It is made available under a CC-BY-NC-ND 4.0 International license .

Mild and moderate COVID-19 during Alpha, Delta and Omikron pandemic waves in urban Maputo, Mozambique, December 2020-March 2022: a population-based surveillance study

- 3 Brecht Ingelbeen^{1,2#}, Victória Cumbane^{3#}, Ferão Mandlate³, Barbara Barbé¹, Sheila Mercedes
- 4 Nhachungue³, Nilzio Cavele³, Cremildo Manhica³, Catildo Cubai³, Neusa Maimuna Carlos Nguenha³,
- 5 Audrey Lacroix⁴, Joachim Mariën¹, Anja de Weggheleire⁵, Esther van Kleef^{1,2}, Philippe Selhorst¹,
- 6 Marianne AB van der Sande^{1,2}, Martine Peeters⁴, Marc-Alain Widdowson¹, Nalia Ismael^{3*}, Ivalda
- 7 Macicame^{3*}
- 8 ¹ Instituut voor Tropische Geneeskunde, Antwerp, Belgium
- 9 ² Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, the Netherlands
- ³ Instituto Nacional de Saúde, Ministry of Health (MISAU), Marracuene, Mozambique
- ⁴ TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de
- 12 Montpellier, Institut de Recherche pour le Développement, INSERM, Montpellier, France
- ⁵ Médecins sans Frontières, Brussels, Belgium
- 14 Correspondence: <u>bingelbeen@itg.be</u>
- 15 [#] and ^{*}: Authors contributed equally

16 Abstract

- 17 In sub-Saharan Africa, reported COVID-19 numbers have been lower than anticipated, even when
- 18 considering populations' younger age. The extent to which risk factors, established in industrialised
- 19 countries, impact the risk of infection and of disease in populations in sub-Saharan Africa, remains
- 20 unclear. We estimated the incidence of mild and moderate COVID-19 in urban Mozambique and analysed
- 21 factors associated with infection and disease in a population-based surveillance study.
- 22 During December 2020-March 2022, households of a population cohort in Polana Caniço, Maputo,
- 23 Mozambique, were contacted biweekly. Residents reporting any respiratory sign, anosmia, or ageusia,
- 24 were asked to self-administer a nasal swab, for SARS-CoV-2 PCR testing. Of a subset of 1400
- 25 participants, dried blood spots were repeatedly collected three-monthly from finger pricks at home.
- 26 Antibodies against SARS-CoV-2 spike glycoprotein and nucleocapsid protein were detected using an in-
- 27 house developed multiplex antibody assay. We estimated the incidence of respiratory illness and COVID-
- 28 19, and SARS-CoV-2 seroprevalence. We used Cox regression models, adjusting for age and sex, to
- 29 identify factors associated with first symptomatic COVID-19 and with SARS-CoV-2 sero-conversion in
- 30 the first six months.
- 31 During 11925 household visits in 1561 households, covering 6049 participants (median 21 years, 54.8%
- 32 female, 7.3% disclosed HIV positive), 1895.9 person-years were followed up. Per 1000 person-years,
- 33 364.5 (95% CI 352.8-376.1) respiratory illness episodes of which 72.2 (95% CI 60.6-83.9) COVID-19
- 34 confirmed, were reported. Of 1412 participants, 2185 blood samples were tested (median 30.6 years,
- 35 55.2% female). Sero-prevalence rose from 4.8% (95%CI 1.1-8.6%) in December 2020 to 34.7% (95%CI
- 36 20.2-49.3%) in June 2021, when 3.0% were vaccinated. Increasing age (strong gradient in hazard ratio,
- HR, up to 15.70 in ≥70 year olds, 95% CI 3.74-65.97), leukaemia, chronic lung disease, hypertension, and
- 38 overweight increased risk of COVID-19. We found no increased risk of COVID-19 in people with HIV or
- 39 tuberculosis. Risk of COVID-19 was lower among residents in the lowest socio-economic quintile (HR
- 40 0.16, 95% CI 0.04-0.64), with no or limited handwashing facilities, and who shared bedrooms (HR 0.42,
- 41 95% CI 0.25-0.72). Older age also increased the risk of SARS-CoV-2 seroconversion (HR 1.57 in 60-69
- 42 year olds, 95%CI 1.03-2.39). We found no associations between SARS-CoV-2 infection risk and socio-
- 43 economic, behavioural factors and comorbidities.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 44 Active surveillance in an urban population cohort confirmed frequent COVID-19 underreporting, yet
- 45 indicated that the large majority of cases were mild and non-febrile. In contrast to industrialised countries,
- 46 deprivation did not increase the risk of infection nor disease.
- 47 Keywords: Population-based surveillance; COVID-19; SARS-CoV-2; Mozambique; Seroepidemiologic
- 48 studies; Pandemics

It is made available under a CC-BY-NC-ND 4.0 International license .

49 Introduction

- 50 Older age, deprivation, black ethnicity (compared to white) increased the risk of COVID-19 disease or
- 51 death in different contexts (1–3). Younger age groups less frequently manifested symptoms or were
- 52 hospitalised when infected, but also had lower infection rates (4,5). In sub-Saharan African countries,
- 53 reported COVID-19 cases and deaths were lower than expected from the infection prevalence measured in
- 54 sero-surveys and age-specific infection fatality (6.7). HIV increased the risk of COVID-19-related death
- 55 (8), as did widely established risk factors as hypertension, diabetes, or chronic kidney of pulmonary
- 56 disease (1). Higher COVID-19 incidence among deprived has been explained by inequalities in the ability
- 57 to work remotely, and by higher secondary infection rates within (more crowded) households (9).
- 58 The extent to which non-pharmaceutical interventions had an impact on COVID-19 incidence in sub-
- 59 Saharan African settings is still poorly understood. Other studies in Eastern Africa have shown a reduction
- 60 in deaths from acute respiratory infections (10).
- 61 In Mozambique, 184219 COVID-19 cases and 2010 deaths were reported during 2020-21, yet excess
- 62 deaths due to the pandemic have been estimated at 78100 (95% CI 54100-109000) (11). The excess
- 63 mortality rate (139 per 100000, 95% CI 96-194) was comparable to the global all-age estimate (120 per
- 64 100000, 95% CI 113–129). COVID-19 vaccination started on 7 March 2021. By 8 September 2021, 5.0%
- of the Mozambican population received at least one dose of vaccine. By 8 March 2022, 40.2% did.
- In Maputo City, the capital of Mozambique, in 2020-21, COVID-19 testing was centralised in two
- 67 COVID-19 management facilities, where mild/moderate cases were unlikely to go. We provide a
- 68 comprehensive description of the clinical range of mild and moderate COVID-19 in urban Maputo. We
- 69 then estimate SARS-CoV-2 (infection) sero-prevalence, COVID-19 (disease) incidence rates, and analyse
- 70 demographics, comorbidities, and exposures increasing the risk of infection and of disease.

71 Methods

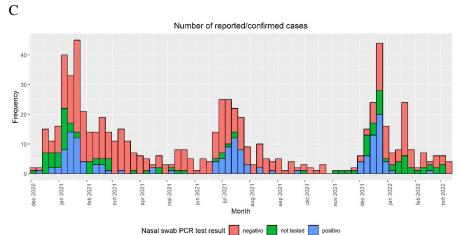
- 72 Study design and population
- 73 Between December 2020 and March 2022, population based surveillance in urban Maputo consisted of
- two components: biweekly follow-up of households to record possible COVID-19 cases (acute respiratory
- 75 symptom, fever, anosmia, or ageusia) and three-monthly sero-surveys to track SARS-CoV-2 antibodies in
- 76 a subset of participants. Recruited households were embedded in the Health and Demographic
- 577 Surveillance System of Polana Caniço, covering 15,393 residents. Participants had to be residents since ≥ 3
- 78 months, and included all ages.
- 79 At baseline, household-level demographics, socio-economic, water- and sanitation conditions, individual
- 80 comorbidities, and behaviour potentially determining exposure were recorded in electronic questionnaires.
- 81 Subsequently, households were visited or phoned every two weeks during one year to detect possible
- 82 COVID-19 cases at the time of the visit or with symptom onset in the two weeks prior to the visit.
- 83 Possible cases were asked to self-administer a nasal swab for SARS-CoV-2 PCR testing. Symptoms
- 84 during the previous two weeks were recorded. If COVID-19 was confirmed, the case was followed up
- after 28 and 56 days to record clinical outcome.
- 86 For the repeated sero-survey, randomly selected participating household members from three age strata (0-
- $17, 18-49, and \ge 50$ years) were visited every three months during one year to collect dried blood spots
- from a fingerprick and (from 31 March 2021 onwards) record prior COVID-19 vaccination.
- 89 Laboratory procedures

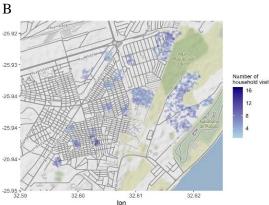
It is made available under a CC-BY-NC-ND 4.0 International license .

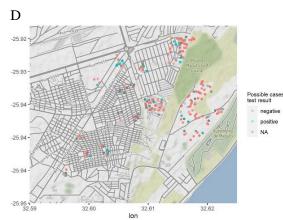
90 Nasal swabs were self-administered at participants' homes or assisted by interviewers in participants

- 91 under 5 years of age, then transported in RNA ShieldTM reagent. Real-time reverse-transcription PCR was
- 92 performed within the same day at Instituto Nacional de Saúde, Marracuene, Mozambique.
- 93 Dried blood spots, containing 450µl of blood sampled from a fingerprick in six circles (each
- ⁹⁴ approximately 75ul) on dried blood spot filter paper (Whatman 903TM Protein Saver Card), were prepared
- 95 for testing by punching two discs of 4mm diameter (corresponding to 40 μl of blood), and eluted
- 96 overnight in 160 µL of hypertonic phosphate buffered saline-BSA (dilution 1:40, phosphate buffered
- saline-1 % BSA-0.15 % Tween, pH 7.4, Sigma-Aldrich). Before use in the immunoassay, eluted samples
 have been further diluted to 1:200 in hypertonic phosphate buffered saline-BSA, according to Mariën *et al*
- have been further diluted to 1:200 in hypertonic phosphate buffered saline-BSA, according to Mariën *et al* (12). We then used an in-house developed multiplex antibody assay for the detection of anti-SARS-CoV-2
- (12). We then used an in-house developed multiplex antibody assay for the detection of anti-SARS-CoV-2
 IgG: we coupled recombinant large spike glycoprotein S1 and S2 subunit, receptor-binding domain
- IgG: we coupled recombinant large spike glycoprotein S1 and S2 subunit, receptor-binding domain
 (RBD), and nucleocapsid-protein (NP) antigens derived from SARS-CoV-2 at Sino Biological to
- maximum of $1.25 \square \times \square 10^{\circ}6$ paramagnetic MAGPLEX COOH-microsphere beads from Luminex
- 103 Corporation as antibody targets. $150 \square \mu l$ of beads and diluted sera were added to each well, incubated at
- 104 room temperature, then washed with 200 ul/well of hypertonic phosphate buffered saline-BSA. Adding
- 105 biotin-labelled anti-human secondary IgG and streptavidin-R-phycoerythrin conjugate, another 30 min
- 106 incubation, samples were read on Luminex MagPixTM at Instituto Nacional de Saúde, Marracuene,
- 107 Mozambique. For each antigen target, a cut-off value of antibody detection was estimated by adding 2.5
- 108 standard deviations to the average value of 42 negative control samples from residents of Maputo,
- 109 collected prior to the pandemic and also spotted on filter paper. We used two citeria to determine
- seropositivity: (i) both RBD and NP above the cut-off, ensuring excellent specificity as demonstrated in
- 111 (12), and (ii) RBD above the cut-off, similar to assays used in most other SARS-CoV-2 sero-surveys (5).
- 112 After breakdown of the MagPixTM platform, serological testing for samples collected after August 2021
- 113 became unavailable.
- 114 Data analysis
- 115 We estimated incidence rates of acute respiratory illness and of COVID-19 from respectively the number
- 116 of possible cases and of confirmed COVID-19 cases, divided by the observation time. Because every
- 117 household visit recorded possible cases with onset during two weeks before the visit, observation time
- 118 consisted of the two weeks prior to each visit, or the time between visits if less than two weeks spanned
- 119 between consecutive visits. We analysed clinical signs and symptoms associated to COVID-19,
- comparing confirmed cases to SARS-CoV-2 negative cases, adjusting for age using unconditional logistic
 regression.
- 122 To identify participant demographic, health, socio-economic and behavioural characteristics associated
- 123 with COVID-19, we did a survival analysis fitting a Cox proportional hazards model with self-reported
- first confirmed COVID-19 as event variable, and observation time, censored after a first confirmed
- 124 Inst commed COVID-19 as event variable, and observation time, censored after a 1
- 125 COVID-19 episode, as time variable, adjusting for age and sex.
- 126 We estimated infection- and vaccination-induced SARS-CoV-2 sero-prevalence, by age group, based on
- 127 sero-survey samples collected up to 31 July 2021. Samples were SARS-CoV-2 sero-positive when
- 128 antibodies against RBD and NP were detected, as proposed by a validation study of the assay (12). To
- 129 ensure comparability to results with other sero-surveys, we analysed sero-prevalence based on antibodies
- 130 against RBD only.
- 131 To identify participant characteristics associated with SARS-CoV-2 infection (including asymptomatic),
- similar to the above survival analysis of first symptomatic COVID-19, we fitted a Cox proportional
- hazards model to sero-survey participants with ≥ 2 samples collected up to 31 July 2021. Events were
- 134 either a SARS-CoV-2 positive result following a negative result (sero-conversion) or an initial SARS-

It is made available under a CC-BY-NC-ND 4.0 International license .


- 135 CoV-2 positive result. Time consisted of three months prior to each sero-survey, or the time between
- 136 consecutive sero-surveys if less than three months spanned in-between, and was in case of sero-
- 137 conversion censored at the midpoint between the last negative test and the subsequent positive test.
- 138 Ethical considerations
- 139 The study protocol was approved by the Mozambican national health bio-ethics committee
- 140 (517/CNBS/2020) and the Antwerp University Hospital ethics committee (B3002020000123). Study
- 141 participants provided written informed consent at baseline for study participation, and again at the time of
- 142 collecting a nasal swab or at the first sero-survey visit.


143 **Results**


- 144 Household surveillance of acute respiratory illness
- 145 Between 15 December 2020 and 31 March 2021, we conducted 11925 household visits in 1561
- 146 households, covering 6049 participants (Figure 1). Participants were median 21 years old (interquartile
- 147 range, IQR, 11-38 years), 3315 (54.8%) were female, and 435 (7.3%) disclosed to be HIV positive. 2694
- 148 (55.6% of 4841 with recorded socio-economic status) did not complete primary education and 93 (1.9%)
- 149 had higher education.

At least one household member with respiratory symptoms no

152 stacked by SARS-CoV-2 PCR test result, D. Geographical distribution of possible COVID-19 cases by result.

153

It is made available under a CC-BY-NC-ND 4.0 International license .

154 *Respiratory illness and COVID-19 incidence rate*

- 155 In the two weeks prior to the visits, 482 households reported at least one possible case in the household.
- 156 The incidence rate of respiratory illness was 364.5 (95% CI 352.8-376.1) per 1000 person-years (py, 691
- 157 possible cases in 611 participants; 1895.9 py followed up). Of 579 possible cases, a nasal swab was
- 158 collected and tested, median 5 days (IQR, 3-8 days) after symptom onset. SARS-CoV-2 was confirmed in
- 159 144 (24.9%) cases. The incidence rate of confirmed COVID-19 was 72.2 (95% CI 60.6 83.9) per 1000 py.
- 160 Among participants under 18 years old, this was 25.9 (95% CI 15.0-36.8) per 1000 py; in 18-49 year olds
- 161 it was 79.9 (95% CI 61.2-98.5) per 1000 py; in \geq 50 year olds, it was 188.3 (95% CI 141.8-234.9) per 1000
- 162 py. SARS-CoV-2 positivity of tested possible cases peaked at 39% in January 2021, at 39% in July 2021,
- 163 and at 55% in December 2021.

164 Clinical signs and symptoms of mild and moderate COVID-19

- 165 Reported COVID-19 cases were median 36.4 years old (IQR 22.3-57.5 years) and 87 (60.4%) were female
- 166 (Table 1). Compared to SARS-CoV-2 negative cases (median age 26.0 years, IQR 10.8-49.3, 55.8%
- 167 female), COVID-19 cases had more frequently anosmia (age-adjusted odds ratio, aOR 2.36 95% CI 1.48-
- 168 3.58), ageusia (aOR, 2.29 95% CI 1.45-3.58), loss of appetite (aOR 2.21 95% CI 1.37-3.56), and chills
- 169 (aOR 1.78 95%CI 1.05-2.97). During the Omikron variant wave starting December 2021, the association
- 170 with each of these symptoms disappeared (anosmia aOR 1.1 95% CI 0.46-2.56, ageusia 0.70 95% CI 2.29-
- 171 1.62, loss of appetite 1.25 95% CI 0.52-2.96, chills 0.88 95% CI 0.28-2.49).
- 172 Table 1. Clinical signs and symptoms associated with SARS-CoV-2 confirmation among acute respiratory illness
- 173 (possible COVID-19 cases) reported during December 2020-March 2022.

Factors	Confirmed		Negative		Crude	odds ratio	Age-adjusted odds ratio		
	CoV-2 (N	(=148)	CoV-2 (N	(=435)					
	n	%	n	%	OR	95%CI	aOR	95% C	
Age*: 0-9 years	7	4.9	90	21.5	ref				
10-19 years	18	12.5	79	18.9	2.93	1.21-7.87			
20-29 years	34	23.6	62	14.8	7.05	3.10-18.3			
30-39 years	18	12.5	48	11.5	4.82	1.95-13.2			
40-49 years	14	9.7	37	8.8	4.86	1.87-13.8			
50-59 years	24	16.7	46	11.0	6.71	2.82-17.9			
60-69 years	22	15.3	40	9.5	7.07	2.92-19.1			
70+ years	7	4.9	17	4.1	5.29	1.62-17.4			
Sex*: Female	87	60.4	234	55.8	1.21	0.82-1.78	1.19	0.81-1.7	
Clinical signs/symptoms									
Cough	117	89.3	326	86.0	1.36	0.75-2.63	1.52	0.82-2.9	
Headache	81	61.8	217	57.3	1.21	0.81-1.82	1.14	0.75-1.7	
Rhinorrhoea	69	52.7	221	58.3	0.80	0.53-1.19	0.86	0.57-1.2	
Throat pain	54	41.2	131	34.6	1.33	0.88-1.99	1.22	0.80-1.8	
Ageusia	47	35.9	69	18.2	2.51	1.61-3.91	2.29	1.45-3.	
Oxygen saturation <95%	16/48	33.3	36/151	23.8	1.60	0.78-3.22	1.54	0.74-3.	
Anosmia	43	32.8	63	16.6	2.45	1.55-3.85	2.36	1.48-3.	
Fatigue	41	31.3	95	25.1	1.36	0.88-2.10	1.26	0.80-1.9	
Loss of appetite	39	29.8	62	16.4	2.19	1.37-3.48	2.21	1.37-3.5	
Fever	33	25.2	96	25.3	0.99	0.62-1.56	1.10	0.68-1.7	
Chills	29	22.1	50	13.2	1.87	1.12-3.10	1.78	1.05-2.9	
Joint pain	29	22.1	49	12.9	1.91	1.14-3.17	1.59	0.90-2.5	
Chest pain	25	19.1	60	15.8	1.25	0.74-2.08	1.10	0.64-1.8	
Myalgia	24	18.3	49	12.9	1.51	0.87-2.56	1.24	0.70-2.1	
Nausea	10	7.6	23	6.1	1.28	0.57-2.69	1.29	0.57-2.7	
Dyspnoe	9	6.9	36	9.5	0.70	0.31-1.44	0.62	0.27-1.3	
Diarrhoea	8	6.1	26	6.9	0.88	0.37-1.92	0.86	0.35-1.8	
Vomit	7	5.3	19	5.0	1.07	0.41-2.50	1.32	0.49-3.2	
Rash	3	2.3	3	0.8	2.94	0.54-16.0	2.98	0.54-16	
Nose bleeding	1	0.8	3	0.8	0.95	0.05-7.5	0.99	0.05-7.9	
Change of consciousness	0	0.0	3	0.8					

^{*} age and sex missing of 16 possible cases, clinical signs and symptoms missing of 69 possible cases.

It is made available under a CC-BY-NC-ND 4.0 International license .

175 Of 92 confirmed COVID-19 cases followed up after 28 days, of whom 54 again after 56 days, one (1.1%)

176 died.

177 Characteristics associated with (symptomatic) COVID-19

178 Increasing age (in \geq 70 year olds hazard ratio (HR) 15.70, 95% CI 3.74-65.97) and several reported

179 comorbidities increased the risk of symptomatic COVID-19: leukaemia, chronic lung disease, overweight,

180 underweight, diabetes, chronic heart disease, and hypertension (Table 2). We found no increased risk of

181 COVID-19 in people with HIV (HR 0.80, 95% CI 0.37-1.76) or with (a history of) tuberculosis (HR 0.93,

182 95% CI 0.33-2.58). The risk of COVID-19 was lower in people belonging to the lowest socio-economic

183 quintile (HR 0.16, 95% CI 0.04-0.64), in households with no or limited handwashing facilities, and in

households where bedrooms were shared with 3 or more household members (HR 0.42, 95% CI 0.25-

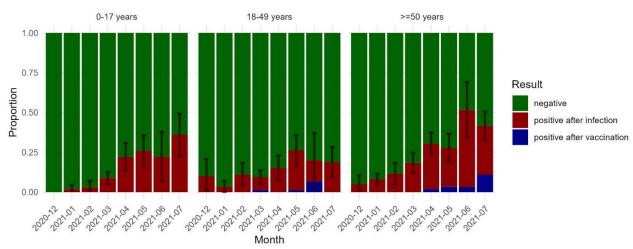
185 0.72).

186 *Table 2. Demographic, socio-economic and behavioural characteristics associated with first confirmed COVID-19*

187 among among acute respiratory illness (possible COVID-19 cases) reported in population-based surveillance during

¹⁸⁸ December 2020-March 2022, using a Cox regression model adjusting for age and sex.

Characteristic			Cohort participants		rted)VID-		ge-/sex-adjusted rd ratio
		Ν	%	19 N	%	HR	95%CI
Age	0-9 years	1331	22.0	7	5.1	ref	J 570C1
8-	10-19	1570	26.0	18	13.1	2.63	0.72-9.56
	20-29	1128	18.6	30	21.9	9.00	2.72-29.84
	30-39	644	10.6	17	12.4	4.17	1.04-16.68
	40-49	519	8.6	14	10.2	6.42	1.70-24.2
	50-59	406	6.7	24	17.5	9.94	2.73-36.1
	60-69	318	5.3	20	14.6	14.33	4.04-50.8
	≥ 70	133	2.2	7	5.1	15.70	3.74-65.9
Sex	Male	2804	46.4	55	40.1	ref	
	Female	3245	53.6	82	59.9	1.10	0.70-1.72
Socio-economic	Lowest (compared to	836	16.3	6	4.9	0.16	0.04-0.6
quintile	other quintiles)						
	1. lowest	836	16.3	6	4.9	0.25	0.06-1.1
	2. low	1015	19.8	27	22.1	1.82	0.86-3.8
	3. med.	1063	20.7	15	12.3	ref	
	4. med./high	1078	21.0	31	25.4	1.71	0.81-3.6
	5. highest	1132	22.1	43	35.2	1.95	0.95-3.9
Education	None	88	1.9	3	2.4	0.50	0.30-0.8
	Primary	2646	55.8	59	46.8	ref	
	Secondary	1735	36.6	56	44.4	1.07	0.45-2.5
	Higher	277	5.8	8	6.3	0.95	0.23-3.9
Health worker		196	3.2	4	5.1	1.39	0.51-3.8
Reported comorbidities	HIV	434	7.3	7	8.9	0.79	0.36-1.74
	(history of) tuberculosis	178	3.0	4	5.1	0.99	0.36-2.74
	hypertension	575	9.6	22	27.8	1.86	1.02-3.3
	diabetes	68	1.1	3	3.8	2.14	0.66-6.9
	asthma	291	4.9	4	5.1	1.11	0.41-3.04
	chronic lung disease	37	0.6	4	5.1	9.69	3.51-26.7
	chronic heart disease	51	0.9	2	2.5	2.11	0.51-8.6
	leukaemia	51	0.9	2	2.5	28.53	3.92-207.6
BMI*	underweight	817	38.2	12	15.8	1.45	0.68-3.1
	normal	802	37.5	27	35.5	ref	
	overweight	281	13.1	19	25.0	1.87	1.02-3.4
	obesity	237	11.1	18	23.7	2.09	1.08-4.0
Smoking	non smoker	5738	95.8	74	93.7	ref	
	(ex-)smoker	251	4.2	5	6.3	1.09	0.42-2.78
Public transportation	none	3948	66.0	39	49.4	ref	
	bus/train	2013	33.7	40	50.6	1.50	0.95-2.3


It is made available under a CC-BY-NC-ND 4.0 International license .

	moto taxi/shared taxi	19	0.3	0	0.0		
Sharing bedroom	1-2 pers.	3311	55.6	61	77.2	ref	
-	3 or more pers.	2646	44.4	18	22.8	0.42	0.25-0.72
Sharing toilet with oth	her household	896	15.0	15	19.0	1.40	0.80-2.46
Handwash facility	sink/faucet	1748	29.3	35	44.3	ref	
-	bucket/jar/kettle	1204	20.2	9	11.4	0.38	0.18-0.79
	none	3005	50.4	35	44.3	0.54	0.34-0.87
Water available in	yes	2153	36.1	35	44.3	ref	
house	no	3804	63.9	44	55.7	0.74	0.48-1.16

189 *in ≥16 year olds

190 Infection-induced SARS-CoV-2 sero-prevalence

- 191 2185 samples collected until 31 July 2021 of 1412 sero-survey participants (median age 30.6 years, IQR
- 192 13.7-57.6; 38.2% >50 years old; 55.2% female) were tested. 301 participants (21.3%) tested positive
- 193 (antibodies against RBD and NP) at least once. 34 (45.3%) out of 75 with a test subsequent to positive
- 194 test, seroreverted.
- 195 Crude sero-prevalence increased from 4.8% (95%CI 1.1-8.6) in December 2020 to 34.2% (95%CI 23.4-
- 45.1) in June 2021, when 2.7% of participants were vaccinated with at least one dose of vaccine (Figure 196
- 197 2). Sero-prevalence increased strongest in \geq 50 year olds, peaking at 51.6% (95%CI 34.0-69.2) in June
- 2021, when 3.2% was vaccinated, yet declined to 41.6% (95% CI 26.5-56.7) in July 2021 when 10.9% was 198
- 199 vaccinated.

 $\begin{array}{c} 200\\ 201 \end{array}$

Figure 2. Infection- and vaccine-induced SARS-CoV-2 sero-prevalence by age group, December 2020 - July 2021. 202 $N_{0-17 years} = 647, N_{18-49 years} = 612, N_{\geq 50 years} = 882.$

- 203 Crude sero-prevalence based on antibodies against RBD only was higher, rising from 10.5% (95% CI 5.1-
- 15.9%) in December 2020 to 46.5% (95% CI 36.7-56.3) in July 2021, without decrease in sero-prevalence 204 205 from June to July 2021 (Supplementary table in Appendix).
- 206 Characteristics associated with SARS-CoV-2 infection
- 207 Older age increased the risk of SARS-CoV-2 infection (HR 60-69 versus 0-9 years 1.57, 95% CI 1.03-
- 208 2.39, Table 3). We found no association between SARS-CoV-2 infection risk and socio-economic,
- 209 behavioural factors and comorbidities.
- 210

It is made available under a CC-BY-NC-ND 4.0 International license .

211 Table 3. Demographic, socio-economic and behavioural characteristics associated with SARS-CoV-2 infection

(including asymptomatic) among sero-survey participants with ≥ 2 samples tested during December 2020-July 2021,

213 *using a Cox regression model adjusting for age and sex.*

Characteristic		Sero-survey		SARS-0		SARS-CoV-2 age-/sex-		
		partici		infec		adjusted	hazard ratio	
		Ν	%	Ν	%	HR	95%C	
Age	0-9 years	223	15.9	35	12.2	ref		
	10-19	305	21.7	58	20.2	1.11	0.73-1.69	
	20-29	161	11.5	28	9.8	0.93	0.56-1.53	
	30-39	114	8.1	14	4.9	0.82	0.44-1.5	
	40-49	68	4.8	15	5.2	1.11	0.61-2.04	
	50-59	240	17.1	54	18.8	1.32	0.86-2.0	
	60-69	202	14.4	57	19.9	1.57	1.03-2.3	
	≥70	93	6.6	26	9.1	1.20	0.72-2.0	
Sex	Male	630	44.8	128	44.6	ref		
	Female	776	55.2	159	55.4	0.94	0.74-1.13	
Socio-economic	Lowest (compared to	100	157	24	12.0	0.83	0.58-1.2	
quintile	other quintiles)	190	15.7	34	13.9			
•	1. lowest	190	15.7	34	13.9	0.71	0.46-1.0	
	2. low	210	17.4	44	18.0	1.00	0.67-1.4	
	3. med.	234	19.4	54	22.0	ref		
	4. med./high	259	21.4	46	18.8	0.69	0.46-1.0	
	5. highest	316	26.1	67	27.3	0.80	0.56-1.1	
Education	None	738	62.5	168	67.5	1.26	0.94-1.7	
Laurunon	Primary	356	30.2	62	24.9	ref	017 1 117	
	Secondary	63	5.3	14	5.6	1.25	0.70-2.2	
	Higher	23	1.9	5	2.0	1.29	0.52-3.2	
Health worker	Ingher	54	3.9	12	4.3	1.11	0.62-1.9	
Reported	HIV	118	12	20	10.9	0.82	0.51-1.3	
comorbidities	(history of) tuberculosis	47	4.8	20 7	3.8	0.87	0.40-1.8	
comoroidities	hypertension	209	21.2	, 49	26.8	0.91	0.61-1.3	
	diabetes	27	2.7	11	6	1.65	0.88-3.1	
	asthma	59	6.0	14	7.7	1.23	0.71-2.1	
	chronic lung disease	6	0.6	2	1.1	2.48	0.61-10.0	
	chronic heart disease	12	1.2	1	0.5	0.40	0.06-2.8	
	leukaemia	12	0.1	1	0.5	1.27	0.17-9.2	
BMI*	underweight	258	29.5	52	26.8	0.72	0.35-1.4	
DIVII	normal	352	40.3	52 69	20.8 35.6	ref	0.55-1.4	
	overweight	126	14.4	30	15.5	1.08	0.69-1.7	
	obesity	120	15.8	43	22.2	1.03	0.81-1.9	
Smoking	non smoker	927	15.8 94	172	22.2 94	ref	0.01-1.9	
SHIOKINg	(ex-)smoker	59	6	172	6	0.67	0.35-1.2	
Dublic transportation		59 587		109	59.9	ref	0.55-1.2	
Public transportation	none bus/train	395	59.6	71	39.9 39.0		0.62.1.1	
		393	40.1 0.3	2	39.0 1.1	0.85 1.95	0.63-1.1 0.47-8.0	
Chaning hadroom	moto taxi/shared taxi		0.3 58.7	178			0.47-8.0	
Sharing bedroom	1-2 pers.	805			63.6 26.4	ref	0 66 1 0	
Charing toilst with -4-	3 or more pers.	566	41.3	102	36.4	0.84	0.66-1.0	
Sharing toilet with othe		214	15.6	37	13.2	0.80	0.57-1.1	
Handwash facility	sink/faucet	511	37.3	110	39.3	ref	0.00.1.5	
	bucket/jar/kettle	267	19.5	51	18.2	1.11	0.80-1.5	
***	none	593	43.3	119	42.5	0.98	0.75-1.2	
Water available in	yes	581	42.4	118	42.1	ref	0.05.1.0	
house	no	790	57.6	162	57.9	1.08	0.85-1.3	

214 *in \geq 16 year olds

215 **Discussion**

216 Population-based COVID-19 surveillance in an urban population cohort in Mozambique confirmed that

217 even during the acute phase of the pandemic the large majority of SARS-CoV-2 infections were

asymptomatic, (symptomatic) COVID-19 cases were mild, and three in four were non-febrile.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 219 Three COVID-19 peaks were distinct and died out after a few weeks, while other respiratory illness
- 220 (SARS-CoV-2 negative) continued to be reported throughout 2021. Sudden drops in COVID-19 incidence
- after peaks while respiratory pathogens other than SARS-CoV-2 continue to circulate, indicate that newly
- 222 introduced COVID-19 variants (Alpha, Delta, Omikron) could quickly spread despite non-pharmaceutical
- interventions. Nonetheless, transmission slowed when infection-induced seroprevalence (e.g., 11.2% in
- March 2021) was still lower than the herd immunity threshold anticipated from the Alpha variants'
- reported transmissibility (13).
- 226 Surveillance started in December 2020 when the Beta variant had spread for 3 months through
- 227 neighbouring South Africa, and two weeks before a surge in cases in Mozambique. Infection-induced
- seroprevalence of 4.8% in December 2020 was lower than the corrected pooled 16.2% reported in other
- African countries that month (5). Limited spread of wild type virus and the Beta variant during the first
- 230 year of the pandemic contrasting to neighbouring South Africa and Eswatini could result from limited
- seeding through imported cases, limited mobility within the city and country, and longer maintained nonpharmaceutical interventions compared to its neighbours (14). The eventual surge in cases in January 2021
- followed relaxed non-pharmaceutical interventions for the end-of-year holidays coinciding with the
- presumed introduction of the Alpha variant with increased transmissibility (13).
- 235 SARS-CoV-2 sero-prevalence rose to 34.7% in June 2021, still far below the pooled 76% infection-
- 236 induced seroprevalence reported in other African countries. Only a fraction of that difference in sero-
- 237 prevalence can be explained by serological test specificity. Our analysis of SARS-CoV-2 sero-positivity
- comparing several SARS-CoV-2 antigen targets demonstrated a difference of up to 12%, thus cannot
- explain the twice higher sero-prevalence in other sero-surveys in sub-Saharan Africa. A diagnostic
- 240 performance study of the serological immunofluorescence assay supported the use of RBD and NP for
- IgG detection (12). A study using the same assay however showed decreasing sero-prevalence as a result
- of waning NP-specific IgG after three months (15). This could explain the decreasing sero-prevalence
- observed in July 2021.
- 244 The observed effect of age, obesity, and chronic conditions on the risk of mild disease was similar to the
- 245 effect on risk of severe disease or death reported elsewhere (1,16). While HIV and (history of)
- tuberculosis have been associated with COVID-19-related death (8), we observed no increased risk of
- 247 infection nor of disease. Also, deprivation, increasing the risk of infection, disease and severity in several
- settings (1,2,17), did not affect the risk of SARS-CoV-2 infection in this population of Maputo city.
- 249 Several indicators of deprivation, such as belonging to the lowest wealth quintile, no education, absence of
- 250 handwash facilities, were even associated with a lower risk of COVID-19.
- 251 Among cases of respiratory illness, only anosmia, ageusia, loss of appetite and chills increased the
- 252 probability of COVID-19, yet none of those symptoms was reported by more than a third of cases and the
- association disappeared in cases from December 2021 onwards, presumably Omikron cases. Symptoms'
- 254 poor predictive value, in combination with continued reporting of other respiratory illness, hampers
- diagnosis of mild/moderate COVID-19 on clinical grounds alone (18).

256 Conclusion

- 257 Active surveillance in an urban population cohort confirmed frequent COVID-19 underreporting, yet
- 258 indicated that the large majority of cases were mild and non-febrile. In contrast to industrialised countries,
- 259 deprivation did not increase the risk of infection nor disease.
- 260

It is made available under a CC-BY-NC-ND 4.0 International license .

261 Transparency declaration

All authors declare no competing interests. The work was funded by a European & Developing Countries Clinical Trials Partnership (EDCTP) project (RIA2020EF-3031). The funders had no role in study design,

264 data collection and analysis, decision to publish, or preparation of the manuscript.

265 Data availability

266 Pseudonymized data supporting the findings of this study/publication are retained at the Institute of

- 267 Tropical Medicine, Antwerp and can be made available after approval of a motivated and written request
- 268 to ITMresearchdataaccess@itg.be. Study protocol, data dictionaries, scripts for conducting the analysis,
- and anonymized data, without geo-located or other data that could allow identification, are available on
- 270 <u>https://github.com/ingelbeen/africover-git</u>.

271 Acknowledgements

- 272 We thank participants of the Polana Caniço Health and Demographic Surveillance System, interviewers,
- teams involved in laboratory testing of samples (Claudia Machume, Gercio Cuamba, Caro Van Geel), data
- 274 management (Alberto Machaze, Eben Matavele, Harry van Loen), and study monitors (Dimpall Asmucrai,
- 275 Carolien Hoof).

276 References

- Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated
 with COVID-19-related death using OpenSAFELY. Nature [Internet]. 2020 Aug 20 [cited 2020
 Aug 17];584(7821):430–6. Available from: https://www.nature.com/articles/s41586-020-2521-4
- Vandentorren S, Smaïli S, Chatignoux E, Maurel M, Alleaume C, Neufcourt L, et al. The effect of
 social deprivation on the dynamic of SARS-CoV-2 infection in France: a population-based
 analysis. Lancet Public Heal [Internet]. 2022 Feb [cited 2022 Feb 24];7(3):e240–9. Available from:
 http://www.thelancet.com/article/S246826672200007X/fulltext
- Mathur R, Rentsch CT, Morton CE, Hulme WJ, Schultze A, MacKenna B, et al. Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform. Lancet [Internet]. 2021 Apr 30 [cited 2021 May 10];397(10286):1711–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33939953
- 289 4. Davies NG, Klepac P, Liu Y, Prem K, Jit M, Eggo RM. Age-dependent effects in the transmission 290 and control of COVID-19 epidemics. Nat Med [Internet]. 2020 Jun 16 [cited 2020 Jun 291 17]:26:1205–11. Available from: http://www.nature.com/articles/s41591-020-0962-9
- Bergeri I, Whelan MG, Ware H, Subissi L, Nardone A, Lewis HC, et al. Global SARS-CoV-2
 seroprevalence from January 2020 to April 2022: A systematic review and meta-analysis of
 standardized population-based studies. PLoS Med [Internet]. 2022 Nov 1 [cited 2023 Dec
 12];19(11). Available from: https://pubmed.ncbi.nlm.nih.gov/36355774/
- Lewis HC, Ware H, Whelan M, Subissi L, Li Z, Ma X, et al. SARS-CoV-2 infection in Africa: A
 systematic review and meta-analysis of standardised seroprevalence studies, from January 2020 to
 December 2021. BMJ Glob Heal. 2022;7(8):1–15.
- 299 7. O'Driscoll M, Dos Santos GR, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age300 specific mortality and immunity patterns of SARS-CoV-2. Nature [Internet]. 2020 Nov 2 [cited
 301 2020 Nov 18]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33137809
- Boulle A, Davies MA, Hussey H, Ismail M, Morden E, Vundle Z, et al. Risk Factors for
 Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western
 Cape Province, South Africa. Clin Infect Dis [Internet]. 2021 Aug 29 [cited 2020 Oct
 8];73(7):E2005–15. Available from: https://pubmed.ncbi.nlm.nih.gov/32860699/
- 306
 9. Laajaj R, Webb D, Aristizabal D, Behrentz E, Bernal R, Buitrago G, et al. Understanding how socioeconomic inequalities drive inequalities in COVID-19 infections. Sci Rep [Internet].
- 308 2022;12(1). Available from: https://doi.org/10.1038/s41598-022-11706-7

It is made available under a CC-BY-NC-ND 4.0 International license .

- 309 10. Otiende M, Nyaguara A, Bottomley C, Walumbe D, Mochamah G, Amadi D, et al. Impact of
 310 COVID-19 on mortality in coastal Kenya: a longitudinal open cohort study. Nat Commun 2023
 311 141 [Internet]. 2023 Oct 28 [cited 2023 Dec 13];14(1):1–9. Available from:
 312 https://www.nature.com/articles/s41467-023-42615-6
- Wang H, Paulson KR, Pease SA, Watson S, Comfort H, Zheng P, et al. Estimating excess
 mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality,
 2020–21. Lancet [Internet]. 2022 Apr 16 [cited 2023 Jun 22];399(10334):1513–36. Available
 from: https://linkinghub.elsevier.com/retrieve/pii/S0140673621027963
- Mariën J, Ceulemans A, Michiels J, Heyndrickx L, Kerkhof K, Foque N, et al. Evaluating SARSCoV-2 spike and nucleocapsid proteins as targets for antibody detection in severe and mild
 COVID-19 cases using a Luminex bead-based assay. J Virol Methods [Internet]. 2021 Feb 1 [cited
 2022 Jun 20]:288. Available from: https://pubmed.ncbi.nlm.nih.gov/33227340/
- 321 13. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated
 322 transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science (80-) [Internet].
 323 2021 Apr 9 [cited 2023 Dec 14];372(6538). Available from:
 324 http://www.asianaa.arg/dai/10.1126/asianaa.abg2055
- 324 https://www.science.org/doi/10.1126/science.abg3055
- Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of
 pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav [Internet].
 2021;5(4):529–38. Available from: http://dx.doi.org/10.1038/s41562-021-01079-8
- Mariën J, Ceulemans A, Bakokimi D, Lammens C, Ieven M, Heytens S, et al. Prospective SARS-CoV-2 cohort study among primary health care providers during the second COVID-19 wave in Flanders, Belgium. Fam Pract [Internet]. 2021 Aug 27 [cited 2021 Sep 1]; Available from: https://academic.oup.com/fampra/advance-article/doi/10.1093/fampra/cmab094/6358549
- Bocherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133
 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. Br Med J [Internet]. 2020 [cited 2020 May 28];369:m1985.
 Available from: https://isaric4c.net
- Mena GE, Martinez PP, Mahmud AS, Marquet PA, Buckee CO, Santillana M. Socioeconomic
 status determines COVID-19 incidence and related mortality in Santiago, Chile. Science (80-).
 2021;372(6545).
- Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for
 diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ [Internet]. 2020
 Apr 7 [cited 2022 Jun 17];369. Available from: /pmc/articles/PMC7222643/
- 342

It is made available under a CC-BY-NC-ND 4.0 International license .

343 Appendix

Supplementary Table 1. Infection- and vaccine-induced SARS-CoV-2 seroprevalence based on detection
 of antibodies against different SARS-CoV-2 antigens

3													
month	antibody detection		RBP and NP positive			two out of RBD, NP and S1S2 positive				RBD positive (regardless of S1S2 and NP)			
		n	prop	95%CI		n	prop	95%CI		n	prop	prop 95%(
2020-12	negative	118	0.952	0.914	0.989	112	0.903	0.851	0.955	111	0.895	0.841	0.949
2020-12	positive after infection	6	0.048	0.011	0.086	12	0.097	0.045	0.149	13	0.105	0.051	0.159
2021-01	negative	433	0.945	0.925	0.966	416	0.908	0.882	0.935	399	0.871	0.840	0.902
2021-01	positive after infection	25	0.055	0.034	0.075	42	0.092	0.065	0.118	59	0.129	0.098	0.160
2021-02	negative	205	0.911	0.874	0.948	195	0.867	0.822	0.911	192	0.853	0.807	0.900
2021-02	positive after infection	20	0.089	0.052	0.126	30	0.133	0.089	0.178	33	0.147	0.100	0.193
2021-03	negative	465	0.884	0.857	0.911	447	0.850	0.819	0.880	436	0.829	0.797	0.861
2021-03	positive after infection	59	0.112	0.085	0.139	77	0.146	0.116	0.177	88	0.167	0.135	0.199
2021-03	positive after vaccination	2	0.004	-0.001	0.009	2	0.004	-0.001	0.009	2	0.004	-0.001	0.009
2021-04	negative	244	0.758	0.711	0.805	238	0.739	0.691	0.787	212	0.658	0.607	0.710
2021-04	positive after infection	75	0.233	0.187	0.279	81	0.252	0.204	0.299	107	0.332	0.281	0.384
2021-04	positive after vaccination	3	0.009	-0.001	0.020	3	0.009	-0.001	0.020	3	0.009	-0.001	0.020
2021-05	negative	181	0.733	0.678	0.788	179	0.725	0.669	0.780	163	0.660	0.601	0.719
2021-05	positive after infection	62	0.251	0.197	0.305	64	0.259	0.204	0.314	79	0.320	0.262	0.378
2021-05	positive after vaccination	4	0.016	0.000	0.032	4	0.016	0.000	0.032	5	0.020	0.003	0.038
2021-06	negative	48	0.658	0.549	0.766	46	0.630	0.519	0.741	42	0.575	0.462	0.689
2021-06	positive after infection	23	0.315	0.209	0.422	25	0.342	0.234	0.451	29	0.397	0.285	0.510
2021-06	positive after vaccination	2	0.027	-0.010	0.065	2	0.027	-0.010	0.065	2	0.027	-0.010	0.065
2021-07	negative	143	0.665	0.602	0.728	143	0.665	0.602	0.728	115	0.535	0.468	0.602
2021-07	positive after infection	61	0.284	0.223	0.344	61	0.284	0.223	0.344	86	0.400	0.335	0.465
2021-07	positive after vaccination	11	0.051	0.022	0.081	11	0.051	0.022	0.081	14	0.065	0.032	0.098

346 RBD= receptor-binding domain (of the spike protein), NP=nucleocapsid protein, S1S2=spike glycoprotein S1 and S2 subunit