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ABSTRACT The COVID-19 pandemic has dramatically highlighted the importance of developing simulation 

systems for quickly characterizing and providing spatio-temporal forecasts of infection spread dynamics 

that take specific accounts of the population and spatial heterogeneities that govern pathogen 

transmission in real-world communities. Developing such computational systems must also overcome the 

cold start problem related to the inevitable scarce early data and extant knowledge regarding a novel 

pathogen’s transmissibility and virulence, while addressing changing population behavior and policy 

options as a pandemic evolves. Here, we describe how we have coupled advances in the construction of 

digital or virtual models of real-world cities with an agile, modular, agent-based model of viral transmission 

and data from navigation and social media interactions, to overcome these challenges in order to provide 

a new simulation tool, CitySEIRCast, that can model viral spread at the sub-national level. Our data pipelines 

and workflows are designed purposefully to be flexible and scalable so that we can implement the system 

on hybrid cloud/cluster systems and be agile enough to address different population settings and indeed, 

diseases. Our simulation results demonstrate that CitySEIRCast can provide the timely high resolution 

spatio-temporal epidemic predictions required for supporting situational awareness of the state of a 

pandemic as well as for facilitating assessments of vulnerable sub-populations and locations and 

evaluations of the impacts of implemented interventions, inclusive of the effects of population behavioral 

response to fluctuations in case incidence. This work arose in response to requests from county agencies 

to support their work on COVID-19 monitoring, risk assessment, and planning, and using the described 

workflows, we were able to provide uninterrupted bi-weekly simulations to guide their efforts for over a 

year from late 2021 to 2023. We discuss future work that can significantly improve the scalability and real-

time application of this digital city-based epidemic modelling system, such that validated predictions and 

forecasts of the paths that may followed by a contagion both over time and space can be used to anticipate 

the spread dynamics, risky groups and regions, and options for responding effectively to a complex 

epidemic. 

INDEX TERMS Agent-based Modeling, city-scale digital twins, disease transmission, epidemiology, 

geospatial modeling, healthcare interventions, lockdowns, microsimulation, model validation, synthetic 

populations, risk groups, vaccinations, visual analytics.   

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 26, 2023. ; https://doi.org/10.1101/2023.12.22.23300481doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.22.23300481


3 

 

1 INTRODUCTION 

The ongoing COVID-19 pandemic has dramatically highlighted the potential that communicable diseases 

continue to possess for producing highly destructive global public health and socio-economic threats [1, 

2]. The recent epidemics associated with influenza (H1N1) in 2009, the 2011 Escherichia coli outbreak in 

Germany, Ebola in West Africa in 2014, Zika in the Americas in 2016, West Nile virus outbreaks in Europe in 

2019, dengue in South America in 2019, and the COVID-19 pandemic that began in 2019 additionally attest 

to the possibility that new infectious disease outbreaks can emerge at any time anywhere in the world [2, 

3]. This threat calls for improved understanding of the invasion and transmission dynamics of epidemic 

diseases especially in a globalized, interconnected, world, on the one hand, and, on the other, the need for 

improving predictions of the spread of novel pathogens that also take explicit account of the localized 

characteristics of settings in order to support effective policy making [4]. They show how making such 

predictions require addressing the combined effects of deep uncertainty, the impact of intrinsic biology, 

transmissibility and mutability of a pathogen, the role and outcomes of social heterogeneities and human 

behavior, and the effects of spatial scale and variability in disease propagation [4-7]. 

These contagions, including in the case of COVID-19, have directed attention on the modelling paradigms 

that are best able to capture the effects of these diverse factors reliably [4, 8-11]. They have also 

concentrated focus on the computational workflows and data pipelines required to assemble input data, 

learn and run models, and provide information to policy makers at the lead times required for making 

decisions at various spatial scales, including for targeting responses to different subpopulations and risky 

locations [12-16]. At its core, these challenges from a disease modelling perspective relate to both the tasks 

of how best to design dynamic in-silico models whose simulated behavior captures the heterogenous 

transmission and controllability of novel and extant infectious agents, and the corresponding construction 

of computational and data systems agile enough to respond to rapidly changing knowledge and policy 

objectives as these pathogens establish and spread in diverse populations. We indicate that both these 

challenges present a major barrier to creating and using models for predicting the transmission dynamics 

of epidemic diseases, especially when extant knowledge of the risk factors and pathogen transmissibility 

and virulence is limited during the early stage of the invasion of a novel outbreak [17]. 

The COVID-19 pandemic has also exacerbated and exposed societal inequities for promoting the spread of 

the contagion as well as for producing variable health and economic outcomes among different 

subpopulations and geographies [18]. This calls for developing models that are structurally sufficiently 

detailed for enabling reliable simulations of the effects and outcomes of these societal heterogeneities. 

Indeed, understanding how interactions between these heterogeneous components of society may operate 

and affect pathogen transmission in a population will be key to the predictability and controllability of an 

infectious disease contagion [4, 5, 16]. It will also be critical to assessing and managing societal resilience 

to large-scale epidemic outbreaks [19]. While several complex data-driven agent-based models (ABMs) 

have been developed to address aspects of the above modelling challenges [16, 20-22], three key features 

remain that impede the development of the systemic modeling approaches required to address epidemic 

transmission in complex social systems [4]. The first two of these concerns data for informing model 

development and calibration [23]. These relate firstly to the cold start problem whereby when a new 
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pathogen starts to spread, health departments always need a long lead time to reliably collect sufficient 

data both on risky subpopulations, activities, and settings as well as on pathogen characteristics, to generate 

reliable public responses [4, 17, 23]. The second data-related issue is connected with the invariable privacy 

and confidentiality problems connected with health and population data resulting in both restricted and 

delayed availability of key spatio-demographic, transmission, and disease-related information required to 

construct and parameterize the appropriate epidemic models [23]. Finally, the third factor impeding the 

discovery and construction of epidemiological models for new pathogens is that while there exists a 

growing list of infectious disease models contributed by independent research activities, these are often 

not developed for the purpose of reuse or with interoperability in mind meaning that the potential and 

rapid use of these models or even construction of new models based on existing modelling frameworks is 

presently severely limited [23]. 

In recent years, two developments in simulating reality have emerged that may provide a means to 

overcome the challenges described above for simulating the transmission of infectious pathogens in the 

real world. The first is the use of a digital twin (DT) as a simulation process for generating a virtual 

representation of the city’s or community’s physical assets, population characteristics, processes and flows 

that are connected to all the data related to them and their surrounding environment [24-26]. As it aims to 

reflect the whole life cycle process of the corresponding real-world city by tight coupling of the physical 

and virtual entities and the connections between them [27], such city simulations can further be updated 

and changed as their physical equivalents change. These attributes of a DT, particularly its mirroring and 

ability to simulate factors, such as environmental conditions, population characteristics and movement, via 

mapping to dynamic real-world data, means that a place DT may not only allow more informed outbreak 

simulations by appropriate epidemiological models, but may also provide a significant solution to the cold 

start and privacy problems noted above that currently plagues the development of outbreak models [17]. 

Basing outbreak models on the demographic and locational foundations of city or place DTs can also further 

enhance the scope for repurposing such models effectively to incorporate the characteristics of diverse 

places and populations as well as provide the basis for adding new disease models for different pathogens 

[22]. 

Second, agent-based modelling and simulation of disease propagation has been shown to be a natural way 

to accommodate the effects of heterogenous characteristics and behaviors of individuals for simulating 

disease transmission and spread in a given geographic space [28, 29]. In particular, in an ABM-based disease 

simulation application, a disease transmission model is built on a generative and bottom-up process that 

can integrate three types of components: the agents and their susceptibilities and behaviors, the 

environment in which the agents operate by perceiving its state and acting accordingly, and finally, the 

mechanisms and processes that drive agent interactions [21, 29, 30]. Capturing the transitions involved in 

these interactions can further allow more realistic simulation of the outcomes of more specific and realistic 

interventions, such as imposing restrictions on specific types of businesses or other places, wearing of 

masks, and/or distribution of vaccinations, closely resembling those considered by public health officials.  

These developments suggest that coupling disease ABM models with place DTs could provide a key tool 

for improving simulation of the propagation of pathogens in complex real-world settings [12, 31]. Here, we 
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develop CitySEIRCast (Fig. 1), a multidimensional, multi-resolution, multi-scale DT simulation framework 

coupled with a flexible ABM and High-Performance Computing (HPC), as a modelling tool to more 

realistically simulate the transmission of a pandemic among the diverse subpopulations and settings of an 

urban locality, focusing on the COVID-19 pandemic as an example. Given the dynamic evolution of 

information regarding the epidemiology of SARS-CoV-2 and the shifting foci of interventions and priorities 

of city and county officials, we also focused on the adaptability of CitySEIRCast to produce outputs that are 

better able to reflect these changes over time. Although our co-simulation framework is applied in the 

context of the COVID-19 pandemic in Hillsborough County, Florida, a feature arising from our objective to 

make the system interoperable is designing CitySEIRCast in such a way as to make it easily adaptable to 

other cities and to other infectious diseases of concern.  

The paper proceeds as follows. In the next Section, we present the background details of ABMs and DTs 

with descriptions of their respective modelling frameworks. In Section 2, we describe the methodology, 

algorithms, workflows and data pipelines used to build CitySEIRCast. In Section 3, we present the main 

results of our coupled DT-ABM co-simulation system. In Section 4, we discuss the potential impact of our 

work for using coupled DT-ABMs as tools for modelling diseases in real-world societies and highlight the 

next stage of work required to leverage CitySEIRCast for co-simulating cities and urban infectious disease 

transmission dynamics. 

1.1 Literature Review 

In this section we discuss and compare existing tools and frameworks, related to DTs for health, including 

for COVID-19, and to agent-based disease modelling in general. 

 

Fig. 1 (a) A schematic representation of a digital city as a virtual twin of a physical city. (b) Our framework 

combining a digital city consisting of the virtual environment (buildings, routes) and synthetic population 

with the ABM disease model. 
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1.1.1 The Digital Twin 

The technological advancements of Industry 4.0—smart systems, artificial intelligence and machine learning, 

Internet of Things (IOT), big data management, cloud and edge computing, among others [32]—have 

piloted the development of the DT, a novel technology that merges the physical and digital worlds. The DT 

can be defined as a virtual model of a physical entity or process of any scale and all its interacting relevant 

components and properties [24, 33, 34]. The three main constituents of a DT, as established originally by 

Grieves [33], are the physical entity, the virtual replica of the physical entity, and the mutual communication 

between the physical entity and the virtual replica. Tao et al. [35] developed the five-dimension DT concept 

that includes data and services as two additional DT components. In this conceptual model six two-way 

connections exist between all the elements of the model - between physical entity and services, physical 

entity and data, physical entity and virtual world, virtual world and data, virtual world and services, and 

between services and data.  

The virtual or digital replica must copy the physical world’s characteristics, elements, complexity, processes, 

interactions, external factors, and events with high fidelity and resolution, and to accomplish this, the DT 

includes and interacts with multiple interdisciplinary technologies, devices, and methods [24, 35]. There is 

thus no defined method or platform for creating the virtual twin [34]. Nevertheless, the method or platform 

chosen must have the ability to construct a virtual model of high accuracy and fine-grain detail, which can 

be verified by validation methods [34]. At the current state of DT technology, the physical entity to be 

replicated can be a device or machine or a city, a biological being (including human beings), a system, a 

system of systems, an environment, or a process. In the case of DT applications to public health, most 

employed thus far have focused on improving patient management and demand [36], although its potential 

for the prediction and management of infectious disease outbreaks in populations is increasingly receiving 

attention [12, 17, 31]. In the latter case, the virtual world needs human behavioral models that capture the 

expected actions of the inhabitants of the physical world and predict their actions under changing patterns. 

One way to do this is by adding an ABM layer [31], which generates ‘agents’ as entities with constraints to 

simulate expected real-life behaviors of the inhabitants residing in the physical world [30]. Rule-based 

models that drive the virtual agent’s ability to reason may also be needed [37]. 

Ultimately, the DT functions to aid in decision-making for improving the physical entity. The DT has the 

ability to test and analyze the outcomes of what-if scenarios and possible strategies to solve challenges 

before implementing them in the real world. With the seamless communication and transmission of data 

between the two worlds, the virtual space is constantly updated with data from the physical space and the 

physical space is informed with the results of what-if scenario testing in the virtual space. A feedback loop 

is formed (Figure 1a), where the physical world implements decisions based on the outcomes of different 

interventions in the virtual space, and over time the virtual space is updated with the outcomes of the 

interventions decided to be implemented in the physical space [38]. 

Constructing city DTs for supporting disease outbreak analytics and forecasting usually involves modeling 

the disease of interest and the heterogeneities involved, tracking cases or other health events attributed to 

the disease, and simulating individuals of the affected population as well as the complex social dynamics 
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between themselves, with the surrounding environment, and with the infectious agent. However, there are 

a variety of methods by which DTs for disease have been created, which is a testament to the flexibility and 

adaptability of such frameworks. 

Thus, Deren et al. [25] proposed the Smart City Public Epidemic Service System to integrate smart city 

simulation frameworks with healthcare institutions as well as patient health and movement data. Patient 

health data is used to assess the height and severity of the epidemic curve and movement data is used to 

determine the spatiotemporal trends of the epidemic. Using smart city infrastructure, the Epidemic Service 

System tracks, locates, and follows up on confirmed cases, and is therefore able to perform analyses of the 

dynamics of disease transmission, detect areas where risk of transmission is high, and send warnings of 

exposure risk to citizen smartphones. The system relays its epidemic analysis to government and health 

organizations to make in-tandem decisions regarding the strategies to adopt to halt disease transmission. 

During the COVID-19 pandemic, DT frameworks specific to COVID-19 were proposed to help alleviate the 

impact of the pandemic. These DTs were constructed with different approaches and are tailored to fill gaps 

in the strategies to reduce the health and economic impact of the pandemic, but fundamentally they are all 

efforts to capture accurate COVID-19 disease transmission dynamics, pandemic trends, population 

behaviors during pandemic times, and the effectiveness of public health prevention and mitigation 

measures. Barat et al. [31] developed a DT framework to analyze the effect of non-pharmaceutical 

interventions to halt the spread of COVID-19 using the help of a DT of Pune City, India, coupled to an ABM. 

The ABM aspect of the Pune DT captures the demographic distribution of the population, their movements 

and interactions, and the strategic interventions that can be imposed by public health authorities. The 

authors program each type of agent with their own time schedule and movement pattern; and in the case 

of places, the type of agents that frequent the place and the type of agent interactions that can occur inside 

a place. 

Pang et al. [17] outlined a multi-city COVID-19 project where each city and its population, spatial, and 

epidemiological aspects are modeled via DTs that are capable of self-improving by learning from itself and 

other city DTs through what the article calls local and global updates. Local updates refer to the collection 

and storage of historical and real-time public health data through IoT devices or relevant reliable sources 

of data. Global updates instead refer to cities uploading their parameters to a central server for other cities 

to learn and update their DTs. The federated updates are thought to be significant for helping authorities 

make public health decisions because a city that has taken a public health measure that others have not 

can upload its parameters before and after taking the measure so that other cities can conclude whether or 

not to impose the said measure. 

Zhao et al. [39] proposed iGather, a smart contact tracing platform in the COVID-19 context that uses DT 

methods to precisely and anonymously map individuals and their real movement patterns through digital 

devices in a virtual space. The DT creates a link between individuals, community, workplaces, and health 

institutions to provide health guidance, alert individuals of possible exposure, track cases temporally and 

spatially, and identify areas of high transmission. 
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In contrast, and highlighting the diversity of DT construction methods, Meuser et al. [40] created a DT of a 

city in a game platform called ‘Cities: Skylines’ designed to build and manage highly detailed cities. The 

researchers modified the game platform to add an infectious disease dynamic layer to simulate COVID-19 

transmission. A realistic population is replicated in this game by assigning demographic characteristics and 

movement patterns to the simulated individuals in order to capture accurate COVID-19 disease dynamics. 

Their framework may be adapted to other infectious diseases. 

Pilati et al. [41] assembled a DT of COVID-19 mass vaccination centers to coordinate resources, reduce wait-

times, and synchronize patient walk-ins while keeping measures to prevent COVID-19 transmission inside 

the facility. It achieves these goals by dividing the process of vaccination into phases, collecting time data 

of these phases at a case-study vaccination center with smartphones, and reproducing it in a virtual 

simulation of the vaccination center to digitally test different methods in which wait times can be reduced. 

With the DT tool, the researchers were able to find time-effective strategies specific to the situation of the 

vaccination center modeled. 

With the cutting-edge developments of Industry 4.0 (Internet of Things (IoT), 5G, big data, blockchain, 

artificial intelligence, and machine learning) along with surging interest and investment in concepts such as 

cryptocurrencies and self-driving cars, a future of digital and smart cities may already be materializing [24]. 

The DT comes hand in hand with this trend of digitalization of city infrastructure. Given the interconnected 

nature of the DT and reliance on real-time capabilities, the smartness of a city facilitates the construction of 

a city DT and, vice versa, smart cities take benefit from city DTs for management of services. The data 

captured by IoT sensors and devices spread throughout a smart city to monitor the state and assess the 

needs of a city can be integrated in a DT for real-time updates, and in turn the DT can affect the smart cities 

through IoT broadcasting [24]. Some major cities are starting to invest resources to move towards a smart 

infrastructure and create their DT. Such is the case of Shanghai [42], New York City, starting with its Brooklyn 

Navy Yard [43], Singapore with project Virtual Singapore [44], and Helsinki with projects Helsinki 3D [45] 

and Kalasatama Digital Twins [46] for urban planning, sustainability, development, and other city-specific 

management. 

1.1.2 Agent-based Models 

Agent-based models (ABMs) represent a computer simulation framework in which instead of using a single 

monolithic model, the dynamics of a system is captured through the actions of agents interacting with each 

other and with their environment [30, 47]. An agent is assigned different attributes that characterize it, such 

as behavior and types of interaction with environment components and other agents. The actions of agents 

are governed by a set of rules that direct their individual behaviors and interactions. As a result of this 

heterogeneity and stochasticity embedded in their individual behavior, ABMs can capture unexpected 

aggregate phenomena that result from the combined individual behaviors in a model [48]. This allows the 

use of ABMs for modelling complex social systems. 

ABMs have gained popularity in the study of disease transmission due to their ability to capture complex 

human behavior and risk characteristics, contact networks, spatial hotspots, and other elements involved in 
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disease transmission that standard mathematical models lack [30]. ABMs are able to capture realistic social 

interactions at a very fine scale by simulating attribute-dependent contact networks as well as social 

interactions inside different types of locations based on the schedule, structure, and dynamics of the 

location (i.e., workplaces, schools, long-term care facilities). An ABM designed to analyze disease 

transmission models individual agents that make up the population of interest by assigning attributes and 

behavior rule sets to each agent based on population data, and by developing a compartmental disease 

process model for the agents to navigate through. As the simulation progresses in this scheme, susceptible 

agents will come into defined contact with infectious agents and acquire a probability of getting infected 

with the disease. Infecteds can also become diseased or recover from infection and turn into immunes. 

Similar to DTs, there is no defined methodology to follow for building an ABM which affords high levels of 

flexibility and adaptability in its construction. A variety of agent-based simulation frameworks have been 

developed recently to simulate and analyze disease transmission and public health interventions within the 

context of the COVID-19 pandemic [12, 31]. Here, we describe a selection of published work that 

demonstrate how ABMs can and have been used to investigate features of the complexity of COVID-19 

transmission focused on interactions between heterogeneous populations, infection processes, contact 

networks, and control options. 

Agrawal et al. [12] proposed an ABM to simulate and evaluate the effects of non-pharmaceutical 

interventions on the COVID-19 pandemic before imposing them on the public. The model features age-

specific interactions, contact tracing and quarantine, as well as total and partial lockdowns, providing the 

means to model disease transmission dynamics under the highly heterogeneous conditions that typically 

govern contagion and response to epidemic spread in the real-world. 

Similarly, Alagoz et al. [13] built COVAM, an ABM to analyze the impact of adherence to social distancing 

measures in New York City in the context of COVID-19. Imposing social distancing measures at different 

stages of the pandemic and at different levels were studied using a population modeled with realistic 

demographic attributes, contact networks, testing scenarios, and probability of cooperating with social 

distancing. The authors showed that the model was able to replicate the number of confirmed COVID-19 

cases in the city. 

Kerr et al. [21] developed Covasim, an ABM simulator to predict future patterns of the COVID-19 pandemic, 

test possible intervention strategies, and manage resources by modeling population demographics, social 

and transmission interactions that vary by types of locations (schools, hospitals, long-term care institutions, 

households), age-dependent patient outcomes, and disease parameters specific to a country or region. The 

simulator is completed with a variety of interventions, including social distancing, mask wearing, vaccination 

plans, testing of suspected symptomatic and asymptomatic cases, contact tracing, quarantine and isolation, 

among others. It is thought to achieve robust results by the capturing of these aspects that influence the 

spread of disease and control outcomes. 

In the same vein, Chang et al. [49] presented an ABM to simulate the COVID-19 pandemic and its impact in 

Australia, calibrated to replicate real COVID-19 transmission dynamics. Several measures were tested with 
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the model, including varying levels of isolation and quarantine of confirmed cases and contacts of cases, 

social distancing, closures of community spaces, and international travel regulations. 

Ozik et al. [16] developed CityCOVID, an ABM simulator based on their existing social interaction 

computational platform, ChiSIM, applied to the Chicago area. The synthetic population statistically captures 

the demographic characteristics of the Chicago population. The synthetic agents are assigned hourly 

activities based on certain demographic characteristics, which guides movement from place to place to 

reproduce age- and place-specific social interactions and behaviors in the virtual space. The synthetic 

agents become exposed to COVID-19 while interacting with infectious agents in the simulation. 

On the other hand, Singh et al. [14] adapted EpiGraph, an existing epidemic simulator, and used it to 

evaluate control measures and lockdown scenarios to halt the spread of COVID-19 in Madrid, Spain. An 

ABM layer was added to capture realistic social behavior and networking dynamics of the individuals that 

make up the real Madrid population as well as to model movement within and out of the city. 

Hinch et al. [20] built a COVID-19 ABM simulator called OpenABM-Covid19 as a tool for policymakers and 

other stakeholders in order to use simulations of the COVID-19 pandemic with regards to making 

management decisions on optimal interventions and preventative measures. The simulator captures region-

specific demographics and age-dependent social interactions to assess non-pharmaceutical interventions, 

contact tracing, and vaccination plans. 

Finally, Suryawanshi et al. [15] proposed an ABM of the city of Kolkata, India, focusing on spatial and contact 

components of COVID-19 transmission. The synthetic agents are characterized by age, income, presence of 

comorbidity, workplace, family, and places they frequently visit. This model also analyzes different possible 

public health interventions for executing in the city across different levels and probabilities of compliance. 

1.2 COUPLING CITY DIGITAL TWIN WITH ABMs: CitySEIRCast 

The sections above indicate that coupling a City DT with ABMs that more realistically mimic the processes 

of infection transmission can allow the development of a co-simulation system to better address the 

complexities of disease transmission in an urban population [24, 31]. Thus, while the city DT can allow a 

faithful rendering of the properties that characterize an urban location and its population, the ABM can 

allow the simulation of disease transmission dynamics that takes a fuller account of the spatio-temporal 

multidimensional risk factors that may drive pathogen transmission. Here, we describe the development of 

CitySEIRCast, a multidimensional, multi-resolution and multi-scale DT-ABM co-simulation framework, to 

evaluate the ability of such a modelling construct to analyze and predict the dynamics of disease outbreaks, 

including emergence, propagation and infection persistence, using the transmission of COVID-19 in 

Hillsborough County, Florida, as a case study. 

2        FRAMEWORK AND METHODOLOGY 

Our DT is divided into three main modules (Fig. 1(b)). The first module is the virtual environment of the 

setting under study, constructed using city information data that maps and categorizes buildings, routes 
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between places, and environmental conditions [50]. The second module is the synthetic population, which 

is a statistical representation of the corresponding population demographics, household information, the 

daily schedules, and routes of each synthetic person. The third module is the disease model layer, which 

combines the states and the parameters and processes governing the transmission of a disease as well as 

the epidemiological data specific to the modeled region. The subsections that follow detail the 

computational workflows, components, and data pipelines of each module and their application in the 

context of the spatio-temporal progression of the COVID-19 pandemic in Hillsborough County, Florida. 

2.1 Virtual Environment Module 

The virtual environment refers to the digital reconstruction of Hillsborough County, which involves precisely 

mapping and classifying every building and location type as well as street layouts present in the County. 

We applied the City Information Modelling (CIM) paradigm [51] to collect and weave these data from a 

variety of sources to create a 3-D model of the urban environment representative of the County. While CIM 

can combine both below and above ground structures, here we focused on above ground structures only. 

We extracted and used building information contained with the parcels data from the Hillsborough County 

Property Appraiser (https://downloads.hcpafl.org/) [52] as well as data on zip code boundaries to perform 

this construction. The parcels data come in the form of shapefiles and provide information on several 

features of the buildings in the county, including location, use type, size, built levels, and number of rooms. 

The 3-D virtual city model is then constructed by integrating the building information above within a 

geographic information system (specifically QGIS) using the algorithm displayed in Fig. 2. Specifically, this 

is performed firstly by reading the county zip code boundaries provided in a GeoJSON file accessed from 

[53] into QGIS. Then, we extract and add building location (latitude and longitude) and building type data, 

Fig. 2 Algorithm to generate the building types that make up the virtual environment of the DT. 
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categorized into households, schools, workplaces, and community places (which include shopping malls 

and retail stores, grocery stores, places of worship, and outdoors) from the parcels data [52]. Polygonal 

geometry of buildings and street layouts/routes are then added from OpenStreetMap 

(https://www.openstreetmap.org/) [54] to complete the city modelling. Fig. 3 shows a comparison of the 3-

D virtual representation of a portion of Hillsborough County created using our algorithm against the satellite 

view [55] for that portion, which indicates that the physical environment of the area in question is replicated 

well by the CIM.      

  

2.2 Synthetic Population Module 

The synthetic population module generates a population of agents that is representative of the 

demographics of the region of interest, in this case Hillsborough County and its 52 zip codes, based on 

census data available from PolicyMap© (www.policymap.org) [56]. The specific objective is to generate the 

individual synthetic agents and then locate them to households according to household size. These agents 

are assigned demographic attributes, including age, gender, race, ethnicity, income, and mobility patterns, 

based on the population characteristics found for zip code (see example for zip code number 33612 shown 

in Table 1) and the origin-destination (OD) matrix describing movement patterns for individuals using the 

algorithm shown in Fig. 4. We collected data on demographic attributes at the zip code level, and the 

household and school sizes within the county, to serve as inputs for executing this algorithm. The module 

generates the synthetic population through the following steps (Fig 4). 

 

 

  

Fig. 3 (a) A portion of Hillsborough County showing 3D building locations, shapes, and sizes. (b) A 

satellite image of the same area in Hillsborough County. 
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Table 1. Summary statistics for the population residing in zip code 33612 based on census data obtained 

from PolicyMap [56]. Similar data for all zip codes were used to construct the synthetic population of 

Hillsborough County. 

 

Population Statistics for Zip Code 33612 in Hillsborough County 

 

Population  Count 

Population size 51745 

Age Percentage (%) 

Persons under 18 years 21 

Persons between 18 and 64 years 64 

Persons above 65 years 12 

Race Percentage (%) 

White 36 

African American 30 

Asian 3 

Native Hawaiian and other Pacific Islander 0.1 

American Indian or Alaskan Native 0.8 

Other Race 15 

Two or more race 15 

Ethnicity  Percentage (%) 

Hispanic 38 

Non-Hispanic 62 

Gender Percentage (%) 

Male 50 

Female 50 

Income ($) Percentage (%) 

1 - 24,999 53 

25,000 - 49,999 29 

50,000 - 74,999 9 

75,000 - 99,999 4 

100,000 - 199,999 4 

200,000 > 1 
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1) Generate a population of agents at the zip code level: 

The first step in the module is to generate a population of agents representing the population size for each 

zip code. We used the total number of people residing in a zip code based on the population data available 

from PolicyMap to accomplish this task [56]. 

2) Generate synthetic households:  

Next, we create synthetic households for buildings labeled as a house or any type of residence in the parcel 

data [52]. The locations of these households are mapped based on their spatial coordinates as provided in 

the parcel data. Household size distribution in a zip code is constructed based on the number of households 

in a zip code, with size (single occupancy, 2-6 and 7+ occupants) allocated randomly based on the size 

distribution observed in each zip code.  

3) Assigning attributes to agents: 

We perform this by first randomly distributing agents to houses (which include single-family homes, 

apartments, and other types of residential buildings) based on household size (Fig 4). Demographic 

attributes are then assigned probabilistically to each agent viz. age, gender, race, ethnicity, and income, 

based on their actual distributions in each zip code. A sample of the resulting spatial distribution of races is 

shown in Fig. 5. A validation of synthetic population distributions against the available demographics data 

Fig. 4 The synthetic population generation module. a) Flowchart of the steps taken by the module to 

generate the synthetic population. b) Details of the synthetic population generation algorithm. 
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is shown in Fig. 6. This figure indicates that the synthetic population generated via the proposed algorithm 

closely mimics the real population in the county. 

Since the movement pattern of the agents are largely determined by their age and employment, we 

introduce the following categorization in the synthetic population model. Agents aged 5 to 18 are students 

who go to school, whereas agents from ages 18 to 65 are workers who go to workplaces, with the rest 

assumed to be unemployed. The probability of an agent belonging to each of these categories is in 

accordance with the proportions of each group of individuals residing in the zip code [56]. Each school-

going agent is randomly assigned a school in the zip code of residence based on the capacity of the school, 

which is defined using the school size distribution of the county [56], and the number of school-going 

agents residing in the zip code. For the working agents, the zip code of their workplace is determined based 

on the OD Matrix constructed using mobility data (see below) provided by TomTom [57]. Essentially, this 

matrix gives the proportion of workers moving to their place of employment from one zip code to another 

or within the same zip code. Once the zip code of the workplace is decided for an agent, a random workplace 

is chosen in that zip code and assigned to that agent. A similar assignment of schools is performed for 

children who have to move outside their home zip codes for schooling. These categories and respective 

school/workplace assignment influence the mobility pattern of the agents, which we address next. 

 

Fig. 5 Distribution of races by in the digital twin. A part of zip code 33602 is shown. Buildings with 

African American, White and Mixed-Race population are shown in red, white and green respectively. 
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4)  Agent Movement:  

We used an OD matrix to inform the mobility patterns of agents in our city DT. An OD matrix is a data 

structure that represents the movement of people, goods, or vehicles between different locations. It is a 

table that shows the number of trips between each origin and destination pair, usually, at the minimum 

over a given time period. The rows represent the origins (O), while the columns represent the destinations 

(D). The cells in the table provide the number of trips between each origin-destination pair [58]. OD datasets 

can contain details of trips between two geographic points or, more commonly, zones (which are often 

represented by a zone centroid). The latter combined with the total number of trips from an origin to 

destination zones allows calculations of the fractions of trips made by people within a county versus the 

fraction of these trips made to other counties.  

We used TomTom’s OD analysis engine [57] to estimate the OD matrix for informing the mobility of agents 

in the DT. TomTom OD analysis is based on real time Floating Car Data (FCD) obtained by combining signals 

aggregated monthly from anonymous GPS enabled cars and mobile phones [59]. We provided zip code 

boundaries to the TomTom OD analysis platform in order to output an OD matrix representing travels or 

people movements within and between zip codes. This information is used to assign workplaces and schools 

to the fractions of employed adults and school-going individuals both within their zip codes of origin and 

to other destination zip codes (see above).  

We also additionally calculate the cumulative distances travelled by individuals based on the OD 

distributions by estimating the distance kernel applicable to each zip code. This presents the typical 

Fig. 6 Validation of the synthetic population distributions (Blue) vs. actual distributions (Red) by age, 

race, ethnicity, and income. 
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distances people travel based on their location of origin, and is used to model movement to community 

spaces, as the movement of people to community areas is more complicated compared to workplaces and 

schools. For example, people may visit different community areas at different points of the day, and there 

are a wide variety of community places to be visited. To accommodate this heterogeneity, we use the 

determined distance kernels to assign weights for travelling to communities by an agent residing in a zip 

code.  

Finally, as the movement algorithm used by the ABM simulates the motion of agents in the virtual 

environment through a simulation time step of 6 hours, we further divided each day into four time-

segments (morning, afternoon, evening and night) and estimated the OD matrix/distance kernel for each 

time period. This allows us to simulate the daily activity of agents according to the time of the day as well 

as when different categories of buildings are open at different times of the day. For instance, schools are 

Fig. 7 Agent movement from and to different places during the 6-hour time blocks. a) 7am to 

12pm, b) 1pm to 6pm, c) 7pm to 12am, d) 12am to 6am.   
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open from mornings to afternoons. Similarly, less people go to communities and workplaces after midnight 

(Fig. 7). In the ABM, we model this feature by sending students to schools during selected segments of the 

day, with similar restrictions placed on other age categories with regard to work (as well as for pursuing 

leisure activities).  

2.3 Disease Module  

2.3.1 The ABM model 

The ABM disease model, illustrated in Figs. 8 and 9, follows the synthetic agents as they move through 

different disease stages. Susceptible individuals are exposed and become infected by coming in contact 

with infectious individuals. Exposed and infected individuals can then fall into pre-symptomatic or 

asymptomatic categories. Asymptomatics recover after a mean period of 4 days. Individuals in the pre-

symptomatic category initially do not show any symptoms for about 2 to 6 days and then proceed to show 

mild symptoms. After approximately 7 days, the individual either recovers or shows severe symptoms and 

may require hospitalization. Once hospitalized, individuals can recover or deteriorate further and require 

critical care. Individuals in critical care either recover or die. The risk of developing severe symptoms, 

requiring critical care, or death is age dependent (See Table S1 in the supplementary document). Age 

dependence in later stages of the infection also serves as a proxy for comorbidities, which are also age-

dependent in general. All recovered individuals can become susceptible again after a period ranging from 

6 months to 1 year. We model the effects of vaccines, along with mask-wearing and social distancing, as 

control measures. The vaccination strategy at the time of writing for COVID-19 initially consisted of two 

doses, the second given within 3 to 4 weeks’ time after the first, followed by a waning period of five months, 

and then 1st booster is given at about the 6 months mark. Thereafter the individual can have the second 

booster after waiting for another six months. Individuals with different levels of immunity induced via 

vaccines can also become exposed and follow a similar infection route as fully susceptible, albeit with a 

Fig. 8 Disease progression model including variants and vaccine doses. 
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lower chance of developing severe disease and hence requiring critical care. The effect of mask-wearing is 

modeled as reducing the chance of exposure to the virus by variable degrees as does social distancing. In 

our model, we implemented a time-varying mask-wearing and social distancing behavior based on COVID-

19 search patterns in Google trend data [60], as described in Section 2.3.3. In the initial part of the pandemic, 

lockdowns with varying levels of restrictions on workplaces, schools, and communities over a period of 3 to 

4 months were also modeled to mimic the scenario followed in Hillsborough County.  

 

 

 

 

 

 

 

 

 

 

 

 

We model the spread of infection in the simulator following the works of Ferguson et al. [61] and Agrawal 

et al. [12], extending the model to include all the variants in Hillsborough County over time and human 

behavior changes as estimated via Google trends time series data [60]. At each time window, a force of 

infection is computed for each individual n based on proximity to other individuals in different spaces 

(home, neighborhood, workplace/school, local community, or a random community) following the time 

schedules followed by individuals: as an example, schools are active only during the first two quarters of 

the day. Furthermore, an individual experiences force of infection from the prevailing strains in these spaces; 

the individual picks up each strain randomly with a probability of picking a strain depending on the force 

of infection it produces for the individual. Human protective behavior 𝐻𝑏(𝑡) in different spaces is modeled 

based on Google trends search data, 𝑔𝑡(𝑡), reflecting social curiosity about COVID-19 over time  [60]. An 

individual is compliant and takes measures including social distancing and mask wearing based on 𝑔𝑡(𝑡) 

and prevailing conditions at different spaces, viz whether workplaces are open or not. At home these 

measures would reflect washing hands regularly and practicing isolations/quarantine in the case of infected 

Fig. 9 Disease transmission algorithm followed by the CitySEIRCast simulator. 
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family members.  At time t, each susceptible individual transits to the exposed state with probability 𝑃𝑟𝑖𝑠𝑘 =

1 − 𝑒−𝜆𝑛(𝑡).Δ𝑡 (Fig. 10), where Δ𝑡 is the simulation time step taken to be 6 hours, and 𝜆𝑛(𝑡) is the force of 

infection (which a function of all the rules above) experienced by the nth individual interacting with other 

individuals across different spaces (Fig. 10).   

The explicit form of the force of infection is given as 

 𝜆𝑛(𝑡) = ∑ 𝜆𝑛′
𝑏 (𝑡) ∙ Γb(𝑡) ∙ 𝐻𝑏(𝑡)

𝑛′,𝑏

+ 𝜁.  (1) 

Here 𝑏 is the set of building types that an individual visits and 𝑛′ is the set of individuals the agent interacts 

with during the visit. The summation term represents the force of infection when the agent in is specific 

buildings (houses ℎ, neighbors’ houses ℎ𝑛𝑏𝑟 , schools 𝑠, classrooms 𝑠𝑐 , workplace 𝑤, or project groups 𝑤𝑝). 

The exact expression for 𝜆𝑛′
𝑏  depends on the building type: 

 𝜆𝑛
𝑏 = {

𝛽𝑏𝜅(𝑡 − 𝜏𝑛′)ρn′(1 +  C𝑛′(ω −  1))𝐻𝑏(𝑡), 𝑖𝑓 𝑏 = ℎ, ℎ𝑛𝑏𝑟;

𝛽𝑏𝜅(𝑡 − 𝜏𝑛′)ρn′(1 +  C𝑛′(ωψ𝑠(𝑡 − 𝜏𝑛)  −  1))𝐻𝑏(𝑡) 𝑖𝑓 𝑏 = 𝑠, 𝑠𝑐 , 𝑤, 𝑤𝑝.
 (2) 

When the agent is in transit 𝑇, community area 𝑐, or random community area 𝑟𝑐, the interaction between 

the agents follows a different functional form given by 𝜁, 

𝜁 =  
∑ 𝐴𝑛′,𝑡𝑛′:𝒯(𝑛′)=1

∑ 𝒯(𝑛′)𝑛′
∑

𝑑𝑛′,𝑤(𝑛′)𝐼𝑛′𝛽
𝑇

𝑀𝑛′

∑ 𝑑𝑛′,𝑤(𝑛′)𝑛′:𝑇(𝑛′)=𝑇(𝑛)

∙ 𝐻𝑇

𝑛′:𝒯(𝑛′)=𝒯(𝑛)

+ 
𝜁(𝑎𝑛). 𝑓(𝑑𝑛,𝑐)

∑ 𝑓(𝑑𝑐,𝑐′)𝑐′

∑ 𝑓 (𝑑𝑐,𝑐′) ℎ𝑐,𝑐′

𝑐′

(𝑡)𝐻𝑐

+
𝜁(𝑎𝑛). 𝑓(𝑑𝑛,𝑐)

∑ 𝑓(𝑑𝑐,𝑐′)𝑟𝑐′

∑ 𝑓 (𝑑𝑐,𝑐′)

𝑟𝑐′

. 𝜁(𝑎𝑛). 𝐼𝑛′(𝑡)𝛽 𝑟𝑐𝜅(𝑡 − 𝜏𝑛′)𝜌𝑛′ (1 + 𝐶𝑛′(𝜔 − 1)) 𝐻𝑟𝑐. 

where,  

Fig. 10 Exposure probability algorithm followed by our CitySEIRCast simulator. 
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ℎ𝑐,𝑐′ = (
∑ 𝑓 (𝑑𝑛′,𝑐(𝑛′)) . 𝜁(𝑎𝑛). 𝐼𝑛′(𝑡)𝛽𝑐𝜅(𝑡 − 𝜏𝑛′)𝜌𝑛′(1 + 𝐶𝑛′(𝜔 − 1))𝑛′:𝑐(𝑛′)=𝑐′

∑ 𝑓(𝑑𝑛′,𝑐(𝑛′))𝑛′

). 

 

Here 𝐼𝑛(𝑡) = {0, 1} is based on whether an agent is infectious or not, 𝜌𝑛 reflects  an  individual’s variability in 

relative infectiousness (coming from a gamma distribution) and 𝐶𝑛 = {0, 1}  indicates whether an agent is 

severely infected and hence more infectious by a factor of (ω −  1).  By contrast, the force of infection is 

reduced by a factor, (ψ𝑠,𝑤(t − τ𝑛)ω −  1), in the case of work and school absenteeism due to severe 

infection resulting from exposure at time τ𝑛. The severity factor and absenteeism are taken to be ω = 2 and 

ψ𝑠,𝑤(t − τ𝑛) = {0.1, 0.5} [12]. The individual sees a relative travel related contact rate 𝜁(𝑎𝑛′) specific to age, 

we take this to be 0.1, 0.25, 0.5, 0.75, 1, 1, 1, 1, 1,1, 1, 1, 0.75, 0.5, 0.25, and 0.1 for the various age groups in 

steps of 5 years, with the last one being the 80+ category. Infection-stage-related infectiousness is taken to 

be κ(t − τ𝑛) at time t. For the disease progression described in the previous section, κ(t − τ𝑛)  is 1 in the 

pre-symptomatic and asymptomatic stages, 1.5 in the symptomatic, hospitalized, and critical stages, and 0 

in the other stages. Individuals using public transport transmit more if they travel longer distances, while 

visits to communities in other zip codes contribute to the force of infection proportional to the distance 

kernel function 𝑓(𝑑𝑐,𝑐) (see Tables 2 and 3).  

The force of infection described above along with the transition probabilities in Table 2 and Table S1 of the 

supplementary document are used to transition the agents through the disease stages as described. 

2.3.2 Arrival of new strains 

We started the simulator with the original strain of COVID-19 virus. That is, at the start of the simulation 

100 percent of infectious individuals are infected by the original strain. Subsequently, as new variants are 

reported in the real world (see Table 3 for the time of arrival of variants), we introduce these strains in the 

simulation as follows. On the day of the first reports, a small fraction of infectious agents is infected by the 

new variant. In the simulation, this new variant is represented by a new set of transmission, hospitalization, 

and death rates. As time progresses the proportion of agents infected with the new strain increases until 

the new variant overtakes the existing strain. This is to be expected as the new variant is, in general, more 

transmissible than its existing counterpart. This competition between the strains is reflected by the gradual 

increase in the effective force of infection experienced by the agents from the new strain. 
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2.3.3 Google Trends and human behavior 

We use Google trends data [60] for COVID-19-related search terms to model human protective behavior. 

This model assumes that social media interest in a particular topic can translate to a behavioral response 

by an agent. In the present case, we consider that interest in COVID-19 related search terms by agents 

would lead to higher compliance with intervention measures, and hence in a reduction in the force of 

infection. The degree of reduction in the force of infection 𝜆𝑛
𝑏  in space 𝑏 based on individuals’ compliance 

status is obtained via a Bernoulli trial 𝐵(1, 𝑝), where the probability of compliance is 𝑝 = 𝑔𝑡(𝑡). 

Noncompliant individuals see a relatively higher force of infection in a given space whereas compliant 

individuals experience a reduced force of infection in that space (Equation 1). Additionally, during different 

phases of the pandemic, the high non-compliance observed for community places (shops, malls) is 

implemented by ignoring Google trend values in this space, while maintaining the limited restrictions 

followed in workplaces and schools. This was specifically the case during the delta and the subsequent 

omicron transmission surges [62]. To allow for uncertainty in human behavior, we consider ensembles of 

Google trends data, created by adding and subtracting 10 percent to the original data and time-shifting by 

two weeks. The full set of Google trends and members of the ensemble, as described, are shown in Fig. 11. 

2.3.4  Lockdown mandates in Hillsborough County, Florida  

The lockdown and closure mandates in the State of Florida or by Hillsborough County authorities are 

implemented in the simulator following the schedules available from Hillsborough County mandate 

documents. To accurately model the timing, span, and extent of lockdowns, we referred to Executive Orders 

(EO) enacted by governing bodies where they detail each measure [62, 63]. Guidelines regarding the closure 

 

Fig. 11 Google trends ensemble generated through addition of 10% variance to the original trend in 

the queries made. In total, we derived 100 ensembles, 50 of which sampled from the actual trends data 

and another 50 by shifting the full time series to the right by two weeks. The data are used as a proxy 

for mask compliance as well as determine the degree of exposure in places/spaces where people 

interact, viz. home, school, community, and workplace. 
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of schools were obtained from the Florida Department of Education and Hillsborough County Public Schools 

[64, 65]. Lockdowns were imposed in several phases, i.e., Phase 1, Phase 2, Phase 3, and finally the release 

of all lockdowns as part of the “Safe. Smart. Step-by-Step" recovery plan devised by [66]. Phase 0 refers to 

the initial measures taken from March 9, 2020, when the State of Florida declared COVID-19 as a public 

health emergency, which included encouraging all state residents to stay at home except for essential 

services, while restaurants and public schools were closed. Phase 1, implemented on April 29, 2020, 

continued to encourage staying at home, and allowed restaurants and retail stores to open at 25% of indoor 

capacity. Phase 1 was extended on May 15, 2020, with the modification that restaurants and retail stores 

could operate at 50% of indoor capacity. Phase 2, implemented on June 5, 2020, allowed all non-essential 

businesses, including retail stores, to fully reopen, while restaurants remained operating at 50% indoor 

capacity. Phase 3, implemented on September 25, 2020, continued on Phase 2 regulations but allowed 

restaurants to operate at no more than 50% indoor capacity. Essential businesses, grocery stores, financial 

institutions, and places of worship remained open throughout all phases while public schools and 

universities were operated entirely remotely. On May 3, 2021, the State of Florida ordered that all COVID-

19-related orders and mandates be lifted across the state [62]. The lockdown and phase timeline are 

depicted in Fig. S1 and Table S3. 

The level of closures of various spaces/buildings is incorporated in the simulator via the parameter Γb(𝑡) 

where 𝑏 corresponds to spaces categorized into schools, workplaces, community spaces. 

2.3.5    Vaccination schedules 

We implement the same vaccination schedule as that followed in Hillsborough County. The first doses of 

vaccine were delivered in January 2021. Following the first dose, individuals were required to have a second 

dose to complete the vaccination sequence. Subsequently, the first booster doses were available. During 

the simulations, the Hillsborough-wide daily vaccination data by dose was approximated by polynomial 

curves shown in Fig. S2. Vaccine efficacy is implemented according to dosage viz. first dose is 75% efficient, 

while second dose has a 95% efficacy and booster has a 99% efficacy, and a waning individual has a reduced 

efficacy of 90% between second dose and subsequent booster [67]. The total number of vaccines on a given 

day were distributed by age and that distribution changed over time according to vaccination guidelines 

[62, 63, 68, 69], see Table S4 in the supplementary document. 

2.4 Parameter Calibration  

We use a Bayesian calibration technique to learn values of the subset of parameters related to rates of 

transmission across different spaces (Table 2), based on initial sensitivity analysis. Starting from a uniform 

prior distribution assigned to these free parameters, we obtain a posterior distribution of parameters by 

minimizing the root mean square error between simulated and reported daily case data [70].  As the time 

series extended, we refined the parameters as the pandemic unfolded and new data regarding variants and 

new control measures, including mask-wearing, lockdown, and vaccinations became available. Specifically, 

when a new variant arrives the transmission, hospitalization and death factors are scaled according to 

variant properties (Table 2). Schematically the process of obtaining posterior distributions from data is 
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shown in Fig. 12. Additionally, we assign each agent a natural and vaccine-induced immunity period 

obtained from a gamma distribution. The details of the priors used for estimating the transmission rates 

and the shape and scale parameters of the gamma distributions associated with the immunity states, and 

the other fixed parameters are given in Table 2. The time shift for Google trends ensembles is also treated 

as a parameter and is varied from 0 weeks to 4 weeks for the fitting procedure. The root-mean square error 

criterion between observed and simulated daily cases data for identifying the best fitting parameters at the 

county level is given by: 

 

 𝑅𝑀𝑆𝐸 = √
∑(𝑑𝑎𝑖𝑙𝑦 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 − 𝑑𝑎𝑖𝑙𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑎𝑠𝑒𝑠)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 (3) 

 

We used this procedure to identify 200 best-fitting models that exhibited the lowest RMSE values, and 

deployed this ensemble to forecast the spatio-temporal propagation of COVID-19 in Hillsborough County. 

 

 

 

 

 

 

Fig. 12 The Bayesian melding framework for parameter calibration using observed data. We used daily 

reported cases at the county level to calibrate the parameters listed in Tables 2 and 3. 
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Table 2. Parameter table 

Parameter Interpretation Prior distribution/Value 

𝛽ℎ Transmission rate in home 

settings 

U(0.1, 0.2) 

𝛽ℎ
𝑛𝑏𝑟 Transmission rate in home 

settings 

U(0.1, 0.25) 

𝛽𝑤 Transmission rate in work 

settings 

U(0.2, 0.3) 

𝛽𝑤𝑝 Transmission rate at work in 

project 

U(0.1, 0.3) 

𝛽𝑐 Transmission rate in community 

settings 

U(0.1, 0.25) 

𝛽𝑟𝑐 Transmission rate in random 

community 

U(0.1, 0.25) 

𝛽𝑠 Transmission rate in school 

settings 

U(0.3, 0.5) 

𝛽𝑠𝑐 Transmission rate at school in 

classroom setting 

U(0.1, 0.2) 

𝛽𝑇 Transmission rate in public 

transport. 

U(0,0.05) 

Gama distribution shape 

parameter 𝜃 

Shape parameter for gamma 

distribution for immunity 

2 

Mean natural Immunity period 

𝛾0 

Rate of joining susceptible class 

after recovering 

2 years (mean) 

Mean Immunity period 

vaccinated 1st dose 𝛾1 

Rate of joining susceptible class 

after recovering due to vaccine 1 

1 month (mean) 

Mean Immunity period 

vaccinated 1st dose 𝛾2 

Rate of joining susceptible class 

after recovering 

(mean) 

Mean Immunity period 

vaccinated 1st dose 𝛾3 

Rate of joining susceptible class 

after recovering 

2 years (mean) 

Mean Immunity period 

vaccinated 1st dose 𝛾4 

Rate of joining susceptible class 

after recovering 

2 years (mean) 

Immunity period (natural or 

vaccine induced) 

Individual agents rate of joining 

susceptible class after 

recovering 

Gamma(
𝛾𝑖

𝜃
, 𝜃) 

Mean incubation period 𝜎 Exposed to pre-

symptomatic/symptomatic 

period 

4.5 days 

𝜎𝑖 Individual incubation period Gamma(
𝜎𝑖

𝜃
, 𝜃) 

Pre-symptomatic fraction Fraction of individuals that 

would eventually be 

symptomatic 

0.67 
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Table 3. Functional forms and miscellaneous variables 

Function/variable Interpretation Functional form/value 

𝑓(𝑑)  Distance kernel 1

(1 + (
𝑑
𝑎

)
𝑏

)

 

a=20.751, b=3.384 

𝑇Ω0 Household transmission rate 

scales as 𝑛1−𝛼 

0.8 

𝑟𝛼 Relative transmissibility of alpha 

variant 

1.3 

𝑟𝑑 Relative transmissibility of Delta 

variant 

3 

𝑟Ω Relative transmissibility of 

Omicron variant 

1.2 

𝑇𝛼 Time of arrival of alpha variant in 

Hillsborough 

30th December 2020 

𝑇𝑑 Time of arrival of Delta variant in 

Hillsborough 

25th April 2021 

𝑇Ω0 Time of arrival of Omicron variant 

in Hillsborough 

2nd Dec 2021 

𝑇Ω1 Time of arrival of Omicron sub-

variant in Hillsborough 

23rd Jan 2022 

𝑇Ω2 Time of arrival of Omicron sub-

variant in Hillsborough 

8th May 2022 

𝑇Ω3 Time of arrival of Omicron sub-

variant in Hillsborough 

8th May 2022 

𝑇Ω4 Time of arrival of Omicron sub-

variant in Hillsborough 

17th July 2022 

𝑇Ω5 Time of arrival of Omicron sub-

variant in Hillsborough 

28th Aug 2022 

𝑇Ω6 Time of arrival of Omicron sub-

variant in Hillsborough 

2nd Sep 2022 

𝑇Ω7 Time of arrival of Omicron sub-

variant in Hillsborough 

12th Sep 2022 

Vaccine effectiveness 1st dose Effectiveness of vaccine in 

inducing immunity to individuals 

after 1st vaccine dose 

0.75 

Vaccine effectiveness 2nd dose Effectiveness of vaccine in 

inducing immunity to individuals 

after 2nd vaccine dose 

0.95 

Vaccine effectiveness 3rd dose Effectiveness of vaccine in 

inducing immunity to individuals 

after third vaccine dose 

0.99 

Vaccine effectiveness 4th dose Effectiveness of vaccine in 

inducing immunity to individuals 

after 4th vaccine dose 

0.99 
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2.5 Computation  

As the DT is a bottom-up simulation, it starts with several types of input files: epidemiological data that 

includes case, admission, death, and vaccination data; population data that includes distributions of race, 

age, gender, income, and employment; and spatial data that includes locational and mobility data. These 

input files come together in the ABM layer, which uses the synthetic population, movements and disease 

status to simulate disease propagation. As noted above, the synthetic population, composed of agents that 

are combined with demographics and disease status, also needs to be distributed to the zip codes of 

Hillsborough County in a way that is statistically representative of the population of each zip code. Further, 

we also require simulating the detailed movement of individuals between zip codes to capture the reality 

of county residents going to work, school, stores, and other types of buildings outside of their zip code. 

These operations mean that both the DT simulation as well as the model simulations need to be computed 

in parallel and managed effectively for post-processing. Our solution is to harness the power of multiple 

CPU-cores and the larger memory capabilities of HPC to efficiently carry out these simulations on hundreds 

of cores.  

2.5.1 High-Performance Computing Architecture   

To enable large-scale simulations in a distributed environment, we created an MPI cluster on Microsoft 

Azure, consisting of multiple virtual machines (VMs). The cluster leveraged 16 Azure VM HB instances, each 

with 96 cores and 384 GB RAM, resulting in a total of 1536 cores and 6.144 TB RAM across all VMs. This 

configuration ensured efficient parallel processing for the simulations, allowing the making of 1 month-

ahead forecasts using a calibrated ensemble of 200 models to be completed over 3 days.  Additionally, a 

Network File System (NFS) file share of 10 TB was used for data storage and sharing across the VMs. Initially, 

this was cloud-based which was then moved off cloud for improving speed of access to the data for 

visualization purposes.  The HPC architecture is summarized in Fig. 13. 

2.5.2  Hybrid Python and C++ Execution  

The workflow was further designed to incorporate both Python and C++ components for efficient parallel 

execution. Python was used to implement the MPI functionality for performing the ABM ensemble 

calibration, while the simulator itself was written in C++. This hybrid approach allowed seamless integration 

of Python's high-level MPI capabilities with the performance advantage of C++ for executing the simulator. 

Each MPI process runs an instance of the C++ simulator. We split our 15,000 ensemble runs into batches 

of 96x16 (corresponding to number of cores in a single VM and the number VM’s as described in the 

previous section). This allowed for the calibration and forecasting computations to be carried out in a time-

efficient manner.  
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Fig. 13 High performance computational framework for achieving the full calibration of 

CitySEIRCast simulator. 
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2.5.3 Workflow and resource management  

The heterogeneous nature of our workflow, which incorporated Python, C++, and MPI components, 

required careful coordination and resource management. The high-level Python MPI functionality was used 

to distribute the simulation parameters across the VMs and to coordinate the execution of C++ simulator 

instances. This approach ensured efficient utilization of the available hardware resources and allowed for 

rapid switching between the different components. The overall workflow consisted of generating 

parameters in Python, distributing them to the C++/MPI simulations, and registering progress through 

database operations. This coordination was performed using MPI and Python's in-built functionality, 

without relying on external workflow systems. The chosen approach allowed for effective management of 

in-memory user libraries and third-party packages, making it suitable for our complex simulation 

requirements. 

3 SIMULATION RESULTS 

In this section, we present the simulation results for the COVID-19 case study, focusing specifically on the 

spatio-temporal propagation of cases, hospitalizations and deaths at the county and zip code levels in 

Hillsborough County. We also show results for the effects of heterogeneous transmission among sub-

populations, synchronization of cases across zip codes, and spatial patterns of immunity evolution across 

the County and its impact on the future transmission of the pandemic.   

3.1 County-level analysis  

We initiated the simulation of the pandemic with a seeding of exposed cases based on the zip code level 

cases reported in March 2020. We started with 10,000 sets of parameter vectors for the ABM model, with 

the values for each parameter drawn randomly from the prior distributions described in Table 2 using the 

Latin Hypercube sampling process. 200 best-fitting models are then selected for further simulation using 

the Bayesian calibration approach described in Methods. Fig. 14 shows the results of the county-level 

simulations for daily cases, hospitalizations, and deaths) from March 2020 to end of July 2023. The solid red, 

green and grey lines in the figure depict the mean values of the daily-cases, hospitalizations, and deaths 

respectively, whereas the shaded regions show the respective the 95% confidence intervals for each mean. 

The solid black line in each figure panel represents the actual numbers reported for daily cases, 

hospitalizations and deaths by the Department of Health, Hillsborough County. While the model predictions 

are able to capture the temporal wave-like patterns observed in the reported data for each clinical state 

reasonably well, it is apparent that the quantitative performance of the model contrasted with the data 

observed at different phases of the pandemic, particularly in the case of hospitalizations and deaths. We 

consider that this mismatch between predictions and observed data is a function of several factors, including 

parameter uncertainty that is not fully constrained by calibration to only daily case data, the consideration 

of only the Hillsborough population ignoring impacts of visitors, and problems with reporting of data, 

particularly in the case of deaths. Other issues could be related with uncertainties with regards to the actual 

implementation and compliance with the various social measures mandated by the authorities, the arrival  
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times of the variants, and the movement model only approximately capturing the mobility of agents 

throughout the pandemic. This indicates that further investigation of parameter sensitivity, agent 

movements using better real-time data, agent compliance behavior, and inclusion of a data model for 

addressing errors in reporting, will be required to correct these anomalies. We are currently addressing the 

resolution of these issues to improve predictive performance. 

 

 

Fig. 14 Daily infected cases, hospitalizations and deaths across the Hillsborough County. The 

shaded blue region indicates the 99 percent confidence interval obtained from ensemble of 

simulations using parameter priors as in Table 1. An ensemble of 10,000 sets of parameters from 

the prior distribution were simulated and a selection criterion by RMSE resulted in 159 best fitting 

(shaded region) curves against reported daily infection cases (black line). Vertical dashed lines 

reflect the dates of arrival of the major virus variants. 
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3.1.1 County-level analysis by population sub-groups 

A feature of the DT-ABM is that it allows sub-group analysis to be carried out for identifying and 

characterizing the most-risky population categories for a disease. Fig.15 illustrates the absolute daily case 

numbers predicted for the population of Hillsborough, divided by age groups, races, ethnicity, and income 

categories. These results show, on the one hand, that working age groups are the main contributors to the 

predicted daily cases across the county, whereas White people have the highest number of cases among all 

races. Similarly, lower-income groups contributed the most to the overall daily cases. On the other hand, an 

analysis based on proportions relative to population size did not reveal much difference in daily cases, even 

though hospitalizations and deaths were disproportionately high in African American and other minority 

groups, including Hispanics (data not shown). 

 

 

Fig. 15 Daily infected cases by diversity groups (a) age, (b) race and (c) income. 
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3.2 Zip code-level analysis  

This was performed on a subset of 5 zip codes chosen to represent different locations, population sizes, 

and infection patterns in the county. The analysis based on these zip codes reveals two key patterns. Firstly, 

some of these representative zip codes (and by extension some zip codes in the entire county) always show 

higher numbers of daily cases relative to the median cases predicted across all zip codes, while the numbers 

predicted in others are always below the median, as can be seen in Fig. 16. The grey shaded region in the 

figure indicates the 95% confidence interval constructed at each time for the combined predictions for all 

 

Fig. 16 Daily infected cases in selected zip codes (see legends) indicating the zip 

codes relative position to the median cases (red line) over time across all zip codes in 

Hillsborough County. The grey shaded region indicates the 95% confidence interval 

constructed at each time for the combined predictions for all the 52 zip codes The 

dashed black curves correspond to the simulated daily cases for the selected zip 

code. 
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the 52 zip codes modelled, while the red curves show the corresponding median daily cases arising from 

these predictions. The dashed black lines show the simulated daily cases in the selected zip code and 

indicate each zip code’s infection levels relative to the median cases for all zip codes. These results 

demonstrate that throughout the pandemic, some of the 5 zip codes were consistently at higher risk for 

infection compared to the rest. This pattern can also be observed in the maps showing the spatial 

distribution of the cases predicted at the zip code level (Fig. 17). As can be seen, significant heterogeneity 

or spatial asynchrony between zip codes emerged early during the pandemic, which persisted over time 

(high infection zip codes remaining relatively highly infected), although there is also an interesting indication 

of changes in spatial synchrony across the zip codes.    

To further characterize the spatial synchronization in daily cases, we assessed the pattern of temporal 

correlations between the daily reported cases predicted for each pair of the 5 representative zip codes. We 

applied a moving 60-day time-window to perform the paired correlations to study the dynamics or 

evolution of zip code-level spatial synchronization in the cases [71]. This time-window length was arrived at 

 

Fig. 17 Maps of infection counts across zip codes on three dates (19th April 2020, 15th August 2021, 

and 13th November 2022), showing spatial asynchrony between zip codes. 
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by experimenting with different choices, which found that a 60-day window best helped in unveiling the 

synchronization patterns shown in Fig. 18. The results from this temporal correlation analysis highlighted 

the evolution of distinct synchronization patterns across the pairs of zip codes investigated. Notably, during 

the initial and Alpha variant waves, a low degree of synchronization was observed. This degree of 

synchronization gradually increased over time until the highest degree of synchronization was detected 

during the formation of the Delta and Omicron variant waves. The period post-Omicron, however, showed 

a return to lower levels of synchronization between the zip code pairs (Fig. 18). As noted above, this 

temporally-changing pattern of asynchrony and synchrony at different phases of the pandemic was also 

observed in the spatial distribution of evolving zip code-level cases in the county (Fig. 17).  Several factors 

might interact to govern the spatial asynchrony-synchrony patterns observed in the results; during the early 

phases when most of the population is susceptible, variations in spatial case distribution as a result of non-

uniform seeding of infectious cases, zip code-level population size, vulnerability to infection, and patterns 

of movements will govern the observed asynchronous pattern in cases. As waves develop, more and more 

susceptible individuals or agents come in contact with growing numbers of infecteds within and across zip 

codes to cause synchronization in the cases. During the post-omicron, synchrony is broken by the 

emergence of large but variable numbers of immunes in different zip codes (as a result of variations in the 

levels of infection experienced) forming barriers to transmission from lower numbers of infecteds to the 

remaining susceptibles.    

 

Fig. 18 Moving window cross-correlations between the infection time series of the zip codes shown 

in the legend indicating emergent synchronization and asynchronization regions overtime.  
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Fig. 19 demonstrates another important utility of employing a place DT to run a disease ABM, viz. that it 

also allows investigation of the population attributes that may underlie the spatial (zip code level in the 

present case) distribution of disease transmission. The figure plots the fractions of agents exhibiting 

different attributes that may be associated with COVID-19 transmission in a sample of high incidence versus 

low incidence zip codes. The results show that among the agent attributes, the higher rate of transmission 

observed in the high incidence zip codes is associated with individuals belonging to >18 year groups, the 

Hispanic ethnic group, poorer income brackets and greater travel outside the resident zip code. 

3.3 Forecasts  

We next used the model fitted to case data until end of July 2023 to generate near-future one-month ahead 

forecasts for the path of COVID-19 in the county. The results of the forecast shown in Fig. 20(a) indicates 

that viral transmission will assume a low-level oscillatory pattern in the near future. This implies that the 

infections will not fade away altogether despite the growth of high levels of naturally immune and 

vaccinated individuals over time (Fig. 20(b)). A further reason relates to the spatial evolution of immune 

agents across the county, which changes from an inhomogeneous pattern during the earlier stages of the 

pandemic to a high level more homogenous pattern by July 2023 (Fig. 21). This ensures that no local pockets 

of infections arise and is able to spread over time, thereby suppressing and maintaining infections at low 

levels globally.  However, there is also a suggestion that due to waning of both natural and vaccine-induced 

immunity, combined with the immune escape potential of new variants as was reported for Omicron 

subvariants, there will be a continual risk of small flare-ups, as can be seen in Fig 20(a). An interesting feature 

Fig. 19 Population characteristics of low and high transmission zip codes. 
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of the results depicted in Fig 20(a) is that post-omicron, our model predictions are consistently higher than 

the reported case data despite fitting the omicron wave well. We suggest that this is mostly likely because 

case reporting began to become inconsistent during this stage raising important questions regarding 

whether the lower quality reported data or model predictions calibrated to past higher quality data offers 

a better guidance as to the later state of the pandemic.  

 

  

 

Fig. 20 (a) Daily cases time series showing the time window from pre-omicron all the way into end 

of July 2023, and the period one month ahead to the end of August 2023. The dashed vertical lines 

indicate the beginning of the post-omicron and end of July 2023 periods respectively. (b) The daily 

change in the proportion of immune individuals over the course of the pandemic.  
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4 SUMMARY AND CONCLUSION 

We describe how we have developed HPC-oriented workflows to implement a city-scale DT platform for 

the specification and execution of the key components of an ABM for simulating and controlling the spread 

of respiratory pandemics in complex urban settings, focusing here on the COVID-19 epidemic in 

Hillsborough County, Florida. The defining feature of the developed agent-based city DT for simulating the 

spread of such an epidemic is that it facilitates the construction of a fine-grained model of a city and its 

components in order to support more realistic data-driven disease modelling through the capture of the 

real-world factors (demographics, social behaviors and activities, locales of infections, and public 

interventions) that drive the rate and spatio-temporal spread of epidemics in populations. The workflows 

are also unique in that they facilitate the execution of large data-intensive steps that incorporate daily zip 

code and county-level surveillance and policy data, agent movements based on navigation/traffic data, 

dynamic agent behavioral responses to fluctuations in cases, individual agent susceptibility to the viral 

pathogen, and the arrival of viral variants differing in transmission and clinical characteristics. The workflows 

also additionally include post-simulation analytics for facilitating projections, and the making of sub-

population and locational risk assessments. Computational efficiency and scalability constitute major issues 

when running large-scale ABM frameworks, and more so when these are embedded within a city DT.  We 

have sought to resolve this issue using cloud-based HPC resources along with high parallelization of our 

code. Optimizing the trade-offs between performance and the computing cost of running HPC-supported 

digital-twin simulations on the cloud or on compute clusters is an ongoing challenge that needs to be 

Fig. 21 The modelled spatial distribution of immune agents in Hillsborough County in a) April 2021 and 

b) May 2023.  
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resolved if we are to replace batch scheduling with on-demand requests of simulation runs [16, 72]; this will 

make it possible to eventually bring simulations closer to real-time.  More realistic modelling of actual 

movements across a city by residents can also take advantage of new advances made in the use of real-

time data from IoT sensors that integrates high-resolution infrastructure data and road user behaviors and 

vehicle movements across a city at various timepoints during the day [73]. This continuous synchronization 

of data will enable DT models to be continuously updated based on real-time conditions, making it an 

effective tool to run virtual simulations and scenario planning. Such systems will further increase 

computational complexity but will lead to a better bi-directional mapping of the real and digital worlds, the 

achievement of which will support better and smarter planning and management of health crises going 

forward.  

This work arose in response to requests from county agencies to support their work on COVID-19 

monitoring, risk assessment, and planning, and using the described workflows, we were able to provide 

uninterrupted bi-weekly simulations to guide their efforts for over a year from late 2021 to 2023. This 

experience and the results described here demonstrate that timely data-driven high resolution epidemic 

simulations using a coupled place DT-ABM platform is possible, and if the data inputs we have defined in 

the paper and increased compute power is made available, it is also scalable to larger regions. Indeed, we 

have already successfully applied the described data pipeline and compute workflows to the city of Miami 

(to be described in a following work), which amply validates this possibility.  Finally, we note that while we 

have focused on respiratory epidemics in the present work and have validated our approach in the specific 

context of COVID-19 transmission, and associated intervention scenarios, our data pipeline and workflows 

are also designed on the principles of computational and model agility in such a way that the framework 

can be easily repurposed for other objectives and diseases [4].  We are exploring such extensions, for 

example, for simulating vector-borne diseases in Florida, and also as a simulation tool for aiding decision-

making and preparedness for future epidemics in different national and global settings. 
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