 402 

Expected behavior of the index in a varying population size 403 

Following the work of Griffiths and Tavaré (18) on the coalescent process in varying population sizes, 404 

we can further derive the index in more complex population dynamics. We set the effective population 405 

size of our lineage to 𝑵𝒆(𝒕), which can vary through time. We can define the population-size intensity 406 

function 𝜦 by (18)(19):  407 

𝛬𝑡  (𝑠)  =  ∫
𝑑𝑠′

𝑁𝑒(𝑡 −  𝑠′)

𝑠

0

,      𝑡 ≥ 𝑠 > 0 408 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.23.23300456doi: medRxiv preprint 

https://paperpile.com/c/k7dCuT/umiNX
https://paperpile.com/c/k7dCuT/umiNX
https://paperpile.com/c/k7dCuT/umiNX
https://paperpile.com/c/k7dCuT/z9H8
https://paperpile.com/c/k7dCuT/z9H8
https://paperpile.com/c/k7dCuT/z9H8
https://paperpile.com/c/k7dCuT/z9H8
https://paperpile.com/c/k7dCuT/z9H8
https://paperpile.com/c/k7dCuT/z9H8
https://paperpile.com/c/k7dCuT/cOcu
https://paperpile.com/c/k7dCuT/cOcu
https://paperpile.com/c/k7dCuT/cOcu
https://doi.org/10.1101/2023.12.23.23300456
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

We assume that 𝛬(∞) = ∞, so that each pair of individuals may be traced back to a common ancestor 409 

with probability one (18). The density 𝜆 of 𝛬 is given by (18):  410 

𝜆𝑡(𝑠)  =
1

𝑁𝑒(𝑡 − 𝑠)
,      𝑡 ≥ 𝑠 > 0 411 

It follows that 𝑃𝑐(𝑠, 𝑡), i.e. the probability of waiting 𝑠 time to have the first coalescent event is: 412 

𝑃𝑐(𝑠, 𝑡)  =  𝜆𝑡(𝑠) 𝑒𝑥𝑝 (−𝛬𝑡(𝑠)),      𝑡 ≥ 𝑠 > 0 413 

We can find back Equation 3, by taking 𝑠 =
𝑑

𝜇
 and plugging in a constant population size 𝑁𝑒(𝑡)  =  𝑁𝑒:  414 

𝛬𝑡(𝑠 =
𝑑

𝜇𝑙
)  =   

𝑑

𝜇𝑙𝑁𝑒
  ;      𝜆𝑡(𝑠 =

𝑑

𝜇𝑙
)  =

1

𝑁𝑒
  415 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =

1

𝐾
 

1

𝑁𝑒
𝑒𝑥𝑝 (−

𝑑

𝜇𝑙𝑁𝑒
),   𝑡 ≥

𝑑

𝜇𝑙
> 0 416 

With K the normalization constant. Next, we consider the case of exponentially varying population 417 

size. 418 

 419 

 420 

Expected behavior of the index in an exponentially growing effective population size.  421 

We set: 𝑁𝑒(𝑡)  =  𝑁0 ⋅ 𝑒𝑟𝑡, with 𝑁0 the initial population size and 𝑟 the rate at which the population is 422 

growing (Figure S12F). We assume 𝑟 > 0. We can then define the new  𝜆𝑡(𝑠) and 𝛬𝑡(𝑠): 423 

𝛬𝑡(𝑠)  =   
1

𝑁0𝑟
𝑒−𝑟𝑡(𝑒𝑟𝑠 −  1) 424 

And:  425 

 𝜆𝑡(𝑠)  =
1

𝑁0
𝑒𝑟(𝑠−𝑡) 426 

So that: 427 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =  

1

𝐾

1

𝑁0
𝑒𝑟(𝑠−𝑡)𝑒𝑥𝑝 (

1

𝑁0𝑟
𝑒−𝑟𝑡(1 − 𝑒𝑟𝑠)),              𝑖𝑓  𝑡 ≥ 𝑠 > 0   428 

𝑃𝑐(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =  0,                                                                                          𝑖𝑓  𝑡 < 𝑠   429 

[Eq. 8] 430 

With 𝐾 the normalization constant so that  ∫
∞

0
𝑃𝑐(

𝑢

𝜇𝑙
, 𝑡) 𝑑𝑢 =  1. 431 

Therefore, we can plug Equation 8 in the index definition from Equation 2, which leads to:  432 

𝐼𝑛𝑑𝑒𝑥(𝑡) =
1

𝐾
 ∫

𝜇𝑙𝑡

0

1

𝑁0
𝑒

𝑟(
𝑢
𝜇𝑙

−𝑡)
𝑒𝑥𝑝 (

1

𝑁0𝑟
𝑒−𝑟𝑡(1 − 𝑒

𝑟
𝑢
𝜇𝑙)) ⋅ 𝑏𝑢    𝑑𝑢,      𝑡 ≥

𝑑

𝜇𝑙
> 0  433 

[Eq. 9] 434 

This sum does not have a closed-form expression. However, it can be numerically approximated 435 

(Figure S12H). 436 

 437 

 438 

Expected index behavior for newly emerging lineage 439 

We can note that in the case of a varying population size (e.g. exponentially varying), the index is 440 

dependent on 𝑟, the rate at which the population size is varying. 441 

 442 

We can derive the index in structured populations that are more complex. For example, we consider 443 

here the case of a new lineage expanding in a population (schematic below). Let 𝑃𝑜𝑝𝐴 be the ancestral 444 

population (schematic below, in gray), with constant effective population size 𝑁𝐴, and 𝑃𝑜𝑝𝐵, an 445 

offspring from 𝑃𝑜𝑝𝐴 (schematic below, in green), which appeared at time 𝑡𝐵. At time 𝑡𝐵 , the effective 446 
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population size 𝑁𝐵(𝑡) of 𝑃𝑜𝑝𝐵 is 𝑁𝐵0
. We assume that the 𝑃𝑜𝑝𝐵 is growing exponentially (𝑁𝐵(𝑡)  =447 

 𝑁𝐵0
𝑒𝑥𝑝(𝑟𝑡) ) through time with rate 𝑟 > 1. 448 

 449 
We now write the index of each population. We assume that the appearance of population B has a 450 

negligible impact on the index of the individuals sampled from population A. The effective size of 451 

population A is constant through time, therefore we can use Equation 4: 452 

𝐼𝑛𝑑𝑒𝑥 𝐼𝑛𝑑𝑖𝑣 𝑖𝑛 𝑃𝑜𝑝 𝐴(𝑡) =
(𝑏⋅𝑒𝑥𝑝(−

1

𝜇𝑙 𝑁𝐴
)) 𝜇𝑙𝑡−1

(𝜇𝑙 𝑁𝐴𝑙𝑛(𝑏) −1) (1−𝑒𝑥𝑝(−
𝑡

𝑁𝐴
))

,    𝑡 ≥ 0  453 

 454 

Population B is growing exponentially, within population A, therefore writing the index of individuals 455 

sampled from this population is more complex. Let's consider an individual sampled from population 456 

B. Its probability to coalesce with the rest of the population can be separated in two cases:  457 

- It coalesces with an individual from population B, with probability 𝑃𝑐,𝐵→𝐵(𝑠, 𝑡) 458 

- Or it coalesces with an individual from population A, with probability 𝑃𝑐,𝐵→𝐴(𝑠, 𝑡) 459 

The total population through time is: 𝑁𝑡𝑜𝑡(𝑡)  =  𝑁𝐴 +  𝑁𝐵(𝑡) . 460 

Therefore, the probability of an individual sampled from population B to coalesce with another 461 

individual in the population is:  462 

𝑃𝑐,𝐵→𝑝𝑜𝑝(𝑠, 𝑡)  =
 𝑁𝐵(𝑡)

𝑁𝑡𝑜𝑡(𝑡) 
 𝑃𝑐,𝐵→𝐵(𝑠, 𝑡)  +  

 𝑁𝐴

𝑁𝑡𝑜𝑡(𝑡) 
 𝑃𝑐,𝐵→𝐴(𝑠, 𝑡)  463 

[Eq. 10] 464 

We can note that 𝑃𝑐,𝐵𝐵(𝑠, 𝑡) exists only for 𝑡 >  𝑡𝐵  (otherwise population B does not exist yet) and 465 

𝑡 − 𝑡𝐵 ≥ 𝑠 ≥ 0, and 𝑃𝑐,𝐵𝐴(𝑠, 𝑡) exists only for 𝑠 ≥ 𝑡 − 𝑡𝐵. 466 

 467 

First, let's write 𝑃𝑐,𝐵→𝐵(𝑠, 𝑡). As population B is growing exponentially, we can re-use Equation 9:  468 

𝑃𝑐,𝐵→𝐵(𝑠 =
𝑑

𝜇𝑙
, 𝑡)  =  

1

𝑁𝐵0

𝑒𝑟(𝑠−𝑡)𝑒𝑥𝑝 (
1

𝑁𝐵0
𝑟

𝑒−𝑟𝑡(1 − 𝑒𝑟𝑠)),        𝑡 ≥   𝑡𝐵  𝑎𝑛𝑑 𝑡 − 𝑡𝐵 ≥ 𝑠 ≥ 0 469 

[Eq. 11] 470 

 471 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.23.23300456doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.23.23300456
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

Second, let's write 𝑃𝑐,𝐵→𝐴(𝑠, 𝑡). We note that this probability only exists for 𝑠 ≥ 𝑡 − 𝑡𝐵 , and the size 472 

of population A is constant. So we can rescale this probability:  473 

𝑃𝑐,𝐵→𝐴(𝑠, 𝑡)  = 𝑃𝑐,𝐴(𝑠 − 𝑡𝐵 , 𝑡)  474 

We can note that we already wrote this probability earlier in equation 3, so it follows that:  475 

𝑃𝑐,𝐵→𝐴(𝑠, 𝑡)  =  
1

𝑁𝐴
𝑒𝑥𝑝(−

𝑠

𝑁𝐴
),                𝑖𝑓  𝑠 − 𝑡𝐵 > 0 476 

[Eq. 12] 477 

We can now plug Equations 11 and 12 into Equation 10, to obtain the index of individuals sampled 478 

from population B: 479 

𝐼𝑛𝑑𝑒𝑥𝐼𝑛𝑑𝑖𝑣 𝑖𝑛 𝑃𝑜𝑝𝐵(𝑡) =
1

𝐾
(

 𝑁𝐵(𝑡)

𝑁𝑡𝑜𝑡(𝑡) 
∫

1

𝑁𝐵0

𝑒
𝑟(

𝑢
𝜇𝑙−𝑡)

𝑒𝑥𝑝 (
1

𝑁𝐵0
𝑟

𝑒−𝑟(𝑡−𝑡(1 − 𝑒
𝑟

𝑢
𝜇𝑙)) ⋅ 𝑏𝑢   𝑑𝑢

𝜇𝑙(𝑡−𝑡𝐵)

0

+  480 

 𝑁𝐴

𝑁𝑡𝑜𝑡(𝑡) 
∫

1

𝑁𝐴
𝑒𝑥𝑝(−

1

𝑁𝐴
⋅

𝑢

𝜇𝑙
) ⋅ 𝑏𝑢  𝑑𝑢  

𝜇𝑙𝑡

𝜇𝑙(𝑡−𝑡𝐵)

 ),   𝑡 ≥ 𝑡𝐵 > 0 481 

[Eq. 13] 482 

With 𝐾 the normalization constant so that  ∫ 𝑃𝑐,𝐵(
𝑢

𝜇𝑙
, 𝑡) 𝑑𝑢 

∞

0
=  1.  483 

Similarly to Equation 9, this Equation does not have a closed-form expression. However, it can be 484 

numerically approximated. Further, we can note that considering only two different populations 485 

already makes the index mathematically hard to track, at least without simplifying assumptions.486 
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Supplementary figures 

 

 
Figure S1: Index dynamics colored by known lineages 

Similarly Figure 1B-E, for each pathogen, we present the index dynamics computed at each node 

(terminal or internal). Here colors represent the different known clades, genotypes, or lineages (see 

legend on the side). For M. tuberculosis, LAM denotes the Latin American-Mediterranean lineage, EAI 

denotes the East African Indian lineage and CAS denotes the Central Asian Strain lineage. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.23.23300456doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.23.23300456
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 
Figure S2: Lineage detection based on index dynamics for each pathogen. 

(A-D) For each pathogen we present model fits of the index dynamics using the best set of lineages. 

Solid dots represent the model prediction. Shaded dots represent the data. (E-F) Predicted versus 

observed index. The dashed lines denote identity lines. For each pathogen, colors represent the 

different lineages identified by their different index dynamics (same colors as in Figures 1-4). 
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Figure S3: Index dynamics of SARS-CoV-2 across continents 

For each continent, we present the index dynamics computed at each node (terminal or internal). 

Colors represent the different lineages identified by their different index dynamics. Timed-resolved 

phylogenies for each continent were obtained from NextStrain, accessed on 14 April 2023(38). 
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Figure S4: SARS-CoV-2 lineages identified across continents 

For each continent, we present a heatmap comparing the known clades identified by NextStrain (x-

axis) to the automatic clades found by our framework (y-axis). Darker colors represent more 

agreement between both classifications. 
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Figure S5: SARS-CoV-2 lineages identified with treestructure and fastbaps 

(A-B) Global SARS-CoV-2 trees colored by the lineages identified with treestructure (A), or fastbaps 

(B). (C-D) We compare the lineages identified with either algorithm (y-axis) to the NextStrain clades 

(x-axis). Darker colors represent more agreement between both classifications.  
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Figure S6: Fitness model fits for all lineages of SARS-CoV-2 

(A) Fits of the proportion of all the SARS-CoV-2 lineages. Colored dots represent data, bars denote 

95% confidence intervals. Colored lines and shaded areas represent the median and 95% credible 

interval of the posterior. (B) Predicted versus observed proportions. 
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Figure S7: Fitness model fits for all lineages of H3N2 

(A) Fits of the proportion of all the H3N2 lineages. Colored dots represent data, bars denote 95% 

confidence intervals. Colored lines and shaded areas represent the median and 95% credible interval 

of the posterior. (B) Predicted versus observed proportions. 
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Figure S8: Fitness model fits for all lineages of B. pertussis 

(A) Fits of the proportion of all the B. pertussis lineages. Colored dots represent data, bars denote 95% 

confidence intervals. Colored lines and shaded areas represent the median and 95% credible interval 

of the posterior. (B) Predicted versus observed proportions. 
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Figure S9: Fitness model fits for all lineages of M. tuberculosis. 

(A) Fits of the proportion of all the M. tuberculosis lineages. Colored dots represent data, bars denote 

95% confidence intervals. Colored lines and shaded areas represent the median and 95% credible 

interval of the posterior. (B) Predicted versus observed proportions.
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Figure S10: Fitness estimates for all pathogen lineages 

For each pathogen we present the estimated fitness of each of their lineages. From left to right: Fitness 

parameter 𝛽 for each lineage; Relative fitness dynamics overtime 𝑟(𝑡); maximum relative fitness per 

lineage. Dots represent median estimates for each lineage, bars denote 95% credible interval of the 

posterior. Lines and shaded areas represent the median and 95% credible interval of the posterior. 

Colors represent the different lineages identified for each pathogen. 
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Figure S11: Proportion of mutations that are defining the lineages of SARS-CoV-2 worldwide, by 

ORFs 

Additionally,to Figure 4E, we plot the proportion of amino acid substitutions that are lineage-defining 

within SARS-CoV-2 ORFs, and the Receptor Binding Domain (RBD).
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Figure S12: Phylogenetic tree and mutations in the spike protein that are defining lineages in the global SARS-CoV-2 dataset  

We present the H3N2 time-resolved tree (left), together with the mutations that we found to be defining its lineages (right). Colors represent the different 

lineages. Each column on the right displays one mutation, with its name at the top. Colors denote isolates that are carrying the labeled mutation, white 

denotes the absence of that mutation (although isolates could have other mutations at this position). Some mutations (e.g., T478K or N501Y) are defining 

multiple lineages and are therefore plotted twice. The list of lineage-defining mutations can be found in Data File S5.   
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Figure S13: Phylogenetic tree and mutations in the HA1 subunit that are defining lineages in the global H3N2 dataset  

We present the H3N2 time-resolved tree (left), together with the mutations that we found to be defining its lineages (right). Colors represent the different 

lineages. Each column on the right displays one mutation, with its name at the top. Colors denote isolates that are carrying the labeled mutation, white 

denotes the absence of that mutation (although isolates could have other mutations at this position). Some mutations (e.g., N144K or F193S) are defining 

multiple lineages and are therefore plotted twice. The list of lineage-defining mutations can be found in Data File S6.   
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Figure S14: Phylogenetic tree and mutations defining lineages in the B. pertussis dataset from in France 

We present the B. pertussis time-resolved tree (left), together with the mutations that we found to be defining its lineages (right). Colors represent the 

different lineages. Each column on the right displays one mutation, with its name at the top. Colors denote isolates that are carrying the labeled mutation, 

white denotes the absence of that mutation (although isolates could have other mutations at this position). The list of lineage-defining mutations can be 

found in Data File S7.   
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Figure S15: Phylogenetic tree and mutations defining lineages 1 and 2 in the M. tuberculosis dataset from in Samara, Russia 

We present the M. tuberculosis time-resolved tree (left), together with the mutations that we found to be defining the lineages 1 and 2 (right). Colors 

represent the different lineages. Each column on the right displays one mutation, with its name at the top. Colors denote isolates that are carrying the labeled 

mutation, white denotes the absence of that mutation (although isolates could have other mutations at this position). Some mutations (e.g., rpoB:S450L or 

katG:S315T) are defining both lineages and are therefore plotted twice. The list of lineage-defining mutations can be found in Data File S8. 
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Figure S16: Population history, pairwise distance distribution and index dynamics.  

(A-D) Constant effective population size. (E-H) Exponential population size. (A and B are inspired by 

Volz and colleagues, 2013(60)) (I-L) Case of an emerging, exponentially growing, lineage in a 

population of constant effective size. 
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Figure S17: Robustness of the framework to the choice of timescale 

We show our framework is robust to the choice of the timescale (governing the weight distribution 

used in the index computation). (A-B) Index dynamics computed on the global SARS-CoV-2 tree, with 

either a timescale of 0.075 (A) or 0.3 (B). The timescale used in the main analysis is 0.15. A smaller 

timescale focused more on recent population dynamics; a larger timescale focused more on the past 

evolution. Colors represent the lineages identified with our algorithm on those dynamics. (C-D) We 

compare the lineages identified with those timescales (y-axis) to the lineages presented throughout 

this study, with a timescale of 0.15 (x-axis). Darker colors represent more agreement between both 

classifications. Overall, we find minimal differences in the lineages detected.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.23.23300456doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.23.23300456
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

 
Figure S18: Non-explained deviance as a function of the number of groups in the lineage detection 

algorithm. 

For each pathogen, we plot the proportion of non-explained deviance by the models with different 

numbers of groups. Dashed lines represent the number of groups chosen. We plot the proportion 

both on a linear scale (left) and log scale (right). The log scale enables a more precise appreciation of 

the number of groups at which the deviance explained does not increase substantially anymore.  
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Figure S19: Proportion of synonymous mutations that are lineage-defining, by gene functional 

categories, for B. pertussis and M. tuberculosis 

Similarly to Figure 4K-L, we plot the proportion of synonymous mutations that are lineage-defining 

within each functional category, for (A) B. pertussis and (B) M. tuberculosis (36, 37). For M. 

tuberculosis, we only considered the most recent lineages 1 and 2. As expected, we find no statistical 

differences, as opposed to Figure 4K-L. 
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Figure S20: Example of index dynamics on time censored global SARS-CoV-2 datasets 

(A) Global SARS-CoV-2 time-resolved phylogenetic tree, same as on Figures 1-2. Dots denote terminal 

nodes only. (B-C) Index computed on censored datasets, on either 2021.26 (B) or 2022.5 (C).                   

(D) Uncensored index dynamics. When censoring a dataset, we prune all isolates not selected, 

effectively removing internal nodes and well as terminal nodes. This explains the slightly different 

dynamics observed near the censoring date. Colors represent the lineages automatically found by our 

framework (same as Figures 1-2). 
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Figure S21: Illustration of the index behavior in different population histories. 

Similarly to Figure S12, we illustrate here the behavior of the index. In each case, we simulate trees 

and compute the index on them. (A-C) Constant population size. Simulated time-resolved tree, under 

a birth-death model with equal probability of birth and death, i.e., constant population size on 

average. (B) Effective population size used in the simulation. (C) Index for through time. (D-F) 

Exponential population size. (G-I) Case of an emerging, exponentially growing, lineage in a population 

of constant effective size. Colors denote each simulation. Dashed lines: expected dynamics given 

equations in the Methods. Solid lines: mean over the 50 simulations. 
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Figure S22: Robustness to sampling schemes, from simulation study. 

We assess the robustness of the index computation to sampling intensity. (A-C) Simulations with no 

sampling bias. 50 simulations were performed. The tree in A represents one simulation. B represents 

the effective population size trend: constant. (D-E) For each simulation, only 10% of the sequences 

from year 2-8 were used to compute the index. (F-G) No sequences from years 1-3 or 6-8 were used 

to compute the index. In C, E and G, colors denote each simulation. Dashed lines: expected dynamics 

given equations in the Methods. Solid lines: mean over the 50 simulations, for the different sampling 

biases. 
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