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ABSTRACT 

Genome-wide association studies (GWAS) yield large numbers of genetic loci associated with 

traits and diseases. Predicting the effector genes that mediate these locus associations 

remains challenging. Here we present the FLAMES framework, which predicts the most likely 

effector gene in a locus. FLAMES integrates machine learning predictions from biological data 

linking single nucleotide polymorphisms (SNPs) to genes with GWAS-wide convergence of 

gene interactions. We benchmark FLAMES on gene-locus pairs derived by expert curation, 

rare variant implication, and domain knowledge of molecular traits. We demonstrate that 

combining SNP-based and convergence-based modalities outperforms prioritization strategies 

using a single line of evidence. Applying FLAMES, we resolve the FSHB locus in the GWAS 

for dizygotic twinning and further leverage this framework to find novel schizophrenia risk 

genes that converge with rare coding evidence and are relevant in different stages of life. 

 

INTRODUCTION 

Genome-wide association studies (GWAS) have revolutionized modern genetics by providing 

a data-driven approach to discovering genetic factors involved in complex traits. Large sample 

sizes in GWAS have resulted in thousands of trait-associated single nucleotide polymorphisms 

(SNPs). These associations between SNPs and traits can provide valuable insight into the 

underlying biological mechanisms. However, in the case of polygenic phenotypes with which 

hundreds of SNPs with small effects are associated, the phenotypic impact of a single SNP 

may be difficult to interpret. As genes are the universal effectors of biological processes, it is 

assumed that the effects of most trait-associated SNPs arise from SNPs impacting gene 

regulation or gene products. Translating SNP-trait associations to gene-trait associations 

allows us to place GWAS findings in a broader biological context.  

Recently, integrative methods have been developed that aim to combine many different levels 

of functional data to predict the effector gene in a GWAS locus1–4. There are two main 

strategies to do so. The first strategy prioritizes genes using locus-based SNP-to-gene data. 

Examples of this are chromatin interaction mapping, QTL mapping, or selecting the closest 

gene to the lead variant. These annotations can then be combined by linear regression or 

machine learning to merge multiple types of SNP-to-gene data into a single prediction1,3. The 

second strategy assumes that all GWAS signal converges into biological pathways and 

networks. These methods prioritize genes in a locus based on gene features enriched across 

the entire GWAS4. However, no current method leverages these two strategies together to 

make well-calibrated predictions of the effector genes in a locus5. 

We designed a new framework, called Fine-mapped Locus Assessment Model of Effector 

geneS (FLAMES). This framework integrates SNP-to-gene evidence and convergence-based 

evidence into a single prediction for each fine-mapped GWAS signal. We benchmark the 

performance of our method against current state-of-the-art methods for three well-understood 

molecular traits6, an expert-curated gold standard set3, and ExWAS results of nine traits. We 

show that FLAMES outperforms approaches that leverage only a single strategy, and that our 

integrative method accurately predicts effector genes from GWAS data. We leverage this new 

method to establish a suspected link between FSHB and giving birth to dizygotic twins and find 

novel temporally relevant gene sets related to schizophrenia.  
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RESULTS 

A framework for combining evidence linking SNPs to genes and biological convergence from 

fine-mapped GWAS loci 

We created an integrative framework called Fine-mapped Locus Assessment Model of Effector 

geneS (FLAMES), which combines SNP-to-gene evidence and convergence-based evidence, 

outputting a single score per gene (Fig. 1). In summary, this framework annotates fine-mapped 

credible sets and uses a machine learning classifier to score each gene, where this score 

denotes the level of biological evidence for that gene being regulated by a set of credible causal 

SNPs in the locus. The exact annotations used to generate the biological evidence can be 

found in table 1. The XGBoost7 classifier used to create the SNP-to-gene scores is trained on 

a set of GWAS loci that contain a gene implicated by predicted loss of function (pLoF) variants 

or missense variants associated with the corresponding trait in an exome-wide association 

study (ExWAS). The scores are subsequently combined with convergence-based PoPS 

scores4. This results in a single FLAMES score per gene in the region for each fine-mapped 

GWAS signal. The assumption underlying the FLAMES framework is that for each true GWAS 

association between SNP and phenotype that is not due to population stratification or other 

form of confounding, there is a gene that most strongly mediates the effect of the SNP on the 

phenotype. We call the gene that mediates the SNP’s effect on the phenotype the effector 

gene of said SNP. Therefore, each credible set in a locus should have an effector gene. 

FLAMES aims to predict a single most likely effector gene for each credible set, and will output 

a gene scores for each separate credible set. The FLAMES score of a gene denotes the 

combined evidence of functional convergence with other GWAS implicated genes and the 

evidence from biological studies based on the GWAS SNPs in the locus of interest.  
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Figure 1 | FLAMES framework. Overview of the FLAMES framework. Functional annotations scores are 

calculated by integrating fine-mapped credible sets with SNP-to-gene evidence. Biological data used to create 

annotation scores can be found in Table 1. Gene Z-scores are derived using MAGMA8. Convergence based gene 

prioritization scores are calculated with PoPS4. The XGBoost classifier used to create gene scores is described in 

the methods. 

 

Predicting effector genes using annotations linking SNPs to genes via a data-driven approach 

When creating a model that prioritizes genes based on SNP-to-gene annotations, it is crucial 

that the ground truth on which the model is trained represents the general biology underlying 

GWAS variants as closely as possible in order to achieve optimal generalizability. We therefore 

hypothesized that a data-driven approach to train a model would result in the highest 

generalizability. To test this hypothesis, we created a data-driven training set on which we 

trained FLAMES, and benchmarked FLAMES on multiple distinct datasets against other gene 

prioritization methods. An overview of the design of this study is given in figure 2. This data-

driven training set was created by analyzing 376 heritable traits form the UK biobank 

(UKBB)9,10, and extracting each locus for which a single gene was also significantly associated 
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with the same trait by rare coding missense or predicted loss of function (pLoF) variants in an 

exome wide association study (ExWAS)11. If such an overlap between GWAS common 

variants and ExWAS rare deleterious variants associated with the same phenotype is found, 

then these two signals are very likely to be linked to the same gene, and this overlap does not 

hinge on prior knowledge that might introduce strong biases towards certain annotations. 

These loci with a rare coding ExWAS association were fine-mapped with FINEMAP12 and an 

in-sample LD reference panel and max one credible set per locus. To annotate these loci we 

developed FLAMES annotate (methods), a method for annotating credible sets with locus 

metadata and 22 different SNP-to-gene linking methods (Table 1). Each annotation is given a 

score that represents the combined probability of a SNP in a credible set being causal and the 

strength of the evidence linking that SNP to a gene. Since multiple SNPs in the credible set 

can map to a gene, a mean and maximum score are created for each annotation. A locus 

scaled annotation is created by linearly scaling the  scores so that the highest annotation score 

equals one and the lowest is equals zero. We subsequently retained loci with just a single 

ExWAS implicated gene in the locus that is within 750kb of the fine-mapped SNP with the 

highest posterior inclusion probability (PIP). This resulted in a data-driven set of 1181 fine-

mapped loci with an ExWAS implicated effector gene and extensive SNP-to-gene annotations 

for SNPs in the credible set. 

 

 
Figure 2 | Study design. Overview of study design. 1181 GWAS loci are used to train and optimize a prediction 

framework which aims to predict the causal gene at a GWAS locus. Benchmarking and calibration are performed 

on three datasets which the model has not seen before. The model was then applied to a GWAS of being the 

mother of dizygotic twins and a GWAS of schizophrenia. 
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To assess whether our data-driven approach captures the genes relevant to our GWAS signals 

we investigated enrichments of the annotations included in FLAMES annotate. For each 

annotation we calculated the mean ratio of the ExWAS implicated genes vs the non-ExWAS-

implicated genes in the loci, as well as the odds ratio for an ExWAS implicated gene having 

the highest annotation score in the locus. All annotations are significantly enriched in ExWAS-

implicated genes, with the exception for the mean annotation scores of FANTHOM5 enhancer-

promoter correlations (Fig 3.a,b, Supplementary Table 2-6). Given the observed positive odds 

ratios for all annotations, we trained an XGBoost gradient boosting classifier which aims to 

predict the ExWAS-implicated effector gene for each locus-gene pair from the annotations 

created with FLAMES annotate on 1181 loci-gene pairs. We assess the importance of the 

SNP-to-gene annotations using Shapley additive explanations (SHAP) values (Fig. 3.c)13. We 

observe that the overall magnitude of SHAP values resembles the magnitude of odds ratios of 

ExWAS vs non-ExWAS implicated genes. Generally, high annotation scores are positive 

predictors across the entire model, which is as expected. Locus meta-data annotations seem 

to positively impact predictions when the score is low (e.g. few genes in locus, or a small 

credible set). Overall, the model appears to have integrated the multiple weak predictors into 

a single model. Given that we observe minimal instances of unexpected negative prediction 

associated with high annotation scores it is likely that the model has not overfitted to the 

training data. We subsequently optimized prediction by the integration of PoPS scores using a 

50-fold cross-validation approach (see methods). This resulted in a final optimized FLAMES 

framework where the locus-scaled XGBoost prediction scores and locus-scaled PoPS scores 

are linearly combined, where XGBoost scores contribute 0.725% and PoPS scores contribute 

0.275% to the final FLAMES score per gene. Linear integration of the convergence and SNP-

to-gene based methods was chosen to maintain interpretability of the results of the combined 

methods. To summarize, we created a prediction model that combines SNP-to-gene 

annotations and convergence-based evidence in order to predict the effector gene of a fine-

mapped GWAS locus. 
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Figure 3 | Predictive value of SNP-to-gene annotations. Predictive power of SNP-to-gene annotations 

assessed in a data-driven ground truth set. a, Ratios of average annotation score per annotation in ExWAS 

implicated gene in GWAS locus vs. the rest of the genes in the locus. Confidence intervals calculated by 1000 times 

bootstrapping. b, Odds ratio of highest annotation score in the GWAS locus belonging to the ExWAS implicated 

gene in the locus. Confidence intervals calculated by 1000 times bootstrapping c, Feature impact on effector gene 

prediction in XGBoost model. Each feature created by FLAMES is more thoroughly described in Supplementary 

Table 1. 

 

We repeated the analysis of the predictive value of annotations with an expert curated locus-

gene dataset3 and compared this to our data-driven locus-gene dataset. We included only loci 

for which the full GWAS summary statistics were available. We observe that the mean ratios 

and odds ratios show a significantly stronger enrichment in the expert curated set 

(Supplementary Figs 1-2). This could be caused by a bias in the selection of locus-gene pairs, 

purity of fine-mapped credible sets or in the ratio of true to false positives in the locus-gene 

pairs. Notably, we observe that the odds ratio of PoPS predictions ranks significantly lower for 

the prediction in the expert curated set compared to the data-driven set. Given that the PoPS 
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predictions are independent of the SNP-to-gene evidence, this implies that there are strong 

biases in the expert-curated datasets towards certain SNP-to-gene annotations. This is likely 

due to a selection bias in the curation of these gene-locus-pairs. Overall, the enrichments in 

annotations implicate that our data-driven approach does indeed capture GWAS relevant 

locus-gene pairs but avoids biases that can be introduced through expert curation.  

 

Benchmark of FLAMES 

We previously established that our data-driven approach may reduce biases, but could also 

lead to an increase of mislabeled effector genes in the training dataset. We also hypothesized 

that our model should generalize well to the datasets outside of the training data if we indeed 

eliminated selection biases. In order to verify the generalizability of FLAMES we tested our 

method on 3 datasets that do not overlap with the training data. We benchmarked the 

performance of FLAMES and other state-of-the-art prediction methods an expert-curated gold 

standard set, a set of stringently filtered EXWAS predicted genes for nine different traits, and 

on fine-mapped loci from three interpretable biological traits; serum levels of IGF1, 

testosterone and urate6. Given that Ei2,  FLAMES and L2G3 have different ways of annotating 

genes to loci, we removed all genes that weren’t annotated by all three methods. cS2G scores 

were included if they mapped to any gene within the included list. To assess performance we 

calculated area under the Precision-Recall curve (AUPRC) scores for each method, given that 

this is the most informative metric in unbalanced dataset. Recall definitions are the same for 

all benchmarks except for the benchmark on three molecular traits (see methods and 

Supplementary Note). In this benchmark FLAMES outperforms all other methods, with the 

exception of L2G on the expert curated (Fig. 4a-c). Notably, L2G precision is likely 

overestimated as it is predicting on its own training data. To find a recommended threshold for 

high confidence FLAMES predictions, we combined the results from the dataset of nine traits 

with ExWAS implicated genes and the dataset of three molecular trait. We then stepwise 

increased the FLAMES threshold from 0 by 0.05 until we achieved a precision of at least 75%. 

This resulted in a recommended threshold of keeping FLAMES scores of at least 0.05, the 

performance at this threshold is visualized in Fig. 4d,e.  When using FLAMES at the 

recommended threshold we see that it outperforms methods that only use SNP-to-gene based 

evidence or convergence based evidence. 
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Figure 4 | Benchmarking of FLAMES versus state-of-the-art tools in different datasets. Precision-

recall curves of different benchmarking sets. Definition of recall may change dependent on the benchmarking set 

(supplementary notes). Closest gene is reported as the precision and recall of taking the closest gene to the fine-

mapped credible sets. In case of ties, all genes are prioritized. Highest PoPS is calculated as the precision and 

recall of taking the FLAMES annotated gene with the highest PoPS score in the locus. FLAMES threshold of 0.05 

is depicted by the blue vertical line. a, Precision-recall curve for the performance of FLAMES and L2G on fine-

mapped L2G training loci. b, Benchmarking of interpretable loci for GWAS of urate, IGF-1 levels and testosterone 

levels in blood6. c, Benchmarking of cS2G, Ei, FLAMES and L2G for nine traits2. d, Calibration of FLAMES threshold 

in 12 traits combined datases (plot b and c data). The 75% precision threshold corresponds with a FLAMES 

threshold of 0.05. e, Receiver operator curve of FLAMES predictions on plotted in 12 traits combined datasets (plot 

b and c data) 
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Loci for dizygotic twinning GWAS elucidated by FLAMES 

We applied FLAMES to a recently completed GWAS of being the mother of DZ twins 

(MoDZT)14. We used FUMA to define loci, which resulted in five distinct loci. We fine-mapped 

the loci using FINEMAP and a reference panel made up of 100,000 unrelated UKBB 

individuals, restricting to 1 causal SNP per locus in order to reduce false positives by the out-

of-sample reference panel. Given that the original study15 reports a merged version of two of 

our FUMA defined loci we excluded one locus from analysis for consistency with the original 

GWAS. We retained the locus with the credible set that has the highest Bayes factor, which is 

the locus that harbors the most likely actual causal variant of the combined locus. In the four 

different loci, FLAMES prioritizes GNRH1, FSHB, SMAD3 and ZFPM1 for the loci respectively 

(Supplementary Table 7a,b). GNRH1 is predicted to be the effector gene of its locus, even 

though there is a large amount of SNP-to-gene data pointing to DOCK5 as the causal gene in 

the locus. GNRH1 is also the most likely causal gene given its roles in the regulation of follicle-

stimulating hormone, luteinizing hormone, and fertility 16. The SMAD3 gene has previously 

been implicated in MoDZT, although evidence in cattle suggests that SMAD6 might be the 

responsible gene17. FLAMES suggest both strong functional evidence and convergence-based 

evidence for SMAD3. For SMAD6 there is very little convergence-based evidence for SMAD6, 

and the distance between the fine-mapped SNPs and SMAD6 is too large for it to be annotated 

with any SNP-to-gene data. The prediction of FSHB in locus 2 is in line with the expected 

underlying biology of the trait, but is remarkable given the amount of SNP-to-gene evidence 

linking the fine-mapped SNPs to ARL14EP (Supplementary Table 7c). Nevertheless, the 

proximity of the fine-mapped SNPs to FSHB and its transcription start site, and a chromatin 

interaction between FSHB and the fine-mapped credible set (figure 5) resulted in slightly lower 

scaled XGBoost scores for FSHB (0.865) than for ARL14EP (1.0). However, the significantly 

higher convergence score for FSHB results in a final FLAMES score of 0.075, making it the 

most likely effector gene of the locus. These results highlight how the FLAMES framework can 

correctly weigh SNP-to-gene-based and convergence-based evidence to resolve complex loci. 

 

 
Figure 5 | FLAMES mapped genes of the twinning FSHB locus. Locus plot showing only genes mapped 

by FLAMES to the credible set. The two SNPs with a PIP > 0.1 are indicated by rsID and are not clearly separated 

by genomic distance on this scale. Lead SNP and fine-mapping centroid are closest to FSHB although most 

significant variants within a gene body map to ARL14EP. 
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FLAMES implicates novel temporally different gene-sets in schizophrenia and converges 

GWAS with ultra-rare variant analysis 

Next we used FLAMES to predict the effector genes from the fine-mapping results of the most 

recent meta-analysis of schizophrenia18. We made 186 effector gene predictions, prioritizing 

183 unique genes, using FLAMES after considering genes within 750kb window of the credible 

set centroid and using a FLAMES score cutoff threshold of 0.05 (Supplementary Table 8). Of 

these 183 genes, 45 were mapped to synaptic processes by SYNGO19 (Supplementary Table 

9). The original PGC publication prioritized a list of 106 genes based on the same fine-mapping 

data, utilizing a custom made prioritization strategy that is tailored to prediction of risk genes 

for disorders affecting the central nervous system (CNS) (Supplementary Table 10). Of these 

106 genes only 21 were mapped to synaptic processes by SYNGO (Supplementary Table 11). 

FLAMES allows for a significant increase in risk gene yield from the 255 fine-mapped 

schizophrenia-associated loci (p = 0.0011, one-sided Fisher exact test), whilst prioritizing a 

similar to larger proportion (OR = 1.32, CI95%[0.74, 2.37]) of synaptic genes with the 

phenotype. Given that we expect that a substantial part of disease risk and protective effects 

will be mediated by synaptic biology and the PGC prioritization strategy was tailored to 

disorders of the CNS, it appears that FLAMES predictions are accurately calibrated to take the 

biological context of genes into account just as well as expert-guided custom methods would. 

These findings suggest that FLAMES predictions recover more of the disease-relevant biology 

than custom prioritization methods and provide an easier and quicker path to high-confidence 

risk genes. 

In order to perform gene ontology (GO) enrichment analysis we reran FLAMES with an 

adjusted version of PoPS, where the input features exclude pathway information. Running 

pathway analysis on the FLAMES prioritized genes using the full PoPS set might results in an 

increase in false positives. This pathway-naïve FLAMES analysis yields 182 predicted 

schizophrenia risk genes on which we performed SYNGO gene ontology enrichment analysis 

(Supplementary Table 12-13). Enrichment analysis was performed in a logistic regression 

framework, where we tested gene set enrichment conditioned on genes with high brain 

expression. This resulted in novel significant GO terms (Supplementary Tables 14-15). We 

found associations of both pre- and post-synaptic locations with the FLAMES prioritized genes 

(fig 6a). Notably, we found strong enrichments in modulation of post-membrane potential, 

postsynaptic modulation of chemical synaptic transmission and synaptic adhesion (Figure 6b). 

Synaptic adhesion was not observed to be associated with schizophrenia using MAGMA 

analysis on the SYNGO gene sets after correction for multiple testing nor was it significant 

when performing SYNGO analysis on the PGC defined set of risk genes (Sup. Table 14), 

highlighting the benefit of high quality causal gene predictions for gene set enrichment 

analysis. 
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Figure 6 | Functionality and temporal expression patterns of schizophrenia risk genes. a,b SYNGO 

sunburst plot of synaptic cellular location and biological process GO terms respectively. Reported terms are 

Bonferroni-adjusted p-values of GO enrichment analysis conditioned on brain-expressed genes (methods). All 

significant go-terms are color coded based on their significance bin. c, Expression of mean-scaled schizophrenia 

risk gene co-expression clusters throughout the lifespan. Clusters were formed using k-means clustering on gene 

expression levels of schizophrenia risk genes in cortical tissue of 31 donors throughout the lifespan20. Gene 

expression per timepoint is visualized for each cluster in the brain-heatmap, grey areas represent brain regions 

without expression data available. 

 

To gain further insight into the function of the FLAMES predicted schizophrenia risk genes, we 

extracted cortical expression of our FLAMES prioritized schizophrenia risk genes across 

cortical brain regions for 31 different developmental time points, similar to van der Meer et al. 

(2023). K-means clustering was performed to find gene co-expression clusters that behave 

similarly throughout the lifespan. Silhouette score analysis revealed that two clusters were the 

optimal number of clusters in the data21,22 (Supplementary Table 16-17). We extrapolated the 

expression profile across the lifespan by general additive modeling and observed that the two 

clusters have a distinct temporal expression profile, intersecting around birth, confirming 

previous findings23 (Fig. 6c). This suggests that these two clusters of schizophrenia risk genes 

play distinct roles pre- and postnatally. We found that repeated clustering of all brain expressed 

genes also yields two clusters as the optimal separation of expression data, with the two 
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clusters having a similar expression pattern to the schizophrenia clusters (Supplementary Fig. 

3). This indicates that these expression patterns are not unique to schizophrenia, but rather 

the expression patterns of schizophrenia genes can be subdivided into two major brain 

expression programs. To identify the biological function of each separate cluster, we performed 

SYNGO and MSigDB GO analysis on the genes within each cluster in a regression framework, 

conditioning on brain-expressed-genes (Supplementary Table 18-21). The cluster with high 

prenatal expression is notably enriched in synaptic adhesion and multiple neurodevelopmental 

gene sets, such as generation of neurons, neurogenesis, development of the striatum and 

development of the subpallium. The cluster with high postnatal expression is notably enriched 

in synaptic signaling and ion channel-related pathways. We visualized gene expression of 

each cluster at the earliest and latest measured time points by projecting the mean-normalized 

gene expression values of each cortical area onto the 3D MRI Brodmann atlas24. Mean cortical 

expression between the two clusters is significantly different (p<0.001, Mann-Whitney U test) 

at both 8 weeks post conception and 40 years of age. The observed increases in expression 

are generally cortex-wide, rather than strongly region-specific (Fig. 3c). Overall, we found that 

a large part of schizophrenia risk genes is active prenatally throughout the cortex, with mostly 

neurodevelopmental functions, and that the rest of the schizophrenia risk genes is active 

throughout the cortex mostly after birth and strongly enriched in functions related to synaptic 

signaling. 

Lastly, we find that FLAMES prioritizes GRIN2A, SP4, STAG1 and FAM120A, which were 

found to be associated with schizophrenia in rare variant analysis25. The PGC prioritized genes 

contain GRIN2A and SP4, GRIN2A and SP4, but FAM120A and STAG1 did not meet the 

threshold for prioritization (Supplementary Table 22). This suggests that FLAMES performed 

better at finding convergence of rare and common signal for schizophrenia risk genes. 

Specifically, FLAMES implicated synaptic adhesion as a key mechanism in genetic risk burden 

of schizophrenia, a finding not previously reported from GWAS results. Combined, these 

results suggest that FLAMES can prioritize disease relevant genes, even for complex 

psychiatric traits.  

 

DISCUSSION 

As recent GWAS of polygenic traits have identified hundreds of associated loci, individual 

investigation of each trait-associated locus to prioritize genes for follow-up study becomes 

infeasible. Moreover, with the increasing availability of relevant SNP-to-gene evidence, it is 

becoming more complex to correctly assess the relative importance of each annotation. We 

find that data-driven approaches for the evaluation of the relevance of SNP-to-gene 

annotations eliminates biases that are present in expert curated set. We show that combining 

SNP-to-gene-based and convergence-based methods improves prediction. We also showed 

that FLAMES can accurately predict the effector gene of GWAS loci. 

The recent GWAS of being the mother of dizygotic twins (MoDZT) resulted in four reproducible 

loci which reach SNP-level genome-wide significance, with some obvious candidate genes 

within that locus. However, a clear link between the associated SNPs and some of these genes 

had so far been missing. This has been especially striking for the locus harboring the FSHB 

gene, a subunit for follicle stimulating hormone, where the most functional data prioritizes 

ARL14EP, which has no obvious biological relation to MoDZT. Here we find that FLAMES does 

prioritize FSHB when SNP-to-gene evidence is combined with convergence based evidence, 
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where just SNP-to-gene evidence prioritizes ARL14EP. We speculate that the causal SNP in 

this credible set might affect ARL14EP as well, but that the regulatory effect on ARL14EP 

occurs in tissues/cell-types that are not relevant to MoDZT or that an aberrant splice isoform 

of ARL14EP, which is reverse complementary to FSHB, might directly impact the gene 

regulation of FSHB.  

The results of FLAMES regarding schizophrenia are striking. Although FLAMES is trained to 

be trait agnostic, FLAMES prioritized more synaptic genes from schizophrenia GWAS results 

than the custom gene prioritization method used in the original schizophrenia publication which 

leveraged brain-specific data. This suggests that the combined SNP-to-gene and convergence 

approach allows for prediction of genes active in trait-relevant tissues. FLAMES predictions 

converged with all rare coding variants for which there were overlapping GWAS loci which 

indicates that FLAMES can predict known disease relevant genes even for complex traits such 

as schizophrenia. We find enrichment for signaling related synapse pathways that are relevant 

for disease risk later in life. Interestingly, we find additional evidence for the role for synaptic 

adhesion proteins, beyond NRXN1 and its associated neuroligins. Whereas a role for NRXN1 

and the CAM pathway in schizophrenia has been previously shown26,27, little is known about 

the broader role of synaptic adhesion in schizophrenia. Our findings suggest that the genes 

involved in synaptic adhesion mediate schizophrenia disease risk in tandem with brain 

development prenatally and interfere in synaptic signaling processes postnatally. 

There are some limitations to this study. First of all, there was limited weighting of SNP-to-

gene interactions based on tissue type in the inputs for the XGB classifier. Broader weighting 

of relevant tissue might yield more accurate results. We were only able to perform tissue-

specific annotation weighting in the GTEx data because it is the only dataset that has uniformly 

processed data across different tissue types with available expression data that was included 

in annotation. Secondly, it was necessary to uniformly compare tools for benchmarking but 

these tools that have different core assumptions so our comparison may not compare each 

tool in its optimal scenario. For example, FLAMES was not made to process the fine-mapping 

data in multiple smaller chunks, as was done for the fine-mapping for the nine-traits 

benchmarking set. The performance on the nine phenotype benchmarking set will most likely 

improve if the entire locus was fine-mapped as one. Nevertheless, we believe we selected the 

fairest benchmarking scenarios. Further rationale for the benchmarking scenarios can be 

found in the Supplementary Note. Lastly, FLAMES ultimately relies on fine-mapping the 

associated variants in a locus down to a credible set to reduce prediction noise. Better fine-

mapping will lead to better predictions. We urge potential users to be careful when using fine-

mapping output created by using out-of-sample reference panels28. 

In conclusion, FLAMES is an integrative framework that can predict the effector gene of a 

GWAS locus from summary statistics and statistical fine-mapping data with high accuracy. 

Transitioning from associations between traits and variants to associations between traits and 

genes is essential for gaining a deeper understanding of the underlying biological mechanisms, 

aiding the translation of GWAS into meaningful functional discoveries. 
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METHODS 

Conceptual framework FLAMES 

The FLAMES framework is a classifier developed to predict effector genes in GWAS loci. 

Specifically, it combines GWAS-wide convergence of genes and locus-based biological data 

that links effect SNPs to genes. A prediction is made for each fine-mapped credible set in a 

locus. The underlying assumption is that each causal SNP will have a single gene which most 

strongly mediates the effect on the measured trait. Gene convergence scores are calculated 

using PoPS. PoPS estimates the importance of pathway, protein-protein interaction and co-

expression features by regressing them on the MAGMA Z-scores of the GWAS of interest. The 

final PoPS score is then calculated as the sum of the beta’s of the relevant converging features. 

Locus-based SNP-to-gene scores are derived from an XGBoost classifier7 which takes fine-

mapped credible set based gene annotations as an input. The inputs for the classifier are 

created with FLAMES Annotate, which annotates a credible-set with various SNP-to-gene 

annotations. The convergence based scores and the locus-based SNP-to-gene scores are 

scaled and combined into a final FLAMES score for each gene in the locus. There is always a 

single positive FLAMES score in the locus. Higher FLAMES scores denote more certainty that 

this gene is indeed the effector gene of the fine-mapped credible set for the studied trait. Below 

we will describe how credible sets are annotated, scored by XGBoost and integrated with PoPS 

predictions. We will then describe how the XGBoost classifier was trained and how the entire 

FLAMES framework was benchmarked and applied in this study. 

 

FLAMES annotation 

FLAMES Annotate is a tool which takes as input credible sets as created by any statistical fine-

mapping method that creates credible sets. Each credible set, given as a list of SNPs which 

contain a single causal SNP and a list with the corresponding probabilities of each of these 

SNPs being that causal SNP is annotated. This annotation creates annotation scores for each 

score in the locus based on SNP-to-gene evidence from SNPS in the credible set. There are 

two different types of SNP-to-gene linking annotation, either SNP-specific (e.g. fine-mapped 

gene expression QTLs), or regional (e.g. enhancer regions for a gene). Scores are created by 

multiplying the posterior inclusion probabilities (PIPs) for SNP-based annotations, or by 

multiplying the PIP of the fine-mapped GWAS SNP with the annotation metric of the regional 

annotations. The annotation metrics used can be found in Sup. Table 23. To encode locus 

context, relative scores are calculated by linearly scaling the maximum and minimum scores 

within that annotation so that the gene with the highest annotation score has a score of 1 and 

the gene with the lowest score has a score of 0. To generalize: 

Let: 

Sgmax be the maximum annotation score for gene g. 

Sgmean be the mean annotation score for gene g. 

n is still the total number of SNPs in the set. 

SNPi represents the i-th SNP in the set. 

PIPi is the posterior inclusion probability for the i-th SNP. 

AMi,g is the annotation metric of the SNP-to-gene annotation linking SNPi to gene g. 

Then: 

𝑆𝑔𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖=1
𝑛 (𝑃𝐼𝑃𝑖  ×  𝐴𝑀𝑖,𝑔) 
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𝑆𝑔𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛𝑖=1
𝑛 (𝑃𝐼𝑃𝑖  ×  𝐴𝑀𝑖,𝑔) 

This results in an annotation matrix of genes and annotation scores. Lastly, MAGMA-Z scores, 

PoPS scores and locus metadata are added to the annotation matrix. The locus metadata 

consist of the number of genes within 50/100/250kb of the lead fine-mapped variant, the 

number of SNPs in the credible set, the highest PIP in the locus and the number of genes in 

the locus. The window of genes annotated to a locus can be specified, as well as the specific 

genes that are annotated to that locus. The default and the annotations on which was trained 

are all genes within 750kb of the fine-mapped lead SNP. 

 

FLAMES gene scoring 

For each credible set in a locus, FLAMES outputs a predicted effector gene for that credible 

set. This score is calculated as follows: First XGBoost and PoPS scores are linearly scaled 

within the locus, so that the highest score is 1 and the lowest score is 0. Then, with the weights 

for XGBoost and PoPS as obtained from the calibration step, the scores are linearly combined 

as follows:  

Let: 

Cg be the combined prediction score for gene g. 

Xg be the locus scaled XGBoost prediction score for gene g being the effector gene in the 

locus. 

Pg be the locus scaled PoPS score for gene g. 

Then: 

𝐶𝑔 = 0.725𝑋𝑔 + 0.275𝑃𝑔 

The combined scores are subsequently scaled based on the difference between the first and 

second highest score in the locus as given as: 

Let: 

Fg be the FLAMES score of gene g. 

Cg be the combined PoPS and XGBoost score of gene g. 

C1 be the highest combined PoPS and XGBoost score in the locus. 

C2 be the second highest combined PoPS and XGBoost score in the locus. 

Then: 

𝐹𝑔 = 2𝐶𝑔 − 𝐶1 − 𝐶2  

This results in a single positive score per locus, which is the FLAMES score with the highest 

likelihood of being the effector gene. The combination of PoPS and XGBoost scores was 

calibrated by a 50-fold cross validation strategy described in the section “Training of FLAMES 

framework” below.  

 

Creation of a data-driven training set of locus-gene pairs 

To train a machine learning model we required a baseline set of GWAS loci and their true 

effector genes. In order to create this dataset, we linked GWAS loci of traits from the UK 

biobank (UKBB) with genes that have deleterious coding evidence. Genomic risk loci of these 

traits were created using FUMA29. We annotated a gene as causal for a locus if it has either 
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significant associated missense or predicted loss of function (pLoF) variants or is implicated 

by gene burden tests containing at least one pLoF or missense variant in the exome wide 

association (ExWAS) study of that same phenotype. ExWAS results were extracted from 

GeneBass11.  

Given that two nearby genes can be independently relevant for a trait and be implicated 

separately by GWAS and ExWAS, we aimed to reduce the amount of false positive locus-gene 

pairs by restricting the maximum distance between the fine-mapped GWAS signal in a locus 

and assigned effector genes. To do this, fine-mapping of loci was performed using FINEMAP 

(version 1.4.1). We created a reference panel with an LD 100,000 from unrelated UKBB 

individuals. FINEMAP was performed with a maximum number of causal SNPs (k) = 1. This 

threshold was chosen to increase the likelihood of predicting actual causal SNPs and minimize 

the number of SNP-gene pairs that can be made in a single locus for a single trait, to avoid 

overfitting. Each fine-mapped credible set was transformed into a 95% credible set, meaning 

that the credible is reduced to the smallest number of variants that together have a summed 

prior inclusion probability (PIP) of at least 0.95. For each fine-mapped credible set, a weighted 

centroid was created using the posterior inclusion probability of each SNP in that credible set. 

We retained all locus-gene pairs whose effector gene was no further than 750,000 base pairs 

of the centroid of the credible set. 

 

Training of FLAMES framework  

We applied FLAMES annotate to 1181 loci. These 1181 GWAS loci contain a single gene 

which is implicated by missense/pLoF variants in an ExWAS for the same trait. For each set 

of maximum and summed scores for a given annotation, we retained the score with the highest 

odds-ratio between causal and non-causal genes. These retained scores were combined with 

MAGMA Z-scores and locus meta data and subsequently used in training an XGBoost 

classifier that aims to predict if a gene is an effector gene based on the SNP-to-gene 

annotations. We used a 100 iteration 5-fold cross validation randomized grid search to find the 

optimum parameters for our model. We subsequently used 50-fold cross validation to optimize 

the linear integration of PoPS and XGBoost. The data was randomly split into 50 equal parts 

and for each fold the model was retrained on all splits except for a single holdout split. 

Predictions with the retrained model were made with a different linear integration coefficient 

between PoPS and XGBoost ranging from 0 to 1 in 0.025 intervals on the holdout split. For 

each fold the integration coefficient which resulted in the highest harmonious mean of precision 

and recall (f1-score) was retained and the median value across all integration coefficients 

(0.725 FLAMES, 0.375 PoPS) was used as to integrate the XGBoost and PoPS scores.  

 

Benchmarking of FLAMES 

We benchmarked the performance of FLAMES on the holdout validation set, high-confidence 

locus-gene pairs from three molecular traits, high-confidence locus-gene pairs from ExWAS 

data, and an expert-curated locus-gene pair dataset. A more extensive overview of the 

benchmarking can be found in the supplementary note. 
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Three molecular traits benchmark 

In the three molecular traits datasets we benchmark the prediction of FLAMES on loci from 

traits with easily interpretable loci given extensive domain knowledge of these traits. We 

created loci using FUMA from the summary statistics and fine-mapped the loci using FINEMAP 

and a reference panel of 100,000 unrelated individuals from the UKBB. Fine-mapping was 

performed with a maximum number of causal SNPs (k) = 10. Each individual credible set was 

mapped using FLAMES on the default settings. In this specific benchmark, we were interested 

if the actual causal gene would be recovered at least once given that all credible sets in the 

locus could be used for prediction. We therefore define recall in this dataset as the number of 

recovered unique genes divided by the number of total unique genes. We extracted L2G 

results from the L2G database if they make a prediction for the same locus. To avoid 

annotation biases we only compare genes that are scored by both methods, and remove genes 

that are only scored by a single method. We calculated cS2G scores by multiplying the cS2G 

scores for a gene with the PIPs of each SNP and sum the resulting scores per gene. Genes 

not mapped by L2G or FLAMES were dropped, and genes not mapped by cS2G but mapped 

by the other methods received a score of 0. 

Expert curated locus-gene-pairs benchmark 

We extracted the L2G scores and fine-mapping results for all loci for which full summary 

statistics were available from the Open Targets platform. We annotated these credible sets 

with FLAMES annotate to ensure that the benchmarking is done on the exact same credible 

sets. We extracted all credible sets from the original L2G training set for which full summary 

statistics were available from the L2G platform, along with the corresponding L2G predictions. 

FLAMES was run with default settings. We calculated performance metrics on genes 

annotated by both methods to eliminate any biases in annotation. An example of this: these 

loci were selected to have their effector gene within 500kb, which is the maximum range in 

which L2G maps genes, whereas FLAMES maps up to 750kb by default.  

Nine phenotypes with ExWAS-implicated genes benchmark 

When benchmarking the expert curated dataset, we compare the predictions of single credible 

sets to each other, given that Ei bins all the credible sets in a locus together and only has a 

single locus with multiple true-positive genes. Comparisons between L2G, Ei and FLAMES are 

always performed on the genes which were scored by all three methods. FLAMES was 

performed on the fine-mapping results as performed by Forgetta et al in the original Ei paper2. 

This fine-mapping was performed by splitting loci into 250kb chunks and fine-mapping with 

multiple causal variants. We therefore transformed each credible set so that the PIP of each 

SNP is multiplied by its Bayes factor and divided by the sum of Bayes factors of the entire 

credible set. This results in a credible set that is akin to the results when fine-mapping for a 

single causal variant in the locus. Ei scores were acquired from the original publication 5, L2G 

scores were acquired from the L2G database, extracting each locus that maps the true-positive 

gene for the corresponding GWAS. L2G and FLAMES predictions for each credible sets were 

averaged within each locus. We calculated cS2G scores by multiplying the cS2G scores for a 

gene with the PIPs of each SNP and sum the resulting scores per gene. Genes not mapped 

by L2G or FLAMES were dropped, and genes not mapped by cS2G but mapped by the other 

methods received a score of 0. 
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Calibration of FLAMES 

To calibrate FLAMES scores we aimed to create a benchmarking set that contained the least 

amount of biases. We therefore merged the bechmarking set with ExWAS implicated genes of 

nine phenotypes and the set with genes from domain knowledge of three molecular traits, as 

no prior SNP to gene knowledge was used to curate these datasets. We incrementally lowered 

the FLAMES score threshold from 1 to 0 in increments of 0.05 and retained the score with at 

least 75% precision. 

 

Application of FLAMES to Mother of Dizygotic Twins GWAS 

Given that the a large portion of the MoDZT controls come from the UKBB, and that the sample 

population is European, we created an LD reference panel based on 100,000 unrelated 

individuals from the UKBB for fine-mapping. Given that we have to use a reference panel that 

is not a precise subset of all the data across cohorts we restrict maximum number of causal 

SNPs per locus (k) = 1. FLAMES was ran with default settings (max distance to gene = 750kb, 

only protein coding genes annotated).  

 

Application of FLAMES to Schizophrenia GWAS 

We ran FLAMES with default settings (max distance to gene = 750kb, only protein coding 

genes annotated) on the fine-mapping output as reported in in the PGC-3 schizophrenia fine-

mapping study18. We additionally ran FLAMES with a pathway naïve version of PoPS with 

which we prioritized genes that were eligible for pathway analysis. We subsequently extracted 

the FPKM normalized gene expression values across the lifespan of the pathway naïve 

FLAMES prioritized genes from all cortical tissues in the Brainspan data. Expression per gene 

was normalized across timepoints, by dividing the expression levels of each by the mean 

expression of that gene across all timepoints similar to van der Meer et al. (2023). We 

subsequently clustered the data by k-means clustering, with the optimum number of clusters 

being determined by selecting the number of clusters with the highest average silhouette score. 

Gene ontology (GO) enrichment analysis of the biological processes and cellular component 

ontologies was performed on the SYNGO (release 1.2, 2023-12-01) and MSigDB (v2023.1) 

GO datasets. Enrichment analysis was performed using a logistic regression framework, in 

which the genes in the gene set are tested competitively against the genes outside of the gene 

set by regressing them onto the FLAMES predictions. An additional conditional analysis was 

performed to verify if the enrichment was independent of the general brain-related signal, by 

repeating the regression analysis including a binary vector indicating if genes are expressed 

in the brain as a covariate. This list of brain-expressed genes was previously defined by the 

SYNGO consortium and can be downloaded from the SYNGO platform19. In order to create 

the cortical maps, we have manually matched the ontologies between the modified Brodmann 

atlas of the Brainspan project in two stages of development - 8 weeks post conception and 

adult brain (40 years old) - and the 3D MRI Brodmann atlas by Pijnenburg et al (2021)24. The 

matching can be found in Supplementary Table 24. Only cortical areas were included in the 

plot for consistency of atlas usage. Transient brain structures were not included in the plot. 
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DATA AND CODE AVAILABILITY 

The code for installing and running FLAMES can be accessed via https://github.com/Marijn-
Schipper/FLAMES.  

The reference data needed for running FLAMES  and/or running (pathway-naïve) PoPS can 
be found here: https://zenodo.org/uploads/10409723 

The data and code used for the analyses in this paper and creation of the figures can be 
accessed via https://github.com/Marijn-Schipper/FLAMES_paper_analyses 
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Tables 

Method Description Ref. Source Build 

Pathogenicity prediction 

VEP VEP predicted variant impact 
(LOW/MODERATE/HIGH) on gene. 

30 https://rest.ensembl.org/#V
EP 

GRCh37 and 
GRCH38 

CADD CADD scores for genic variants. 31 https://cadd.gs.washington.
edu/api 

GRCh37 and 
GRCH38 

HiC 

Javierre HiC Enhancer-promoter intractions. from 
promoter capture HiC. 

32 https://www.cell.com/cms/1
0.1016/j.cell.2016.09.037/att
achment/5bc79f6f-1b69-
4192-8cb8-
4247cc2e0f39/mmc4.zip 

GRCh37 

Jung HiC Enhancer-promoter intractions from 
promoter capture HiC. 

33 https://www.ncbi.nlm.nih.go
v/geo/download/?acc=GSE
86189&format=file&file=GS
E86189%5Fall%5Finteracti
on%2Epo%2Etxt%2Egz 

GRCh37 

Interaction modelling     

ABC enhancer-promoter Activity-by-contact model predicted gene-
enhancer links. 

34 ftp://ftp.broadinstitute.org/ou
tgoing/lincRNA/ABC/AllPred
ictions.AvgHiC.ABC0.015.m
inus150.ForABCPaperV3.txt
.gz 

GRCh37 

ABC Crispr Activity-by-contact model predicted gene-
enhancer links based on Crispr permuted 
enhancers. 

35 https://osf.io/uhnb4/ GRCh37 

Cicero whole-blood Cicero predicted cis-regulatory 
interactions in whole-blood 

36 https://zenodo.org/record/77
54032/files/S2G_original.zip
?download=1 

 

Quantitative trait loci (QTL) 

GTEx fine-mapped Fine-mapped eQTLs from GTEx tissues. 37,38 https://storage.googleapis.c
om/gtex_analysis_v8/single
_tissue_qtl_data/GTEx_v8_f
inemapping_CAVIAR.tar 

GRCh37 

eQTLgen fine-mapped Fine-mapped eQTLs from whole blood. 1 https://zenodo.org/record/77
54032/files/S2G_original.zip
?download=1 

GRCh37 

QTL catalogue fine-mapped 
eQTL 

Fine-mapped eQTLs from collection of 
studies. 

39 https://ftp.ebi.ac.uk/pub/data
bases/spot/eQTL/susie/ 

GRCh37 

QTL catalogue fine-mapped 
rQTL 

Fine-mapped rQTLs from collection of 
studies. rQTLs encompass differential 
splicing and transcript usage.  

39 https://ftp.ebi.ac.uk/pub/data
bases/spot/eQTL/susie/ 

GRCh37 

Gene-enhancer 

HACER GRO/PRO-seq GRO/PRO-seq capture of gene-enhancer 
interactions. 

40 https://bioinfo.vanderbilt.edu
/AE/HACER/download.html 

GRCh37 

HACER CAGE CAGE capture of gene-enhancer 
interactions. 

40 https://bioinfo.vanderbilt.edu
/AE/HACER/download.html 

GRCh37 

FANTOM5 CAGE capture of gene-enhancer 
interactions. 

41  GRCh36 

EpiMap Gene-enhancer predictions based on 
integrated epigenomic data 

42 https://personal.broadinstitut
e.org/cboix/epimap/links/link
s_corr_only/ 

GRCh37 

Roadmap Epigenomics Enhancer-promoter predictions from 111 
reference epigenomes 

43 https://ernstlab.biolchem.ucl
a.edu/roadmaplinking/Road
mapLinks.zip 

GRCh37 

GeneHancer Gene-enhancer predictions based on 
integrated multi-omics data 

44 https://zenodo.org/record/77
54032/files/S2G_original.zip
?download=1 

GRCh37 

Summary statistic based gene prioritization 

MAGMA MAGMA Z-scores of gene from full 
summary statistics 

8 https://ctg.cncr.nl/software/
magma 

GRCh37 and 
GRCH38 

PoPS* Polygenic prioritization scores calculated 
from enriched annotation features and 
MAGMA Z-scores 

4 https://github.com/Finucane
Lab/pops 

GRCh37 and 
GRCH38 

Positional annotations 

Promoter Number of SNPs in gene promoter 

Distance to gene Distance to gene boundary 

Weighted distance to gene Distance from credible-set centroid to gene boundary 

Distance to TSS Distance to TSS of gene 

Weighted distance to TSS Distance from credible-set centroid to gene boundary 
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Table 1 | Functional annotations integrated in FLAMES. Download file of integrated raw data 

provided in the source column. PoPS is not used in the machine learning classifier. 

Locus metadata 

Genes in locus Number of genes in locus 

Size of fine-mapped credible 
set 

Number of snps in 95% credible set 

Genes within 50/100/250kb Number of genes close to credible-set weighted centroid 

Highest PIP Highest Posterior Inclusion Probability in credible set 
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