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41

42 Abstract 

43 Early prognostication of patient outcomes in intracerebral hemorrhage (ICH) is critical 

44 for patient care. We aim to investigate protein biomarkers’ role in prognosticating 

45 outcomes in ICH patients. We assessed 22 protein biomarkers using targeted proteomics 

46 in serum samples obtained from the ICH patient dataset (N=150). We defined poor 

47 outcomes as modified Rankin scale score of 3-6. We incorporated clinical variables and 

48 protein biomarkers in regression models and random forest-based machine learning 

49 algorithms to predict poor outcomes and mortality. We report Odds Ratio (OR) or Hazard 

50 Ratio (HR) with 95% Confidence Interval (CI). We used five-fold cross-validation and 

51 bootstrapping for internal validation of prediction models. We included 149 patients for 

52 90-day and 144 patients with ICH for 180-day outcome analyses. In multivariable logistic 

53 regression, UCH-L1 (aOR 9.23; 95%CI 2.41-35.33), alpha-2-macroglobulin (5.57; 1.26-

54 24.59), and Serpin-A11 (9.33; 1.09-79.94) were independent predictors of 90-day poor 

55 outcome; MMP-2 (6.32; 1.82-21.90) was independent predictor of 180-day poor 

56 outcome. In multivariable Cox regression models, IGFBP-3 (aHR 2.08; 1.24-3.48) 

57 predicted 90-day and MMP-9 (1.98; 1.19-3.32) predicted 180-day mortality. Using 

58 machine learning, UCH-L1 and APO-C1 predicted 90-day mortality, and UCH-L1, MMP-9, 

59 and MMP-2 predicted 180-day mortality. Overall, random forest models outperformed 

60 regression models for predicting 180-day poor outcomes (AUC 0.89), and 90-day (AUC 

61 0.81) and 180-day mortality (AUC 0.81). Serum biomarkers independently predicted 

62 short-term poor outcomes and mortality after ICH. Further research utilizing a multi-

63 omics platform and temporal profiling is needed to explore additional biomarkers and 

64 refine predictive models for ICH prognosis.
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66 Abbreviations:

67 ICH: Intracerebral Hemorrhage; IVH: Intraventricular hemorrhage; OR: Odds Ratio; HR: 

68 Hazard Ratio; CI: Confidence Interval; IQR: Interquartile range; AUC: Area Under the 

69 Curve; NIHSS: National Institutes of Health Stroke Scale; GCS: Glasgow Coma Scale; mRS: 

70 modified Rankin Scale; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; TLC: 

71 Total Leucocyte Count; RBS: Random Blood Sugar; A2M: Alpha-2-Macroglobulin, UCH-L1: 

72 Ubiquitin carboxyl-terminal hydrolase isozyme L1; MMP: Matrix Metalloproteinase; APO: 

73 Apolipoprotein; IGFBP-3: Insulin-like growth factor-binding protein-3.
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75 Introduction

76 Intracerebral hemorrhage (ICH) comprises 10-15% of all strokes [1], with one-month 

77 mortality of 40%, rendering it the deadliest stroke subtype [2]. It is a significant 

78 healthcare challenge worldwide, and its impact is particularly pronounced in developing 

79 nations like India. Limited healthcare resources, disparities in access to care, and unique 

80 demographic and epidemiological factors exacerbate the burden of ICH in these regions 

81 [3]. Understanding factors influencing ICH patient outcomes is crucial for optimizing 

82 clinical management, risk stratification, and resource allocation. While various clinical 

83 scores exist for predicting functional outcomes and mortality in ICH [4], such as the 

84 widely-used ICH score,5 their accuracy for outcomes beyond hospital discharge or 30 

85 days remains uncertain. Hence, there is a critical need for robust prediction models that 

86 integrate new predictor variables to improve ICH prognostication [5]. Serum biomarkers 

87 have emerged as promising candidates with the potential to enhance outcome 

88 prognostication in ICH patients [6]. Integrating serum biomarkers with clinical variables 

89 in prediction models may provide additional prognostic information and guide treatment 

90 decisions.  

91 Therefore, we undertook this study to build prognostic models using protein biomarkers 

92 to predict poor functional outcomes and mortality in ICH patients within 24 hours of 

93 symptom onset utilizing targeted proteomics, regression modeling, and machine learning 

94 approaches.

95

96 Methods

97 Study sample

98 We used clinical and proteomic data lodged within a prospective cohort study from a 

99 collaborative effort of the Department of Neurology, All India Institute of Medical 
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100 Sciences (AIIMS), and the Institute of Genomics and Integrative Biology in New Delhi, 

101 India. The study database includes consecutive ICH patients aged 18 years, recruited 

102 between 04 October 2017 and 20 March 2020 within 24 hours of symptom onset. The 

103 details of this study protocol are reported in prior publications [7,8]. We obtained written 

104 informed consent from all the recruited patients or their legally authorized 

105 representatives prior to collecting blood samples and clinical history. The study was 

106 approved by the Local Institutional Ethics Committee of AIIMS, New Delhi (Ref. No. 

107 IECPG-395/28.09.2017).

108

109 Outcomes

110 We defined poor outcomes as a modified Rankin Scale (mRS) score of 3-6. Our second 

111 outcome measure was mortality. The outcomes were ascertained by a researcher blinded 

112 to clinical data using telephonic interviews at 90 and 180 days post-ICH. 

113

114 Blood sample collection

115 Five ml of peripheral blood sample was taken in serum vacutainer tubes from ICH 

116 patients. For serum collection, it was left standing at room temperature for 30 minutes 

117 until clotted. It was then centrifuged at 3000g for 10 minutes, after which the serum was 

118 separated into cryovials. Five aliquots of each sample (100µl) were prepared and stored 

119 at -80°C until further analysis.

120

121 Sample preparation

122 Ten µl of serum samples were used for protein precipitation. To 90µl of 1X Phosphate 

123 Buffer Saline (PBS), 10 µl serum was added and vortex mixed. Protein precipitation was 

124 performed using pre-chilled acetone. Briefly, to 100 µl protein extract, four times volume 
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125 of pre-chilled acetone was added, vortex mixed and centrifuged at 15000 g for 10 minutes 

126 at 4℃. The supernatant was discarded, and the protein pellets were air-dried at room 

127 temperature and suspended in 0.1 M Tris-HCl with 8M urea, pH 8.5. Protein quantitation 

128 was performed using the Bradford assay.

129

130 Reduction, Alkylation, and Trypsin Digestion

131 A total of 20 µg of protein from each sample was reduced with 25 mM of Dithiothreitol 

132 (DTT) for 30 minutes at 60℃, followed by alkylation using 55 mM of Iodoacetamide (IAA) 

133 at room temperature (in the dark) for 30 minutes. These samples were then subjected to 

134 trypsin digestion in an enzyme to substrate ratio of 1:10 (trypsin: protein) for 16-18 

135 hours at 37℃. Finally, the tryptic peptides were vacuum dried in vacuum concentrator.

136

137 Peptide selection for Multiple Reaction Monitoring (MRM)-based targeted 

138 proteomics

139 Peptide selection was performed using search results from ProteinPilot [9], PeptideAtlas 

140 [10] or in-silico generated peptides of proteins using Expasy PeptideCutter tool [11]. 

141 Peptides with +2 and +3 charges were considered for MRM and for each peptide, 5-6 

142 fragment ions were used for identification (Table S1).

143

144 Multiple Reaction Monitoring (MRM) data acquisition

145 Tryptic peptides obtained after digestion were desalted using reversed phase cartridges 

146 Oasis HLB cartridge (Waters, Milford, MA) according to the following procedure: wet 

147 cartridge with 1 × 1,000 μl of 100% acetonitrile, equilibrate with 1 × 1,000 μl of 0.1% 

148 formic acid, load acidified digest, washed peptides with 1 × 1,000 μl of 0.1% formic acid 

149 and elute with 1 × 1000 μl of 70% acetonitrile in 0.1% formic acid. The peptide mixture 
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150 was dried using a vacuum centrifuge, and the peptides were resuspended in 0.1% formic 

151 acid at a final concentration of 1 μg/μl. A heavy labeled peptide for Apo A1 

152 (QGLLPVLESFK; K=Lysine-13C6,15N2) protein was spiked-in the resolubilized plasma 

153 digest at a final concentration of 1 ng/μl.

154 The targeted MRM-MS [12] analysis of the tryptic peptides was performed on a TSQ 

155 Altis (Thermo Fisher, San Jose, CA). The instrument was equipped to an H-ESI ion source. 

156 A spray voltage of 3.5 keV was used with a heated ion transfer tube set at a temperature 

157 of 325°C. Chromatographic separations of peptides were performed on Vanquish UHPLC 

158 system (Thermo Fisher, San Jose, CA).

159 The 10 μl of the sample was injected and peptides were loaded on an ACQUITY UPLC BEH 

160 C18 column (130Å, 1.7 µm, 2.1 mm X 100 mm, Waters) from a cooled (4 °C) autosampler 

161 and separated with a linear gradient of water (buffer A) and acetonitrile (buffer B), 

162 containing 0.1% formic acid, at a flow rate of 300 µl/minute in 30 minutes gradient run 

163 with the buffer conditions given in Table S2.

164 The mass spectrometer was operated in Selected Reaction Monitoring (SRM) mode. For 

165 SRM acquisitions, the first quadrupole (Q1) and the third quadrupole (Q3) were operated 

166 at 0.7 and 0.7 unit mass resolution, respectively. A dwell time of 6.175 milliseconds (ms) 

167 was chosen, and acquisitions occurred over the whole gradient of 30 minutes. Argon was 

168 used as the collision gas at a nominal pressure of 1.5 mTorr. Optimized collision energies 

169 were used for each peptide.

170

171 Bioinformatic and Statistical analyses

172 We analyzed the MRM-based targeted proteomics data using Skyline version 21.1 [13]. 

173 Peptide areas were spike-in normalized using a heavy labeled peptide for Apo A1 protein 

174 and log2 transformed. Peptides with <10% missing values were imputed using a random-
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175 forest-based missing value imputation method. Non-biological experimental variations 

176 were removed through batch correction.

177 Our study adhered to the Transparent reporting of a multivariable prediction model for 

178 individual prognosis or diagnosis (TRIPOD) guidelines [14]. We performed univariable 

179 logistic regression analysis using odds ratio (OR) and 95% confidence interval (CI) to 

180 assess poor outcomes during follow-up. Mortality rates were evaluated through Kaplan-

181 Meier survival curves, and we constructed simple Cox proportional hazard models with 

182 hazard ratios (HR) and 95% CI. We conducted receiver operating characteristic (ROC) 

183 curve analyses and determined optimal cut-off points for each biomarker using the 

184 Youden Index (sensitivity + specificity-1).

185 Regression-based ICH outcome prediction models: We developed prediction models to 

186 determine independent predictors of poor outcomes and mortality in ICH. Variables with 

187 p-value <0.1 in the univariable analysis, along with demographic variables like age and 

188 sex, were included in a backward stepwise multiple logistic regression or multiple Cox 

189 regression analyses. Multicollinearity among predictor variables was assessed using the 

190 variance inflation factor (VIF), and predictors with a VIF value exceeding 2.5 were 

191 removed from the model. We evaluated the discrimination ability using the area under 

192 the curve (AUC) or c-statistic.

193 Machine Learning-based ICH outcome prediction models: We employed a random forest-

194 based machine learning algorithm to identify additional predictors. Categorical data were 

195 encoded in binary form, while continuous data were standardized based on the 

196 population mean and standard deviation following log-normalization for skewed 

197 distributions. Train-test splits were executed in a 7:3 ratio, and random forest models 

198 with 1000 estimators were trained using the scikit-learn package. This process was 

199 repeated 1000 times, with each iteration involving a new random seed to choose the top 
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200 10 variables for prediction. Shapley values were computed using the SHAP package, and 

201 absolute means were utilized to evaluate variable importance.

202 Internal validation: We internally validated our prediction models using bootstrapping 

203 and 5-fold cross-validation.

204 We conducted statistical analyses using STATA software (Version 18) and R version 3.6.2.

205 We conducted interaction network and enrichment analyses of significant biomarkers 

206 using Cytoscape version 3.10.0.

207

208 Data availability

209 The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

210 Consortium via the PRIDE [15] partner repository with the dataset identifier PXD032917.

211

212 Results

213 The study cohort included 150 ICH patients recruited within 24 hours of ICH onset. Loss 

214 to follow-up at 90 days was 5% (n=1), and at 180 days was 7.33% (n=6). Therefore, we 

215 included 149 patients for the 90-day and 144 for the 180-day outcome analyses. 

216

217 Poor outcome at 90-day and 180-day

218 Of 149 ICH patients, 110 (73.82%) had a poor outcome at 90 days, and of 144 ICH 

219 patients, 97 (67.36%) had a poor outcome at 180 days. See Table 1 for clinical variables 

220 and Table S3 for protein biomarkers significantly associated with poor outcomes in the 

221 univariable analysis (p<0.1). 

222 Multivariable logistic regression identified lower UCH-L1 (adjusted OR 9.23; 95%CI 2.41-

223 35.33), higher alpha-2-macroglobulin (aOR 5.57, 95%CI 1.26-24.59) and Serpin A11 

224 levels (aOR 9.33; 95%CI 1.09-79.94) as independent predictors of 90-day poor outcome; 
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225 whereas higher MMP-2 levels (aOR 6.32, 95%CI 1.82-21.90) independently predicted 

226 180-day poor outcome among other clinical predictors. The models had an AUC of 0.95 

227 at 90 days and 0.92 at 180 days (Figure 1a, b and Table 3).

228 Top 10 important predictors identified by random forest algorithms for 90-day outcome 

229 included NIHSS score, ICH volume, age, UCH-L1, platelet count, RBS, alpha-2-

230 macroglobulin, TLC, serpin A11, and haptoglobin (Figure 2a). Top 10 important 

231 predictors of 180-day poor outcome included NIHSS score, ICH volume, TLC, age, alpha-

232 2-macroglobulin, creatinine, blood urea, UCH-L1, Serpin A11, and time taken to reach 

233 hospital (Figure 2b).

234

235 Mortality at 90-day and 180-day

236 Mortality at 90 days was observed in 62 (41.61%) of 149 ICH patients and at 180 days in 

237 67 (46.53%) of 144 ICH patients. See Table 2 for clinical variables and Table S4 for 

238 protein biomarkers significantly associated with mortality in the univariable analysis 

239 (p<0.1).

240 Multivariable Cox regression analysis identified lower IGFBP-3 levels (aHR 2.08; 95%CI 

241 1.24-3.48) at 90 days and lower MMP-9 levels (aHR 1.98; 95%CI 1.19-3.32) at 180 days 

242 as independent predictors of mortality. The models had an AUC of 0.83 at 90 days and 

243 0.81 at 180 days (Figure 1c, d and Table 3).

244 Top 10 predictors of 90-day mortality identified by random forest algorithms included 

245 NIHSS score, ICH volume, age, TLC, intraventricular extension, RBS, potassium, UCH-L1, 

246 hemoglobin, and APO-C1 (Figure 2c). Top 10 predictors of 180-day mortality included 

247 NIHSS score, ICH volume, age, TLC, intraventricular extension, UCH-L1, MMP-9, 

248 potassium, MMP-2, and RBS (Figure 2d). 

249
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250 Internal validation of prediction models

251 Five-fold cross-validation and bootstrapping revealed that prediction models 

252 constructed with the random forest algorithm outperformed multivariable logistic and 

253 Cox regression in predicting poor outcomes at 180-day and mortality at both time points. 

254 However, there was a marginal difference in the mean AUC values of regression models 

255 and random forest models for predicting 90-day poor outcomes (Table 4, Figure S1).

256

257 Validation of previous ICH prediction models

258 We validated previously published ICH prediction scores, including ICH score, MICH 

259 score, ICH-FOS score, and ICH-GS score. These scores had AUCs ranging from 0.80 to 0.86 

260 for predicting poor outcomes at 90 days and from 0.76 to 0.84 at 180 days. For mortality 

261 prediction, the AUCs ranged from 0.78 to 0.81 at 90 days and from 0.76 to 0.80 at 180 

262 days. Adding biomarkers to the prediction models in this study improved the prediction 

263 of poor outcomes compared to previous models, but no difference was noted in models 

264 predicting mortality (Table 5).

265

266 Interaction network and enrichment analyses

267 In univariable analysis, we analyzed a protein network of 10 biomarkers linked to poor 

268 outcomes and mortality post-ICH. This network featured ten biomarkers (nodes) with 

269 eight interactions (edges), including six highly connected biomarkers. MMP-9 displayed 

270 the highest degree of interaction, connecting with four other proteins. In our network, 7 

271 out of 8 interactions had a score exceeding 0.80, with the most robust interaction score 

272 of 0.96 between MMP-2 and IGFBP-3 (Figure S2). The significant pathways encompassed 

273 negative regulation of catalytic activity, protein metabolic processes, extracellular space, 

274 and extracellular matrix disassembly (Table S5).
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275

276 Discussion

277 Our analysis reaffirms the relevance of established clinical variables in predicting poor 

278 outcomes and mortality in ICH, including age, GCS score, ICH volume, NIHSS score, and 

279 various laboratory investigations, underscoring their significance in clinical practice 

280 [16,17]. Furthermore, our analyses of 22 protein biomarkers and clinical features noted 

281 in 24 hours post-ICH revealed UCH-L1, alpha-2-macroglobulin, Serpin A11, and MMP-2 

282 as independent predictors of poor outcome. IGFBP-3 and MMP-9 independently 

283 predicted mortality following ICH. Machine learning-based random forest models 

284 identified additional predictors, including haptoglobin for poor outcomes and UCH-L1, 

285 APO-C1, and MMP-2 for mortality prediction. Integrating protein biomarkers to clinical 

286 prediction models may enhance the precision of risk assessment and resource allocation 

287 in stroke prevention programs [18], promoting more efficient resource allocation 

288 targeting individuals most likely to develop ICH.

289 Our study reveals inconsistent optimal values for sensitivity and specificity in biomarker 

290 cutoffs from univariable analyses (Tables S3 and S4). This emphasizes the need to 

291 consider multiple biomarkers and their cutoff values for improved accuracy and 

292 reliability in ICH outcome prediction.

293 This study, conducted in a tertiary care center in India, holds particular significance due 

294 to the diverse demographic, genetic, and environmental factors unique to the Indian 

295 population. Understanding stroke in this context contributes to a more holistic 

296 understanding of the disease and its multifaceted risk factors, which is vital as India and 

297 many other developing nations face an increasing burden of stroke [19]. These findings 

298 can be pivotal in shaping stroke treatment and outcome prognostication strategies 

299 unique to India and similar resource-limited settings.
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300 UCH-L1's association with poor outcomes in ICH suggests its potential as an early 

301 neurological damage marker [20]. Alpha-2-macroglobulin's role in predicting poor 

302 outcomes in ICH, previously unexplored, may relate to its involvement in protease 

303 inhibition and inflammation regulation [21]. Serpin A11's anti-inflammatory and anti-

304 fibrotic properties may signify a response to mitigate damage after ICH [22]. IGFBP-3's 

305 downregulation in ICH could reflect a compromised injury response [23]. The role of 

306 APO-C1 and haptoglobin in ICH prognostication, reported for the first time in our study, 

307 requires further investigation.

308 MMP-2 and MMP-9, implicated in tissue remodeling and inflammation [24], highlight 

309 extracellular matrix dynamics in ICH pathogenesis [25]. Indeed, our network and 

310 enrichment analyses underscored MMP-9’s central role in ICH pathophysiology (Figure 

311 S2), particularly its involvement in extracellular matrix-related pathways influencing ICH 

312 outcomes (Table S6) [25]. MMP-9's association with short-term mortality but not poor 

313 functional outcomes aligns with previous Indian population findings [26], suggesting 

314 potential for MMP-9 inhibition as a neuroprotective strategy in ICH [27].

315 Prediction models are limited by the risk of overfitting to the training data, potentially 

316 compromising their generalizability. Cross-validation and bootstrapping address this by 

317 assessing model performance across different data subsets and testing stability through 

318 resampling. We, therefore, internally validated our findings through five-fold cross-

319 validation and bootstrapping, demonstrating that random forest models consistently 

320 outperformed regression models in predicting 180-day poor outcome and 90-day and 

321 180-day mortality, as evidenced by higher AUC values (Table 4). This suggests that 

322 machine learning algorithms, with their ability to capture complex interactions and 

323 patterns, offer a valuable tool for enhancing prognostic accuracy in ICH [28,29].
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324 We also validated the performance of previously published prediction scores for ICH 

325 outcomes (Table S5). Our study, demonstrated higher AUC values for poor outcome 

326 predictions compared to the existing prediction scores. This suggests that integrating 

327 novel protein biomarkers and clinical features in our model enhances the precision of 

328 risk assessment for ICH outcomes.

329 The choice of outcomes in this study emphasizes the importance of patient-reported 

330 outcome measures (PROMs) and quality of life in stroke research and care [30]. While 

331 many clinical trials prioritize mortality as the primary outcome, it's essential to 

332 acknowledge that survival alone may not fully represent the patient's overall well-being 

333 or quality of life [31]. Rankin 4-5 indicates significant disability, and for many patients, 

334 this level of impairment can be as debilitating as death itself. Rankin 3 signifies moderate 

335 disability that can significantly affect a patient's independence and quality of life. By 

336 consolidating mRS scores 3-6, our study essentially encompasses all patients 

337 experiencing death or significant disability. 

338 Compared to previous studies, our study has several strengths. Firstly, we utilized a 

339 targeted proteomics approach, specifically multiple reaction monitoring, for precise and 

340 sensitive measurement of protein biomarkers. Secondly, we recruited patients within the 

341 24-hour window, a critical period for stroke management, allowing earlier biomarker 

342 assessment than prior studies [26,32]. Thirdly, our study had minimal loss to follow-up 

343 (<5%).

344 However, our study also has several limitations. Firstly, the small sample size warrants 

345 external validation of these biomarkers in adequately powered studies. However, we 

346 internally validated our dataset and obtained consistent AUCs across the outcome 

347 measures. Secondly, our study only included patients from a single center, limiting its 

348 generalizability. Thirdly, focusing on a 24-hour time window may not capture the full ICH 
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349 progression, necessitating earlier biomarker measurements [33,34] and exploring 

350 temporal changes. Lastly, we provided relative quantification data for protein 

351 biomarkers, suggesting the need for obtaining absolute quantification values in future 

352 studies.

353

354 Conclusion

355 These data reflect outcomes in developing nations underscoring the potential of serum 

356 biomarkers, in conjunction with clinical variables, to enhance outcome prediction in ICH 

357 patients. Biomarkers like UCH-L1, alpha-2-macroglobulin, Serpin A11, MMP-2, IGFBP-3, 

358 and MMP-9 showed strong associations with outcomes, improving model accuracy. With 

359 better performance of random forest-based machine learning models, proteomic data 

360 holds promise for ICH prognostication. Future research should examine temporal profiles 

361 of these biomarkers in larger cohorts and explore additional pathways using multi-omics 

362 platforms to refine predictive models for ICH prognosis.
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518 Figure Legends

519

520 Figure 1: ROC curves to predict (a) 90-day poor outcome, (b) 180-day poor outcome, (c) 

521 90-day mortality, and (d) 180-day mortality in multivariable analysis of ICH patients.

522

523 Figure 2: Absolute mean Shapely values calculated for random forest-based machine 

524 learning algorithms to predict (a) 90-day poor outcome, (b) 180-day poor outcome, (c) 

525 90-day mortality, and (d) 180-day mortality in ICH.

526

527 Figure 3: ROC curves for five-fold cross validation of multivariable regression models to 

528 predict (a) 90-day poor outcome, (b) 180-day poor outcome, (c) 90-day mortality, and 

529 (d) 180-day mortality in ICH.

530

531 Figure 4: Protein-protein interaction network analysis of significant protein biomarkers 

532 that can predict poor functional outcome and mortality after ICH using the Cytoscape 

533 software. The colour of nodes and edges represents the degree of interaction and 

534 interaction score.
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Table 1: Baseline characteristics and univariable analyses of poor outcomes at 90-day and 180-day after intracerebral hemorrhage.

Characteristics 90-day poor 

outcome (N=110)

90-day good 

outcome (N=39)

p-value 180-day poor 

outcome (N=97)

180-day good 

outcome (N=47)

p-value

Age (years)a 60 (50-66) 48 (42-55) <0.001 60 (50-66) 50 (45-60) 0.004

Maleb 66 (60) 32 (82.05) 58 (59.79) 36 (76.60)

Femaleb 44 (40) 7 (17.95)

0.02

39 (40.21) 11 (23.40)

0.05

Blood sampling time from onset 

(hours)a

17 (12-20.3) 17.5 (7.5-20) 0.57 17.2 (12-20.3) 16 (8-20) 0.33

Time taken to reach hospital 

(hours)a

4.71 (2.5-9) 5 (1.5-9.83) 0.70 4.5 (2.5-9) 5 (1-9.8) 0.55

Any surgical procedureb 25 (22.73) 1 (2.56) 0.02 24 (24.74) 2 (4.26) 0.008

Antihypertensivesb 31 (28.18) 12 (30.77) 0.76 29 (29.90) 11 (23.40) 0.42

ACE inhibitorsb 0 1 (2.56) N.E. 0 1 (2.13) N.E.

ARBb 6 (5.45) 3 (7.69) 0.62 6 (6.19) 3 (6.38) 0.96

Beta blockersb 31 (28.18) 13 (33.33) 0.55 31 (31.96) 13 (27.66) 0.60

Calcium channel blockersb 43 (39.09) 22 (56.41) 0.06 38 (39.18) 24 (51.06) 0.18

Diureticsb 66 (60) 16 (41.03) 0.04 58 (59.79) 24 (51.06) 0.32
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Hypertensionb 69 (62.73) 29 (74.36) 0.19 65 (67.01) 29 (61.70) 0.53

Diabetesb 23 (20.91) 6 (15.38) 0.46 23 (23.71) 4 (8.51) 0.04

Dyslipidemiab 9 (8.18) 1 (2.56) 0.25 9 (9.28) 1 (2.13) 0.15

Myocardial Infarctionb 1 (0.91) 1 (2.56) 0.46 1 (1.03) 1 (2.13) 0.61

Atrial fibrillationb 3 (2.73) 0 N.E. 2 (2.06) 0 N.E.

Current Smokingb 27 (24.55) 14 (35.90) 0.17 23 (23.71) 16 (36.17) 0.19

Mild alcohol intakeb 9 (8.18) 4 (10.26) 0.69 8 (8.25) 5 (10.64) 0.64

Moderate alcohol intakeb 4 (3.64) 3 (7.69) 0.31 2 (2.06) 5 (10.64) 0.04

Heavy alcohol intakeb 8 (7.27) 7 (17.95) 0.07 7 (7.22) 6 (12.77) 0.28

No Exerciseb 86 (78.18) 31 (79.49) 0.86 76 (78.35) 37 (78.72) 0.96

Low Educationb 88 (80) 26 (66.67) 0.09 79 (81.44) 32 (68.09) 0.08

Low socio-economic statusb 39 (35.45) 13 (33.33) 0.81 32 (32.99) 17 (36.17) 0.71

Obesityb 12 (10.91) 6 (15.38) 0.46 11 (11.34) 6 (12.77) 0.80

ICH Volume (ml)a 36 (22.2-58.2) 15 (9-25) <0.001 37 (22.2-60) 18 (9.5-35) <0.001

Intraventricular Hemorrhageb 47 (42.73) 7 (17.95) 0.008 45 (46.39) 9 (19.15) 0002

Deep ICHb 87 (79.09) 36 (92.31) 0.07 79 (81.44) 39 (82.98) 0.82

Lobar ICHb 16 (14.55) 2 (5.13) 0.14 13 (13.40) 5 (10.64) 0.64
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SBP (mmHg)a 177.5 (154-196) 170 (150-194) 0.72 180 (154-196) 170 (152-192) 0.13

DBP (mmHg)a 100 (88-110) 100 (90-113) 0.44 100 (88-112) 100 (90-110) 0.67

NIHSS score at admissiona 23 (15-28) 10 (8-14) <0.001 23 (18-28) 10 (7-15) <0.001

GCS score at admissiona 8 (5-11) 15 (11-15) <0.001 8 (4-11) 15 (11-15) <0.001

mRS score at dischargea 5 (4-6) 4 (3-4) <0.001 5 (4-6) 4 (3-4) <0.001

RBS (mg/dl)a 155.21 (126-190) 142 (109-168) 0.02 152.14 (129-185) 152.14 (116-

176.47)

0.09

TLC (103/µL)a 10540 (9100-

13796.29)

9440 (7990-

11022.33)

0.01 11000 (9300-

14100)

9500 (7700-

10910)

<0.001

Hemoglobin (g/dl)a 12.66 (11.3-14.1) 13.6 (12.52-14.6) 0.12 12.61 (11.2-14.2) 13.54 (12.4-14.5) 0.09

Platelets (103/µL)a 172 (126.2-201.39) 200 (167-254) 0.09 177.67 (131-220) 177.67 (134-243) 0.87

Blood Urea (mg%)a 35.5 (25-45) 27 (20-40.11) 0.13 39.62 (26-46.49) 28 (21-40.11) 0.008

Creatinine (mg%)a 1 (0.8-1.4) 0.93 (0.7-1.2) 0.44 1.02 (0.83-1.5) 0.9 (0.7-1.1) 0.007

Potassium (mM/L)a 4 (3.7-4.47) 3.84 (3.5-4.31) 0.14 4 (3.6-4.4) 3.9 (3.7-4.37) 0.66

Sodium (mM/L)a 139.13 (136-142) 139.2 (136-141) 0.72 139.1 (136-142) 139.5 (136-142) 0.79

Total Bilirubin (mg%)a 0.75 (0.6-1.05) 0.8 (0.6-1) 0.73 0.75 (0.6-1.05) 0.75 (0.6-1.04) 0.91

a: Variables represented as Median (IQR), b: Variables represented as frequency (percentage).
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Table 2: Baseline characteristics and univariable analyses of mortality at 90-day and 180-day after intracerebral hemorrhage.

Characteristics 90-day death 

(N=62)

90-day alive 

(N=87)

p-value 180-day death 

(N=67)

180-day alive 

(N=77)

p-value

Age (years)a 62 (50-70) 50 (45-60) <0.001 62 (50-70) 50 (45-60) 0.001

Maleb 34 (54.84) 64 (73.56) 38 (56.72) 56 (72.73)

Femaleb 28 (45.16) 23 (26.44)

0.02

29 (43.28) 21 (27.27)

0.02

Blood sampling time from onset (hours)a 17 (10-20.3) 17 (9.5-20) 0.78 17 (9.8-20.5) 17 (11.5-20) 0.74

Time taken to reach hospital (hours)a 4.1 (2.3-8.5) 5 (1.5-9.8) 0.22 4.2 (2.3-8.5) 5 (1.5-9.8) 0.33

Any surgical procedureb 14 (22.58) 12 (13.79) 0.22 15 (22.39) 11 (14.29) 0.27

Antihypertensivesb 16 (25.81) 27 (31.03) 0.41 18 (26.87) 22 (28.57) 0.52

ACE inhibitorsb 0 1 (1.15) N.E. 0 1 (1.30) N.E.

ARBb 3 (4.84) 6 (6.90) 0.60 4 (5.97) 5 (6.49) 0.86

Beta blockersb 15 (24.19) 29 (33.33) 0.33 19 (28.36) 25 (32.47) 0.73

Calcium channel blockersb 22 (35.48) 43 (49.43) 0.12 24 (35.82) 38 (49.35) 0.11

Diureticsb 34 (54.84) 48 (55.17) 0.79 38 (56.72) 44 (57.14) 0.99

Hypertensionb 41 (66.13) 57 (65.52) 0.87 46 (68.66) 48 (62.34) 0.69

Diabetesb 16 (25.81) 13 (14.94) 0.09 16 (23.88) 11 (14.29) 0.10
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Dyslipidemiab 5 (8.06) 5 (5.75) 0.36 6 (8.96) 4 (5.19) 0.25

Myocardial Infarctionb 0 2 (2.30) N.E. 0 2 (2.60) N.E.

Atrial fibrillationb 0 3 (3.45) N.E. 0 2 (2.60) N.E.

Current Smokingb 13 (20.97) 28 (32.18) 0.15 16 (23.88) 23 (29.87) 0.36

Mild alcohol intakeb 4 (6.45) 9 (10.34) 0.34 4 (5.97) 9 (11.69) 0.25

Moderate alcohol intakeb 2 (3.23) 5 (5.75) 0.39 2 (2.99) 5 (6.49) 0.33

Heavy alcohol intakeb 2 (3.23) 13 (14.94) 0.05 2 (2.99) 11 (14.29) 0.04

No Exerciseb 50 (80.65) 67 (77.01) 0.36 53 (79.10) 60 (77.92) 0.49

Low Educationb 52 (83.87) 62 (71.26) 0.12 55 (82.09) 56 (72.73) 0.22

Low socio-economic statusb 19 (30.65) 33 (37.93) 0.44 20 (29.85) 29 (37.66) 0.42

Obesityb 8 (12.90) 10 (11.49) 0.69 8 (11.94) 9 (11.69) 0.79

ICH Volume (ml)a 40.4 (29.9-70) 22 (10.75-40) <0.001 39.2 (27.6-66.3) 22 (10.8-40) <0.001

Intraventricular Hemorrhageb 35 (56.45) 19 (21.84) <0.001 37 (55.22) 17 (22.08) <0.001

Deep ICHb 48 (77.42) 75 (86.21) 0.14 53 (79.10) 65 (84.42) 0.24

Lobar ICHb 10 (16.13) 8 (9.20) 0.21 10 (14.93) 8 (10.39) 0.31

SBP (mmHg)a 170 (150-190) 180 (154-196) 0.99 177 (150-196) 173 (154-194) 0.53

DBP (mmHg)a 100 (87-110) 100 (90-120) 0.42 100 (87-110) 100 (90-113) 0.64
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NIHSS score at admissiona 24 (18-28) 15 (9-23) <0.001 24 (18-28) 14 (9-23) <0.001

GCS score at admissiona 7 (4-10) 13 (8-15) <0.001 7 (4-10) 13 (8-15) <0.001

mRS score at dischargea 5 (5-6) 4 (4-5) <0.001 5 (4-6) 4 (4-5) <0.001

RBS (mg/dl)a 164.2 (136-193) 147 (116-172) <0.001 160 (130-191.7) 152.1 (120-173) <0.001

TLC (103/µL)a 12000 (9700-

15750)

9900 (8400-

11861.8)

<0.001 12000 (9700-

15920)

9900 (8418.9-

11560)

<0.001

Hemoglobin (g/dl)a 12.6 (11-14.2) 13.3 (12-14.3) 0.28 12.6 (11-14.2) 13.3 (12-14.2) 0.22

Platelets (103/µL)a 177.7 (126.2-222) 184 (137.6-235) 0.54 177.7 (126.2-

223)

177.7 (137.6-

229.4)

0.98

Blood Urea (mg%)a 40.06 (24-46) 30 (23-42.88) 0.04 40 (24-46) 30 (23-42) 0.03

Creatinine (mg%)a 1 (0.8-1.5) 1 (0.7-1.2) 0.10 1 (0.8-1.5) 0.9 (0.7-1.2) 0.07

Potassium (mM/L)a 4.1 (3.8-4.5) 3.9 (3.5-4.3) 0.11 4 (3.8-4.5) 3.9 (3.6-4.3) 0.18

Sodium (mM/L)a 138.9 (136-141.5) 139.6 (136-142) 0.34 139 (136-141.5) 139.6 (136-142) 0.35

Total Bilirubin (mg%)a 0.8 (0.6-1) 0.8 (0.6-1) 0.68 0.8 (0.6-1) 0.8 (0.6-1) 0.94

 a: Variables represented as Median (IQR), b: Variables represented as frequency (percentage). 
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Table 3: Multivariable prediction models to predict poor outcome and mortality after Intracerebral Hemorrhage

Predictor variables OR (95% CI) P-value Predictor variables HR (95% CI) P-value

90-day poor outcome 90-day mortality

AUC/c-statistic: 0.95 (0.92-0.98) AUC/c-statistic: 0.83 (0.76-0.89)

Age 1.12 (1.06-1.19) <0.001 RBS 1.01 (1.00-1.01) <0.001

NIHSS score 1.21 (1.10-1.33) <0.001 NIHSS score 1.07 (1.03-1.12) 0.002

ICH volume 1.08 (1.03-1.12) 0.001 IGFBP-3 (<16.48) 2.08 (1.24-3.48) 0.005

UCH-L1 (<13.85) 9.23 (2.41-35.33) 0.001 IVH 1.90 (1.10-3.28) 0.02

A2M (>17.87) 5.57 (1.26-24.59) 0.02 Age 1.03 (1.00-1.05) 0.03

Serpin A11 (>11.36) 9.33 (1.09-79.94) 0.04 Creatinine 1.38 (1.03-1.85) 0.03

180-day poor outcome 180-day mortality

AUC/c-statistic: 0.92 (0.88-0.96) AUC/c-statistic: 0.81 (0.74-0.87)

NIHSS score 1.26 (1.16-1.36) <0.001 NIHSS score 1.08 (1.03-1.12) <0.001

Creatinine 10.44 (2.26-48.32) 0.003 RBS 1.01 (1.00-1.01) 0.005

MMP-2 (>18.72) 6.32 (1.82-21.90) 0.004 MMP-9 (<15.99) 1.98 (1.19-3.32) 0.009

Age 1.06 (1.01-1.10) 0.02 TLC 1.00 (1.00-1.00) 0.01

Diabetes 6.69 (1.40-31.94) 0.02 ICH volume 1.01 (1.00-1.01) 0.03
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Moderate alcohol 0.06 (0.004-0.79) 0.03

90-day poor outcome adjusted for age, gender, any surgical procedure, CCB, diuretic, heavy alcohol, low education, ICH volume, IVH, Deep ICH, NIHSS, RBS, TLC, HP, 

UCH-L1, A2M, and Serpin A11. 

180-day poor outcome adjusted for age, gender, any surgical procedure, diabetes, moderate alcohol, low education, ICH volume, IVH, NIHSS, TLC, RBS,  hemoglobin, 

blood urea, creatinine, A2M, MINPP-1, MMP-2, and UCH-L1.

90-day mortality adjusted for age, gender, diabetes, heavy alcohol, ICH volume, IVH, NIHSS, TLC, RBS, blood urea, creatinine, APO-C1, IGFBP3, and UCH-L1.

180-day mortality adjusted for age, gender, diabetes, heavy alcohol, ICH volume, IVH, NIHSS, TLC, RBS, blood urea, creatinine, APO-C1, UCH-L1, and MMP-9.
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Table 4: Five-fold cross validation and bootstrapping for internal validation of prediction 

models

Outcome measures Logistic regression (mean 

AUC of 5-fold cross 

validation)

Random Forest (mean 

AUC of 5-fold cross 

validation)

90-day poor outcome 0.90 (0.88-0.97) 0.89 (0.81-0.91)

180-day poor outcome 0.87 (0.88-0.97) 0.89 (0.85-0.95)

90-day mortality 0.78 (0.68-0.95) 0.81 (0.73-0.89)

180-day mortality 0.76 (0.68-0.86) 0.81 (0.78-0.85)
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Table 5: Validation of previously published ICH prediction scores.

S. No Prediction score 90-day poor outcome, 

AUC (95% CI)

180-day poor outcome, 

AUC (95% CI)

90-day mortality, 

AUC (95% CI)

180-day mortality, 

AUC (95% CI)

1. ICH score [16] 0.81 (0.74-0.88) 0.78 (0.71-0.86) 0.80 (0.73-0.87) 0.80 (0.72-0.87)

2. MICH score [35] 0.83 (0.77-0.90) 0.80 (0.73-0.87) 0.81 (0.73-0.88) 0.80 (0.73-0.87)

3. ICH-FOS score [36] 0.86 (0.79-0.92) 0.84 (0.77-0.91) 0.80 (0.73-0.87) 0.80 (0.73-0.87)

4. ICH-GS score [37] 0.80 (0.73-0.88) 0.76 (0.67-0.84) 0.78 (0.71-0.85) 0.76 (0.68-0.84)

5. Present study 0.90 (0.88-0.97) 0.87 (0.88-0.97) 0.78 (0.68-0.95) 0.76 (0.68-0.86)

Abbreviations- ICH: Intracerebral hemorrhage; MICH- modified Intracerebral hemorrhage; ICH-FOS: Intracerebral hemorrhage- Functional Outcome Score; ICH-GS: 
intracerebral hemorrhage Grading Scale; AUC: Area Under the Curve; CI: Confidence Interval.
The present study’s AUCs include the internally validated 5-fold cross validation AUC values from logistic regression.
ICH score: Glasgow coma scale (GCS) (15-13= 0; 12-5= 1; 4-3= 2), ICH volume (<30 cm3 = 0; ≥30 cm3 = 1), presence of intraventricular hemorrhage (IVH) (no = 0; 
yes = 1), infratentorial origin (no = 0; yes = 1), age (<80 = 0; ≥80 = 1).
MICH score: GCS (15-13= 0; 12-5= 1; 4-3= 2), ICH volume (≤20 cm3 = 0; 21-50 cm3 = 1; ≥51 cm3 = 2), presence of IVH or hydrocephalus (no = 0; yes = 1).
ICH-FOS score: age (≤59 = 0; 60-69 = 1; 70-79 = 2; ≥80 = 4), NIH Stroke Scale (NIHSS) (0-5 = 0; 6-10 = 2; 11-15 = 3; 16-20 = 4; ≥21 = 5), GCS (15-13 = 0; 12-9 = 1; 8-
3 = 2), admission glucose (≤11.0 mmol/L = 0; ≥11.1 mmol/L = 1), ICH volume for supratentorial origin (<40 cm3 = 0; 40-70 cm3 = 2; >70 cm3 = 2), ICH volume for 
infratentorial origin (<10 cm3 = 0; 10-20 cm3 = 2; >20 cm3 = 2), IVH (no = 0; yes = 1).
ICH-GS score: age (<45 = 1; 45-64 = 2; ≥65 = 3), GCS (15-13 = 1, 12-9 = 2, 8-3 = 3), ICH location (supratentorial = 1; infratentorial = 2), ICH volume (for supratentorial 
origin: <40 cm3 = 1; 40-70 cm3 = 2; >70 cm3 = 3; for infratentorial origin: <10 cm3 = 1; 10-20 cm3 = 2; >20 cm3 = 3).
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