
Inferring the sensitivity of wastewater
metagenomic sequencing for pathogen early
detection
Simon L. Grimm1,2,*, Jeff T. Kaufman1,2,*, Daniel P. Rice1,2, Charles Whittaker3, William J. Bradshaw1,2,✉,
& Michael R. McLaren1,2,✉

*Contributed equally.
1Media Laboratory, Massachusetts Institute of Technology, Cambridge, United States
2SecureBio, Cambridge, United States
3MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
4SecureDNA Foundation, Zug, Switzerland
✉Correspondence: wjbrad@mit.edu, mmclaren@mit.edu

Abstract

Detecting novel pathogens at an early stage requires robust early warning that is both sensitive and
pathogen-agnostic. Wastewater metagenomic sequencing (W-MGS) could meet these goals, but its
sensitivity and financial feasibility depend on the relative abundance of novel pathogen sequences in
W-MGS data. Here we collate W-MGS data from a diverse range of studies to characterize the relative
abundance of known viruses in wastewater. We then develop a Bayesian statistical model to integrate
these data with epidemiological estimates for 13 human-infecting viruses, and use it to estimate the
expected relative abundance of different viral pathogens for a given prevalence or incidence in the
community. Our results reveal pronounced variation between studies, with estimates differing by one
to three orders of magnitude for the same pathogen: for example, the expected relative abundance of
SARS-CoV-2 at 1% weekly incidence varied between 10-7 and 10-10. Integrating these estimates with a
simple cost model highlights similarly wide inter-study and inter-pathogen variation in the cost of
W-MGS-based early detection, with a mean yearly cost estimate of roughly $19,000 for a
Norovirus-like pathogen and $2.9 million for a SARS-CoV-2-like pathogen at 1% incidence. The
model and parameter estimates presented here represent an important resource for future
investigation into the performance of wastewater MGS, and can be extended to incorporate new
wastewater datasets as they become available.

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2024. ; https://doi.org/10.1101/2023.12.22.23300450doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.12.22.23300450
http://creativecommons.org/licenses/by/4.0/


Introduction

Biosurveillance of viruses present in wastewater has been used as a public health tool for decades1.
After Poliovirus was first identified in sewage in 19392, the virus was frequently tracked in wastewater
to aid eradication efforts1, and polio wastewater surveillance remains an important tool for
monitoring and suppressing reintroductions of the disease3. Similarly, wastewater surveillance of
norovirus has enabled both advance warning3 and phylogenetic analyses of norovirus evolution4.

Nevertheless, until very recently, wastewater biosurveillance was largely restricted to a few specific
pathogens in particular locales. This changed with the COVID-19 pandemic, when the need to reliably
track SARS-CoV-2 led to a surge in wastewater surveillance efforts across the world5. Public health
agencies and private companies employed qPCR to track the spread of COVID-196 and amplicon
sequencing to identify and trace SARS-CoV-2 variants7. Monitoring efforts are now expanding to
track other pathogens, such as Chikungunya8 , Dengue virus8, respiratory syncytial virus (RSV)9 and
influenza9. However, most such efforts remain targeted, using qPCR9, amplicon sequencing10, or other
assays11 to sensitively monitor for a defined list of target pathogens. Targeted methods thus limit the
utility of wastewater surveillance for identifying novel pathogens.

In contrast, methods like untargeted metagenomic sequencing are in principle able to detect any
nucleic acid present in a sample12. A wide diversity of enteric and non-enteric viruses have been found
to shed via human feces into wastewater13, including many pathogens that are not routine targets for
wastewater monitoring at present. This broad swath of pathogens therefore presents a promising
target for metagenomic sequencing. Additionally, wastewater-based MGS (W-MGS) could detect novel
pathogens spreading asymptomatically, thus complementing traditional surveillance approaches like
syndromic hospital surveillance.

However, the utility of W-MGS for pathogen surveillance will depend on its sensitivity as a detection
tool. This is heavily dependent on the number of pathogen reads present in a given dataset, which in
turn is driven by two key parameters: the sequencing effort (number of sequencing reads produced)
and the relative abundance of the pathogen (fraction of all reads in the dataset that arise from that
pathogen). To a first approximation, the sequencing effort and relative abundance required to achieve
a given sensitivity are inversely proportional: the lower the relative abundance, the more sequencing
needed to achieve detection. The cost-effectiveness of W-MGS surveillance thus depends critically on
pathogen relative abundance in W-MGS data: even given rapidly falling sequencing costs14,
sufficiently low relative abundances would still make W-MGS cost-prohibitive as a surveillance tool.

To better understand the cost of W-MGS for pathogen surveillance, we need to understand the
relationship between a disease’s epidemiological status (in particular, its incidence or prevalence in
the community) and pathogen relative abundance in wastewater. Such relative abundance estimates,
however, have not previously been generated in any systematic manner. To address this important
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Study Sequencing
Type

Country Eligible Read
Pairs

Included in
integrated
epidemiological
analyses

Reference

Brinch et al. (2020) DNA Denmark 4B Yes 15

Crits-Christoph et al. (2021) RNA United States 300M Yes 10

Rothman et al. (2021) RNA United States 700M Yes 16

Spurbeck et al. (2023) RNA United States 2B Yes 17

Bengtsson-Palme et al. (2016) DNA Sweden 700M No 18

Brumfield et al. (2022) DNA, RNA United States 500M No 19

Maritz et. al. (2019) DNA United States 200M No 20

Munk et al. (2022) DNA Multiple 40B No 21

Ng et al. (2019) DNA Singapore 300M No 22

Yang et al. (2021) RNA China 1B No 23

Table 1: Studies included in Figure 1. “Eligible read pairs” refers to the number of Illumina read pairs obtained

from raw wastewater using untargeted shotgun metagenomic sequencing, excluding other sample types and

libraries that underwent specific target enrichment (e.g. with oligo probe panels).

gap in the biosurveillance literature, we developed a hierarchical Bayesian model that combines
publicly available metagenomic datasets with epidemiological data for a range of known viral
pathogens, allowing us to estimate the relative abundance of a given virus in wastewater at a given
prevalence or incidence. Integrating these estimates with a simple sequencing cost model, we then
calculated the cost of pathogen detection with W-MGS at a given target level of sensitivity.

Our results highlight pronounced variability in the relative abundance of different human-infecting
viruses across studies, with corresponding variability in the predicted cost of detection with W-MGS.
Under more optimistic assumptions, W-MGS appears a viable approach for pathogen detection in the
medium-term, while under more pessimistic ones it faces severe obstacles to feasibility.

Results

Relative abundance of human-infecting viruses varies widely amongwastewater studies

We performed a literature search for large (>100M read pairs), untargeted W-MGS datasets obtained
from raw treatment-plant influent. We identified 10 such datasets (Table 1), obtained the data, and
processed it with a Kraken2-based computational pipeline to estimate the relative abundance of
human-infecting viruses (Methods). Figure 1a shows the relative abundance of different viral classes
in each dataset, calculated as the fraction of all reads that map to the relevant taxa.
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Figure 1: Viral abundance and taxonomic composition vary widely between wastewater metagenomics studies.

(a) Relative abundance of all viruses (blue), RNA viruses (orange), human-infecting viruses (green), and DNA

viruses (red), across samples for each included study. (b) Average taxonomic composition of human-infecting

viruses in each study, displayed as the arithmetic mean relative abundance of viral families across samples.
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The relative abundance of viruses as a whole varied by several orders of magnitude between studies,
from roughly 1 in 4 reads (Yang et al. 202123) to 1 in 11,000 (Ng et al. 201922) (Table S1).
Unsurprisingly, the relative abundance of RNA viruses was much higher in studies that conducted
RNA sequencing, while that of DNA viruses was higher in studies that conducted DNA sequencing;
however, the effect was much less dramatic for DNA than RNA viruses (Fig. S1), likely reflecting the
presence of DNA virus transcripts in RNA data.

Relative abundance of human-infecting viruses also varied substantially between studies, from
roughly 1 in 1,500 reads (Yang et al. 202123) to 1 in 8.3 million (Bengtsson-Palme et al. 201618) (Table
S1). On average, human-infecting viruses accounted for roughly 1 in 440,000 reads across all studies
(Table S1). The taxonomic composition of human-infecting viruses also varied dramatically (Fig. 1b);
for example, the fraction of human-infecting virus reads mapping to Caliciviridae varied from 52%
(Rothman et al. 202116) to 3% (Spurbeck et al. 202317), and Polyomaviridae relative abundance varied
from 87% (Brumfield et al. 202219, DNA Subset) to 7% (Munk et al. 202221).

Amulti-level Bayesianmodel enables flexible combination of epidemiological and

metagenomic data

These large inter-study differences in viral abundance and composition could arise from a variety of
factors, including differences in catchment demographics, sewershed hydrology, and sample
processing methods. One especially critical factor, however, is the number of infected people
contributing to the sewershed. We therefore collated public-health data on incidence (number of new
infections per unit time) or prevalence (number of infected people as a fraction of the population) for
a range of human-infecting viruses, and constructed a hierarchical Bayesian model in Stan24 to link
these metrics to viral relative abundance for a subset of studies (Methods, Table 1).

For this purpose, we selected 16 human-infecting viruses (Table 2), based on availability of relevant
public-health estimates as well as either public-health importance (Group 1) or high read counts in
our selected datasets (Group 2; see Methods). For viruses that cause chronic infections, we collected
estimates of prevalence, while for acutely infecting viruses, we estimated weekly incidence over the
studies’ coverage period (Fig. 2, Table 2, Methods). We used these estimates to parameterize our
model (Fig. 3) to predict expected viral relative abundance in wastewater at a given prevalence or
incidence for each virus and study, abbreviated as RAp and RAi respectively.
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Virus Abbreviation Incidence/
Prevalence

Underlying Data for US Underlying Data for Denmark

Severe Acute
Respiratory
Syndrome
Coronavirus 2

SARS-CoV-2 Incidence Confirmed and probable COVID-19
cases25, adjusted by a CDC-provided
underreporting factor26

No estimate

Influenza A&B
Virus

Flu A&B Incidence Number of positive tests, adjusted by a
yearly underreporting factor27,28

No estimate

Norovirus Norovirus Incidence Yearly incidence estimate from 200629,
adjusted by number of outbreaks per
year30.

No estimate

Herpes
Simplex Virus
1

HSV-1 Prevalence 2015 CDC estimates of HSV-1
seroprevalence among 14-49 yos.
olds31.

Extrapolated seroprevalence data based
on a 2008-2011 survey of 6627
Germans32.

Cytomegalo
virus

CMV Prevalence US-American CMV seroprevalence
from NHANES cycle 1999-200433.

Extrapolated 2006 seroprevalence
measurement of 19,781 Dutch sera34.

Epstein-Barr
Virus

EBV Prevalence CDC EBV seroprevalence
measurements from NHANES cycles
2003-201035, adjusted for current
demographics.

1983 EBV seroprevalence
measurements, adjusted for current
demographics36.

Human
Immunodeficie
ncy Virus
(untreated
cases)

HIV Prevalence 2019 CDC estimate of HIV
prevalence37, scaled by share of
patients who are not
immuno-surpressed37.

2022 Undiagnosed HIV-positive
individuals in Denmark38, scaled by share
of diagnoses made in Copenhagen38.

Hepatitis C
Virus

HCV Prevalence 2013-2016 Estimate of chronic Hep C
prevalence by the CDC39

2016 Estimate of total HCV cases in
Copenhagen, DK40

Human
Papillomavirus

HPV Prevalence 2018 CDC HPV prevalence estimates
among 15-59-year-olds41.

HPV PCR measurements in a 2016 male
Danish cohort of 2436 men42

Adeno-Associ
ated Virus 2

AAV-2 Prevalence Extrapolation of global seroprevalence
measurements in hemophilia patients43

Extrapolation of seroprevalence
measurements in Northern-European
hemophilia patients43

John-Cunning
ham Virus

JCV Prevalence 2009 US seroprevalence survey of
healthy adult blood donors44.

2009 Swiss seroprevalence study of 400
healthy adult blood donors. Extrapolated
to Denmark45.

BK Virus BKV Prevalence 2009 US seroprevalence survey of
healthy adult blood donors44.

2009 Swiss seroprevalence study of 400
healthy adult blood donors. Extrapolated
to Denmark45.

Merkel Cell
Virus

MCV Prevalence 2009 US seroprevalence study of 451
female control subjects46.

2018 Dutch seroprevalence study of
1050 serum samples. Extrapolated to
Denmark47.

Table 2: Human-infecting viruses included in this study. See Materials and Methods for additional information

on how each estimate was created.
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Figure 2: Prevalence and incidence of human-infecting viruses. (a) Prevalence of chronic-infecting viruses in the

United States 2020-2021 (green), and Denmark 2015-2018 (orange) across samples for each included study. (b)

Incidence of acute-infecting viruses in the United States, May 2020 to January 2022. SARS-CoV-2 incidence rates

(dark red) are a population-weighted average of county-level daily incidences for all counties covered by target

metagenomic studies. Influenza incidence rates are population-weighted averages of state-level weekly

incidences for the states covered by target metagenomic studies (Ohio and California). Norovirus weekly

incidence rates are based on nation-level, monthly data. No estimates for acute-infecting viruses were created

for Denmark, as RNA viruses were expected to show zero read counts in DNA sequencing data.
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Figure 3: Overview of hierarchical Bayesian model. White boxes are observed variables. Dark boxes are

estimated variables. The model uses logistic regression to predict the number of viral reads as a function of the

public health predictor (incidence/prevalence) and sample location. Predicted relative abundance is computed

as the ratio of the viral read count and overall number of reads (sequencing depth). Coefficients are estimated

independently for each study and virus.

Inter-study viral abundance differences persist after incorporating epidemiological data

To allow comparisons between studies and viruses, we focus here on RAi at 1% incidence (1/100
people infected per week) and RAp at 1% prevalence (1/100 people currently infected), denoted
RAi(1%) and RAp(1%) respectively. See Figures S2-S4 for results at other incidence/prevalence values.

Even when controlling for viral prevalence and incidence in this way, our results highlight substantial
differences in expected relative abundance among viruses and studies (Fig. 4). For example, median
estimates of RAi(1%) vary by four orders of magnitude between studies for norovirus GI and three
orders of magnitude for SARS-CoV-2 (Fig. 4a & S5, Table S5), while median estimates of RAp(1%) vary
by four orders of magnitude for MCV and two orders of magnitude for BKV (Fig. 4b & S5, Table S5).
These differences between viruses across studies were not consistently uniform in direction; for
example, Rothman shows higher RAi(1%) than Crits-Cristoph for norovirus GI and GII, but lower
RAi(1%) for SARS-CoV-2 (Fig. 4a, Table S5). Exceptions to the general rule include HIV and CMV, both
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of which showed relatively uniform RAp(1%) across studies that contained reads for these two viruses
(Fig. 4b & S5).

Many chronic viruses (e.g. HCV, CMV, and HPV) showed very low abundance in wastewater data, with
zero mapped reads in at least two of the four studies. Influenza showed a similar pattern. In these
cases it was only possible to estimate an upper bound on RAp/i(1%), representing the information we
obtain from knowing that a study did not detect a virus at some sequencing depth. Such upper bounds
differ between studies and viruses based on differences in total read count and epidemiological
indicators; for example, HCV and HPV both had zero reads in Crits-Christoph, but their median
RAp(1%) differed by two orders of magnitude (1.5 x 10-10 vs 3.9 x 10-12) (Fig. 4, Table S5).

In addition to estimating study-level RA(1%) values for different viruses, we also estimated these
coefficients for different sampling locations within each study (Fig. S6). While more consistent than
between studies, intra-study RA(1%) estimates still showed moderate variation between locations
(Fig. S6, Table S6-S7).

Projected costs of metagenomic wastewater surveillance span several orders of magnitude

To learn more about the potential viability of untargeted wastewater-based biosurveillance, we
developed a simple model to convert our estimates of RAp/i(1%) into estimates of the weekly number
of sequencing reads required to detect a pathogen by the time it reaches a certain cumulative
incidence in the population (Methods). We considered a virus to be detected when the cumulative
reads associated with that virus crossed a predefined threshold. Given this detection threshold, a
target cumulative incidence, and an RAi(1%) value, we can estimate the weekly sequencing depth V

required for detection (Methods, Fig. 5):

𝑉 ≈ 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
100 𝑅𝐴

𝑖
(1%) × 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒

Averaging across studies, we find that detection at 1% cumulative incidence, with a read threshold of
100 reads, requires an average of 7x107 sequencing reads for norovirus and 1x1010 reads for
SARS-CoV-2 per week. However, these average values conceal substantial variation in estimates
between studies (Fig. 5) which could alter the required read depth by multiple orders of magnitude in
either direction. Changing the detection threshold alters the required read depth approximately
proportionally.

The results of this model can be used to calculate initial cost estimates for effective pathogen
detection via wastewater metagenomics. For example, given a cost of $5,500 per billion reads
(Methods) and using the average read depth estimates above, detection at 1% cumulative incidence
with a read threshold of 100 would cost roughly $19,000/year for a norovirus-like pathogen and
$2,900,000/year for a SARS-CoV-2–like pathogen. Again, however, individual studies different
substantially in their projected costs: for the same parameters, Rothman and Crits-Christoph would
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Figure 4. Study-level relative abundance (RA) estimates. (a) Predicted RA of acute viruses at 1% weekly

incidence (RAi(1%)). Influenza RAi(1%) for Crits-Christoph is not displayed (Methods). (b) Predicted RA of chronic

viruses at 1% prevalence (RAp(1%)). Each violin represents the posterior predictive distribution of our Bayesian

model for a specific study and virus. Transparent violins indicate predictions made with <10 reads mapping to

the corresponding virus; dashed lines indicate predictions made with zero mapped reads
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Figure 5: Weekly reads required for detection, given the performance of different study protocols

(Crits-Christoph, Rothman, and Spurbeck), and their mean performance. (a) Norovirus (GII), (b) SARS-CoV-2

require $390,000 and $200,000 in sequencing per year to detect SARS-CoV-2, while Spurbeck’s
sensitivity would translate into a prohibitively expensive $320,000,000. For norovirus, the cost span
increases to four orders of magnitude, ranging from $200 (Rothman) to $960,000 (Spurbeck) per year.

Discussion

Metagenomic surveillance of wastewater (W-MGS) could enable monitoring of a wide range of known
and unknown pathogens, strains, and variants without reliance on clinical presentation. However, any
untargeted wastewater-based surveillance effort that hopes to detect novel viruses while they are still
rare will need to sequence samples to high depth, incurring substantial sequencing costs. Estimating
the scale of these costs for different pathogens and sequencing protocols is an important component
of any attempt to estimate the cost-effectiveness of metagenomic biosurveillance.
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To answer this question, we combined existing W-MGS datasets with epidemiological estimates of
different pathogens to estimate the expected relative abundance of different viral pathogens at a
given incidence or prevalence for a range of studies and sampling locations. We find that predicted
relative abundance varies widely across both pathogens and studies, suggesting that
non-epidemiological sources of inter-study variation (e.g. protocol choice, sampling methodology,
and sewershed characteristics) will have a dramatic impact on the performance of metagenomic
sequencing as a biosurveillance tool.

Using a simple model linking cumulative incidence to sequencing depth, we converted our
relative-abundance predictions into estimates of the cost of pathogen detection using W-MGS-based
biosurveillance. As with the relative-abundance estimates themselves, these cost estimates varied by
orders of magnitude between studies and pathogens. At the optimistic end of this variation, the
projected yearly cost to detect 100 cumulative reads of a SARS-CoV-2 type virus at a single location at
1% cumulative incidence was around $200,000 per year, while at the pessimistic end it exceeded $300
million. Further research into the driving factors behind this variability will be important for
determining the near- and medium-term feasibility of W-MGS-based biosurveillance; under
higher-cost regimes, successful implementation will require improvements in sample preparation
methods, highly sensitive threat detection algorithms, and sustained drops in sequencing cost.

While this study represents an important step forward in quantifying the efficacy and cost of
metagenomic wastewater surveillance, it nevertheless has important limitations. Most notably, there
is the limited amount of available sequencing data from regions with robust public-health estimates.
In total, the studies we selected for in-depth analysis comprised roughly 3B RNA-sequencing reads
and 4B DNA-sequencing reads: a significant amount compared to most individual studies, but
inadequate to quantify viruses at very low relative abundances. Many viruses returned 0 mapped reads
in some or all of the included studies, a problem exacerbated by a lack of DNA studies that
deliberately enriched for viruses. To address these issues, future research should obtain or generate
significantly deeper sequencing data, generated with protocols optimized for viral W-MGS.

The available public health also had important limitations. Many RNA viruses of interest either had
little epidemiological information available (metapneumovirus, rhinovirus) or remained close to zero
incidence during the periods covered by our data (respiratory syncytial virus), making it impractical to
generate estimates for these viruses. Where robust estimates were available, they were often
presented as point estimates without adequate or consistent representation of uncertainty. Lastly,
many of our estimates incorporated underreporting factors that were applied broadly across time and
space (likely underrepresenting real-world variability in reporting) and varied in their methodology
between pathogens. Improvements in available public-health estimates would substantially aid future
research in this domain.
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We see two avenues for future research building on our results. First, our parameter estimates should
be integrated into more advanced cost-effectiveness models comparing the feasibility of different
approaches to pathogen detection while incorporating other factors influencing W-MGS sensitivity
(e.g. detection noise). Second, future work should improve those parameter estimates themselves, by
incorporating larger viral MGS datasets, higher-quality public-health data, and additional sequencing
platforms. Generating and incorporating large, virally-enriched DNA-sequencing datasets from
wastewater would be especially valuable. As sequencing prices continue to decline over the coming
years, future research on W-MGS will play a central role in determining whether and when this
promising approach to biosurveillance merits widespread implementation.

Materials andMethods

Metagenomic Data

Study selection

We performed a literature search for studies that conducted untargeted shotgun metagenomic
sequencing of municipal wastewater influent and generated a large amount of data (>100M read
pairs). We identified and obtained data from 10 such studies (Table 1). For selected studies, we
discarded data from samples from sources other than municipal influent (e.g. treated sludge, effluent)
and from samples sequenced with methods other than untargeted shotgun MGS (e.g. target
enrichment).

After investigating viral relative abundance and composition in the 10 selected studies (Fig. 1), we
selected a subset of four studies for inclusion in our hierarchical Bayesian model (Fig. 3). Studies were
included in this second subset on the basis of (i) taking place in areas with good public health data
available for analysis, and (ii) using sample preparation methods well-suited for broad enrichment of
viruses, such as size selection with a 0.22 µm filter16.

Three RNA studies from the US met these criteria: Crits-Cristoph et al. 202110, Rothman et al. 202116,
and Spurbeck et al. 202317. We additionally included Brinch et al. 2020 from Denmark, as this
represented the largest eligible DNA study in our set. Inclusion criteria for studies can be found in
Table S3. All four of these studies conducted composite sampling of municipal influent (the three
RNA studies all used 24-hour composite samples, while Brinch used 12-hour composites) and
sequenced processed samples with paired-end Illumina technology.

Data Analysis

FASTQ files for each included study were obtained from the Sequencing Read Archive48 and analyzed
with a custom computational pipeline (see “Data and Code Availability”) as follows:
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1. Raw reads were cleaned with AdapterRemoval249 v2.3.1 (default settings) to detect and remove
adapters, trim low-quality bases, and merge overlapping forward and reverse reads.

2. Cleaned reads were mapped using Kraken250 (default settings) to its Standard 16 GB reference
database51(2022-12-09 build).

3. Taxonomic IDs corresponding to human-infecting viruses were identified using the Kyoto
University Bioinformatics Center’s Virus-Host Database52 and used to subset the Kraken2
results to human-infecting virus (HV) reads.

4. Kraken2 results were validated by mapping HV reads to their corresponding RefSeq genome53

using BowTie254 (bowtie2 --local --very-sensitive-local --score-min

G,1,0 --mp 2,0). Alignment scores were normalized by dividing by the natural logarithm

of the read length, and reads with normalized alignment scores below a threshold value of 22
(Fig. S7) were discarded.

5. Finally, relative abundances were calculated as the number of validated reads assigned to
human-infecting viruses for a given dataset, divided by the total number of reads in that
dataset.

Epidemiological Data

Virus Selection

To select viruses for which to perform epidemiological estimates, we performed an exploratory
literature review choosing viruses based on public-health importance and availability of applicable
incidence or prevalence estimates (Table 2 & S4). We chose a set of 16 “Group 1” viruses for analysis
based on these initial criteria. We later identified five further “Group 2” viruses (Table 2) that had
both good public health data and significant read counts in our chosen studies. While this allows
intra-study, inter-sample site comparison analysis (Fig. S6b), the inclusion of these viruses introduces
selection bias55: similarly prevalent viruses that shed less into stool or were less amenable to the
sequencing approaches used would not have been selected for study. Inter-study comparisons for
Group 2 viruses are marked accordingly.

Data Analysis

For viruses that cause chronic infections we collected estimates of prevalence, while for acutely
infecting viruses we estimated weekly incidence estimates. SARS-CoV-2 incidence estimates were
based on daily confirmed and probable county-level COVID-19 cases (provided by CDC)25, and
adjusted upwards by a uniform underreporting factor26. Influenza incidence was estimated using
state-level, weekly positive testing data27, which is adjusted by a custom yearly underreporting factor
based on the ratio between reported tests27 and CDC estimates of total symptomatic flu infections28.
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Norovirus incidence rates were based on the number of monthly, nationwide outbreaks per year30,
which were transformed into case counts using a 2006 US-wide incidence estimate29. Both Norovirus30

outbreak data and Influenza27 and COVID-19 testing data25 were provided by CDC. No incidence
estimates were generated for the region and period covered by Brinch et al. 202015; this study
conducted DNA sequencing, while all incidence viruses had RNA genomes.

For the United States, publicly available prevalence estimates were available for human
immunodeficiency virus (HIV)37, hepatitis C virus (HCV)39, and herpes simplex virus 131. When
prevalence estimates weren’t available, seroprevalence data—the share of individuals with antibodies
against the virus—was used instead. This was the case for cytomegalovirus (CMV)33, and
epstein-barr-virus (EBV)35. PCR testing data was available for human papilloma virus (HPV)41.
Seroprevalence and PCR data was collected in the National Health and Nutrition Examination Survey
(NHANES), a biannual health survey of a US population sample that includes testing for common
chronic infections56.

For viruses of lower public-health concern, estimates were not generally available from the sources
above. We thus expanded our search to individual seroprevalence studies for adeno-associated virus 2
(AAV-2)43, John-Cunningham virus (JCV)44, BK virus (BKV)44 and merkel cell virus (MCV)46.

For Denmark, publicly-available prevalence estimates were available for HCV39 and HIV38. For EBV36

and HPV42, we used published seroprevalence and qPCR positivity estimates, respectively, as proxies
for overall prevalence. When in-country estimates weren’t available, we resorted to the best data
source from a country or region with similar demographics, such as Switzerland (BKV)45, the
Netherlands (MCV, CMV)34,47, Northern Europe (AAV-2)43, or Germany (HSV-1)32. Table 2 describes the
method of estimate generation for each virus in detail.

StatisticalModel

Derivation

We are interested in modeling the relative abundance of a given virus (henceforth the “focal virus”) in
W-MGS data as a function of its incidence or prevalence (henceforth “public health predictor”) in the
population. Relative abundance is the fraction of reads assigned to a focal virus and, as such, is
constrained to the interval [0, 1]. We assume that when relative abundance is low, it increases
proportionally with the public health predictor. With these properties in mind, a natural model is
logistic regression with unit slope:

𝐸[𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒] = 𝑙𝑜𝑔𝑖𝑡−1(𝑏 + log 𝑝𝑢𝑏𝑙𝑖𝑐 ℎ𝑒𝑎𝑙𝑡ℎ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) 

,∼ 𝑒𝑏 × 𝑝𝑢𝑏𝑙𝑖𝑐 ℎ𝑒𝑎𝑙𝑡ℎ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟
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where the second line holds as the argument of the inverse logit approaches zero. We estimate the
parameter b, which governs the relationship between relative abundance and the public health
predictor, as described below. We can transform an estimate of b into an estimate of RA(x) by
substituting x for the value of the public health predictor into the equation above. For example,

.𝑅𝐴(1%) = 𝑙𝑜𝑔𝑖𝑡−1(𝑏 − log 100)

We estimate and for each virus in each metagenomic study separately.𝑏 𝑅𝐴(1%)

In each study, there are metagenomic samples taken at various times from sampling locations. For𝑆 𝐿
sample , the data consist of the sampling location , the total number of reads , the𝑠 ∈ {1, ..., 𝑆} 𝑙(𝑠) 𝑛

𝑠

number of focal viral reads , and the public health predictor . Because sampling locations vary𝑦
𝑠

𝑥
𝑠

along several dimensions including sample preparation methods, we use a hierarchical model with a
separate term for each sampling location. The model thus produces a joint estimate of𝑏

𝑙

location-specific effects and an overall coefficient for each study and virus.

We model the focal viral counts in each sample as a binomial random variable:

,𝑦
𝑠
 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛

𝑠
,  𝑙𝑜𝑔𝑖𝑡−1 𝑏

𝑙(𝑠)
+ θ

𝑠( )( )
,θ

𝑠
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 log 𝑥

𝑠
, σ( )

σ ~ 𝐺𝑎𝑚𝑚𝑎(2,  1)

where is a latent variable, centered around the estimated log public health predictor, that accountsθ
𝑠

for three factors:

1. error in the public health predictor

2. differences between the population the public health predictor is derived from (e.g., the entire
United States for all of 2021) and the population contributing to the sample (e.g., Orange
County on May 21, 2021)

3. unbiased noise in the read counts that is not accounted for by the binomial model.

For each study and virus, we infer the combined magnitude of these effects, , from the data.σ

Finally, we define a location-specific term , where is the location of the sample. The𝑏
𝑙(𝑠)

𝑙(𝑠) ∈ {1, ..., 𝐿}

hierarchical model of intercept terms has the structure:

,𝑏
𝑙
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏,  τ)

,𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(µ,  4)

.τ ~ 𝐺𝑎𝑚𝑚𝑎(2,  1)
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Here, is the overall intercept for the study and virus and is the standard deviation of the𝑏 τ
location-specific terms around this overall value. The prior on is centered on𝑏

,µ =  log 𝑥‾ + log 𝑦‾ − log 𝑛‾

so that roughly represents the naive estimate given by dividing the relative abundance in all of𝑏 = µ
the data by the average log public health predictor estimate across samples. The prior on is weakly𝑏
informative: it supposes that the naive approximation is not off by more than a few orders of
magnitude, but does not contain any other substantive scientific information. We chose the prior
standard deviation of to be as large as possible while still allowing for efficient sampling.𝑏

As with , is learned from the data, allowing for some studies to have a lot of variation betweenσ τ
sampling locations and others to have little.

We fit the model using the Stan probabilistic programming language15. The code for the model is
publicly available online (See “Data and Code Availability”).

Pseudocounts

Sometimes the incidence of a virus is zero for a particular sample. This happens when no new cases
were reported in the study region during the period overlapping the sample. In order to obtain a finite
log-incidence, for the model, we introduced pseudocounts of 0.1 total cases in a given region per
week. In order to ensure that our choice of pseudocount did not strongly influence the results, we
performed a sensitivity analysis. We found that for most viruses and studies, the effect of
pseudocounts is minimal. However, we found that our inference for influenza in Crits-Christoph was
dominated by the pseudocounts, so we dropped it from Figure 4.

Pathogenswith zero reads

Many viruses of interest returned 0 mapped reads in some or all of the included studies. Based on our
model, such an observation still enables us to estimate weak upper-bound estimates of RAp/i(1%): If
two studies sequence at different depths, without detecting a virus with equal prevalence or
incidence, the study that sequences more deeply can be expected to have lower RAp/i(1%).

Model Checking

To assess the posterior sampling, we examined plots of the marginal and joint posterior distributions
of the parameters. Posterior distributions that have irregular “spikes” at particular values or are
strongly multimodal indicate that the Hamiltonian Monte Carlo sampler may not be exploring the
parameter space efficiently, likely due to model specification issues. We also compared the prior and
posterior distributions to ensure that the priors did not have undue influence on the posteriors. For
example, we found that our initial choice of prior was too narrow, significantly𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(µ, 2)
constraining the posterior distribution even for the virus/study combinations with a lot of data.
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Conversely, we found that was too broad, leading the sampler to mix poorly.𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(µ, 10)
Similarly, we adjusted the priors on and to avoid the lower bound at zero.σ τ

To check the fit of the model, we used the posterior samples of the model to generate simulated
datasets. We compared the simulated data to the observed data, looking for features not accurately
captured by the model. For example, earlier versions of the model did not include terms for sampling
locations within studies. Posterior predictive checks revealed that this model failed to predict the low
read counts for SARS-CoV-2 in the Point Loma (PL) location of the Rothman dataset, inspiring us to
add location-specific effects.

CostModel

Derivation

The sequencing effort required to detect a pathogen is a key determinant of the cost of genomic
surveillance. To estimate the cost of detecting a virus, we created a simple model predicting the total
sequencing reads required for detection as a function of viral incidence and RA(1%). In making this
estimate, we did not consider fixed and per-sample costs that do not scale with the number of reads
sequenced.

While detection algorithms differ, they all require the presence of reads originating from the virus of
interest. Certain methods—such as mapping to a known reference—may detect a pathogen from just a
few reads, while less targeted methods may require far more. To represent different computational
detection methods, we model a virus as “detected” when the cumulative focal viral reads exceed some
chosen threshold.

The expected number of viral reads observed over a given time period can be modeled as a function of
viral incidence, which is converted into an estimate of relative abundance using the RAi values
estimated by the model described above.

Let be the weekly incidence of the focal virus during week at the location of interest. If total𝑖(𝑡) 𝑡 𝑛
reads are sequenced at that location each week, then we expect to find reads from the𝑛 × 𝑅𝐴

𝑖
(𝑖(𝑡))

focal virus. The cumulative read count from that virus is calculated as a sum over all previous weeks of
monitoring:

𝐸[𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑖𝑟𝑎𝑙 𝑟𝑒𝑎𝑑𝑠 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡] =
𝑡'≤𝑡
∑ 𝑛 × 𝑅𝐴

𝑖
(𝑖(𝑡'))

When relative abundance is low, the value of RAi estimated by our statistical model scales roughly
proportionally with incidence. As a result, we can compute as a linear function of :𝑅𝐴

𝑖
(𝑖(𝑡')) 𝑅𝐴

𝑖
(1%)
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.𝐸[𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑖𝑟𝑎𝑙 𝑟𝑒𝑎𝑑𝑠 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡] ≈
𝑡'≤𝑡
∑ 𝑛 × 𝑅𝐴

𝑖
(1%) 𝑖(𝑡')

1%

Pulling out the constant terms gives

𝐸[𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑖𝑟𝑎𝑙 𝑟𝑒𝑎𝑑𝑠 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡] ≈ 𝑛 × 𝑅𝐴
𝑖
(1%) × 100

𝑡'≤𝑡
∑ 𝑖(𝑡')

The summation term on the right is just the cumulative incidence at week . Rearranging the terms,𝑡
the weekly total reads required for the expected cumulative viral reads to equal the detection
threshold is given by:

.𝑛 ≈ 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
100 𝑅𝐴

𝑖
(1%) × 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒

Note that we have not made any assumptions about the incidence time course, . In particular, this𝑖(𝑡)
last equation is independent of the growth rate. Thus, in our model, the required sequencing depth
depends only on the sensitivity of the method (through the detection threshold) and the ability to
sample reads from the focal virus (through ).𝑅𝐴

𝑖
(1%)

Sequencing Cost

Approximate cost of metagenomic sequencing was estimated using pricing information by MIT’s
BioMicroCenter, Harvard University’s Bauer Core Facility, the Dana-Farber Cancer Institute’s
Molecular Biology Core Facilities (MBCF). The MIT BioMicroCenter charges $23,760 per flow cell for
NovaSeq S4 300nt57, Harvard’s Bauer Core facility charges $19,40958, and Dana Farber’s MBCF charges
$36,00059. Averaging this cost (geometric mean) gives a cost of roughly $25,500. A NovaSeq 6000 with
an S4 flow cell is advertised as giving 8B-10B read pairs. Doubling this cost when accounting for
library preparation and personnel costs equates to roughly $5,500 per billion read pairs.

Data and Code Availability

Analysis and visualization was performed using Python60 with the Pystan61, Numpy62 and Pandas63,64

package, and Matplotlib65 and Seaborn66 visualization libraries. All sequencing data in this study is
available through the European Nucleotide Archive67, using BioProject accessions listed in Table S2.
The raw data used for estimating pathogen prevalence and incidence are listed in the respective
Python script for each pathogen. All code used in this study can be found in two Github repositories,
https://github.com/naobservatory/mgs-pipeline/tree/p2ra-manuscript (metagenomic data analysis
pipeline) and https://github.com/naobservatory/p2ra-manuscript (epidemiological analysis,
statistical models, figure generation).
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Supplementary Information

Supplementary Figures

Figure S1: Relative abundance of RNA viruses and DNA viruses in samples processed with DNA vs RNA sequencing, across

all studies included in Figure 1. P-values indicate significant differences between the designated abundance distributions,

as determined by a Mann-Whitney U Test.
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Figure S2: Study-level relative abundance (RA) as a function of epidemiological indicators. (a) Predicted relative abundance

of acute viruses at 10% weekly incidence. (b) Predicted relative abundance of chronic viruses at 10% prevalence.
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Figure S3: Study-level relative abundance (RA) as a function of epidemiological indicators. (a) Predicted relative

abundance of acute viruses at 0.1% weekly incidence. (b) Predicted relative abundance of chronic viruses at

0.1% prevalence.
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Figure S4: Study-level relative abundance (RA) as a function of epidemiological indicators. (a) Predicted relative

abundance of acute viruses at 0.01% weekly incidence. (b) Predicted relative abundance of chronic viruses at

0.01% prevalence.
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Figure S5: Inter-study variability (RA), as determined by the difference between the study with the lowest

median RA(1%) and the study with the highest median RA(1%). The bars represent the difference between the

two studies’ median; the range spans i) the low-end of the lower estimate divided by the high-end of the higher

estimate and ii) the high-end of the lower estimate divided by the low-end of the high estimate. Differences are

displayed in order-of-magnitudes. Selected studies are displayed on the y-axis, studies to the left have lower

RA(1%) median.
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Figure S6. Location-level relative abundance (RA) estimates for selected viruses. (a) Predicted RA of selected

acute viruses at 1% weekly incidence. (b) Predicted RA of selected chronic viruses at 1% prevalence. Each violin

represents the posterior predictive distribution of our Bayesian model for a specific study, location, and virus.

Transparent violins indicate predictions made with <10 reads mapping to the corresponding virus; dashed lines

indicate predictions made with zero mapped reads.

32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2024. ; https://doi.org/10.1101/2023.12.22.23300450doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.22.23300450
http://creativecommons.org/licenses/by/4.0/


Figure S7: Normalized alignment scores of all reads of target studies (Brinch, Rothman, Spurbeck, and

Crits-Christoph). Alignment scores are normalized by dividing the BowTie2 alignment score by the natural

logarithm of the read length. The black, dashed line shows the cut-off alignment score under which Kraken read

assignments were discarded.
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Supplementary Tables

Study
Relative abundance (fraction of all reads)
All viruses Human-infecting viruses

Bengtsson-Palme 2016 1.53 x 10⁻⁴ (1 in 6553) 1.2 x 10⁻⁷ (1 in 8324122)

Brinch 2020 3.59 x 10⁻³ (1 in 278) 2.24 x 10⁻⁶ (1 in 446026)

Brumfield 2022 5.27 x 10⁻³ (1 in 189) 1.52 x 10⁻⁶ (1 in 658766)

Crits-Christoph 2021 5.37 x 10⁻³ (1 in 186) 5.01 x 10⁻⁶ (1 in 199529)

Maritz 2019 8.49 x 10⁻⁴ (1 in 1177) 9.23 x 10⁻⁷ (1 in 1083027)

Munk 2022 2.42 x 10⁻³ (1 in 413) 2.73 x 10⁻⁶ (1 in 366316)

Ng 2019 9.04 x 10⁻⁵ (1 in 11059) 4.02 x 10⁻⁷ (1 in 2487173)

Rothman 2021 4.2 x 10⁻² (1 in 23) 2.43 x 10⁻⁶ (1 in 410935)

Spurbeck 2023 8.38 x 10⁻⁵ (1 in 11927) 1.36 x 10⁻⁶ (1 in 732757)

Yang 2020 2.08 x 10⁻¹ (1 in 4) 6.38 x 10⁻⁴ (1 in 1567)

All studies 1.93 x 10⁻³ (1 in 516) 2.26 x 10⁻⁶ (1 in 441830)

Table S1: Average relative abundance of all viruses (left) and human-infecting viruses (right) in all studies

included in Figure 1. Relative abundance values for each study are given as the geometric mean relative

abundance across all samples in that study. The “all studies” row gives the geometric mean across the average

values for each study,

Study Bioprojects

Bengtsson-Palme 2016 PRJEB14051

Brinch 2020 PRJEB13832, PRJEB34633

Brumfield 2022 PRJNA812772

Crits-Christoph 2021 PRJNA661613

Maritz 2019 PRJEB28033

Munk 2022 PRJEB13831, PRJEB27054, PRJEB27621, PRJEB40798,
PRJEB40815, PRJEB40816, PRJEB51229

Ng 2019 PRJNA438174

Rothman 2021 PRJNA729801

Spurbeck 2023 PRJNA924011

Yang 2020 PRJNA645711

Table S2: Bioproject IDs for all included studies:
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Study Metagenomic protocol Sample type Sampling location Included

Rothman 2021 ✓ ✓ ✓ Yes

Crits-Christoph
2021 ✓ ✓ ✓ Yes

Spurbeck 2023 ✓ ✓ ✓ Yes

Brinch 2020 𐄂 ✓ ✓ Yes

Bengtsson-Palme
2016 𐄂 ✓ ✓ No, no viral enrichment

Brumfield 2022 ✓ 𐄂 ✓
No, sampled from
manhole

Maritz 2019 𐄂 ✓ ✓ No, no viral enrichment

Munk 2022 𐄂 ✓ ✓ No, no viral enrichment

Ng 2019 𐄂 𐄂 ✓
No, protocol selects
against viruses

Yang 2020 ✓ ✓ 𐄂

No, Samples originate
from Xinjiang China, with
little available public
health data

Table S3: Inclusion criteria for study subselection. Studies were included if they sampled untreated wastewater

at a wastewater treatment plant, and performed metagenomic sequencing that is biased toward viruses, while

not biased toward a viral subset (e.g., no amplification of a distinct set of human viruses). The 2020 study by

Brinch et al. was included because it is the largest DNA study that sourced its samples from a single location.

This contrasts with other studies like the one by Munk, which collected samples from many locations around

the globe, which complicates the creation of public health estimates.
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Virus Selection Group Incidence/Prevalence Exclusion Criterion

SARS-CoV-2 Group 1 Incidence Not excluded

Influenza A&B Virus Group 1 Incidence Not excluded

Norovirus Group 1 Incidence Not excluded

Respiratory Syncytial Virus Group 1 Incidence Heavily suppressed during the
coverage period of RNA studies

Rhinovirus Group 1 Incidence No precise public health data available

Enteric Adenovirus Group 1 Incidence No precise public health data available

Metapneumovirus Group 1 Incidence No precise public health data available

Herpes Simplex Virus 1 (HSV-1) Group 1 Prevalence
Not excluded

Herpes Simplex Virus 2 (HSV-2) Group 1 Prevalence
Not excluded

Cytomegalovirus (CMV) Group 1 Prevalence Not excluded

Epstein-Barr-Virus (EBV) Group 1 Prevalence Not excluded

Human Immunodeficiency Virus
(HIV)

Group 1 Prevalence
Not excluded

Hepatitis B Virus (HBV) Group 1 Prevalence Not excluded

Hepatitis C Virus (HCV) Group 1 Prevalence Not excluded

Human Papilloma Virus (HPV) Group 1 Prevalence
Not excluded

Adeno-Associated Virus 2 Group 2 Prevalence Not excluded

John-Cunningham Virus (JCV) Group 2 Prevalence
Not excluded

BK Virus (BKV) Group 2 Prevalence Not excluded

Merkel Cell Virus (MCV) Group 2 Prevalence Not excluded

Hepatitis A Virus (HAV) Group 1 Prevalence No precise public health data available

Table S4: Exclusion criteria for human-infecting viruses
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Virus Study Median 5th Percentile 95th Percentile

SARS-COV-2 Rothman 7.40 x 10⁻⁸ 1.91 x 10⁻⁸ 2.32 x 10⁻⁷

SARS-COV-2 Crits-Christoph 1.39 x 10⁻⁷ 1.15 x 10⁻⁸ 7.66 x 10⁻⁷

SARS-COV-2 Spurbeck 8.97 x 10⁻¹¹ 5.15 x 10⁻¹² 6.18 x 10⁻¹⁰

Norovirus (GI) Rothman 2.27 x 10⁻⁴ 1.03 x 10⁻⁴ 4.37 x 10⁻⁴

Norovirus (GI) Crits-Christoph 2.12 x 10⁻⁶ 5.14 x 10⁻⁸ 2.54 x 10⁻⁵

Norovirus (GI) Spurbeck 1.63 x 10⁻⁸ 1.10 x 10⁻⁹ 1.06 x 10⁻⁷

Norovirus (GII) Rothman 1.29 x 10⁻⁴ 3.88 x 10⁻⁵ 4.18 x 10⁻⁴

Norovirus (GII) Crits-Christoph 8.88 x 10⁻⁷ 4.15 x 10⁻⁸ 7.67 x 10⁻⁶

Norovirus (GII) Spurbeck 2.99 x 10⁻⁸ 3.82 x 10⁻⁹ 1.51 x 10⁻⁷

Influenza A Rothman 2.32 x 10⁻⁷ 6.14 x 10⁻⁹ 3.02 x 10⁻⁶

Influenza A Crits-Christoph 3.33 x 10⁻⁴ 4.46 x 10⁻⁶ 9.83 x 10⁻³

Influenza A Spurbeck 1.55 x 10⁻¹⁰ 3.22 x 10⁻¹² 1.99 x 10⁻⁹

Influenza B Rothman 2.86 x 10⁻⁷ 1.86 x 10⁻⁸ 3.91 x 10⁻⁶

Influenza B Crits-Christoph 4.04 x 10⁻⁴ 3.89 x 10⁻⁶ 9.40 x 10⁻³

Influenza B Spurbeck 5.78 x 10⁻⁹ 8.60 x 10⁻¹¹ 9.60 x 10⁻⁸

AAV2 Rothman 2.06 x 10⁻¹² 4.49 x 10⁻¹⁴ 3.20 x 10⁻¹¹

AAV2 Crits-Christoph 2.38 x 10⁻¹² 2.65 x 10⁻¹⁴ 6.76 x 10⁻¹¹

AAV2 Spurbeck 8.35 x 10⁻¹¹ 8.40 x 10⁻¹² 5.45 x 10⁻¹⁰

AAV2 Brinch 5.92 x 10⁻¹¹ 1.48 x 10⁻¹¹ 2.57 x 10⁻¹⁰

BKV Rothman 5.34 x 10⁻¹² 1.58 x 10⁻¹³ 4.14 x 10⁻¹¹

BKV Crits-Christoph 1.86 x 10⁻¹⁰ 8.72 x 10⁻¹² 2.93 x 10⁻⁹

BKV Spurbeck 4.34 x 10⁻¹² 2.24 x 10⁻¹³ 3.53 x 10⁻¹¹

BKV Brinch 4.44 x 10⁻¹⁰ 2.09 x 10⁻¹⁰ 8.58 x 10⁻¹⁰

CMV Rothman 2.67 x 10⁻¹² 5.55 x 10⁻¹⁴ 2.84 x 10⁻¹¹

CMV Crits-Christoph 2.58 x 10⁻¹² 2.90 x 10⁻¹⁴ 8.30 x 10⁻¹¹

CMV Spurbeck 8.95 x 10⁻¹³ 2.46 x 10⁻¹⁴ 1.24 x 10⁻¹¹

CMV Brinch 5.53 x 10⁻¹³ 1.30 x 10⁻¹⁴ 8.99 x 10⁻¹²

EBV Rothman 1.84 x 10⁻¹² 3.69 x 10⁻¹⁴ 2.62 x 10⁻¹¹

EBV Crits-Christoph 1.77 x 10⁻¹² 1.50 x 10⁻¹⁴ 5.51 x 10⁻¹¹

EBV Spurbeck 7.75 x 10⁻¹³ 1.68 x 10⁻¹⁴ 7.95 x 10⁻¹²

EBV Brinch 2.71 x 10⁻¹¹ 7.14 x 10⁻¹² 9.35 x 10⁻¹¹
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HCV Rothman 6.37 x 10⁻¹¹ 1.33 x 10⁻¹² 1.03 x 10⁻⁹

HCV Crits-Christoph 1.59 x 10⁻¹⁰ 2.09 x 10⁻¹² 3.73 x 10⁻⁹

HCV Spurbeck 1.62 x 10⁻¹¹ 3.22 x 10⁻¹³ 2.84 x 10⁻¹⁰

HCV Brinch 1.58 x 10⁻¹⁰ 5.70 x 10⁻¹² 1.91 x 10⁻⁹

HIV Rothman 1.49 x 10⁻⁹ 3.45 x 10⁻¹¹ 1.42 x 10⁻⁸

HIV Crits-Christoph 3.82 x 10⁻⁹ 1.17 x 10⁻¹⁰ 5.09 x 10⁻⁸

HIV Spurbeck 1.33 x 10⁻¹⁰ 2.18 x 10⁻¹² 2.21 x 10⁻⁹

HIV Brinch 9.71 x 10⁻¹⁰ 2.40 x 10⁻¹¹ 1.38 x 10⁻⁸

HPV Rothman 1.92 x 10⁻¹² 3.50 x 10⁻¹⁴ 3.03 x 10⁻¹¹

HPV Crits-Christoph 4.08 x 10⁻¹² 3.39 x 10⁻¹⁴ 1.00 x 10⁻¹⁰

HPV Spurbeck 5.81 x 10⁻¹³ 1.17 x 10⁻¹⁴ 9.85 x 10⁻¹²

HPV Brinch 4.35 x 10⁻¹³ 8.79 x 10⁻¹⁵ 8.73 x 10⁻¹²

HSV-1 Rothman 4.01 x 10⁻¹⁰ 1.41 x 10⁻¹⁰ 8.23 x 10⁻¹⁰

HSV-1 Crits-Christoph 3.00 x 10⁻¹² 4.21 x 10⁻¹⁴ 7.60 x 10⁻¹¹

HSV-1 Spurbeck 4.47 x 10⁻¹³ 8.07 x 10⁻¹⁵ 7.02 x 10⁻¹²

HSV-1 Brinch 1.02 x 10⁻¹² 5.20 x 10⁻¹⁴ 1.16 x 10⁻¹¹

JCV Rothman 2.21 x 10⁻¹¹ 1.08 x 10⁻¹² 1.96 x 10⁻¹⁰

JCV Crits-Christoph 5.24 x 10⁻¹⁰ 3.30 x 10⁻¹¹ 5.57 x 10⁻⁹

JCV Spurbeck 1.94 x 10⁻¹¹ 1.64 x 10⁻¹² 1.07 x 10⁻¹⁰

JCV Brinch 1.45 x 10⁻⁹ 6.22 x 10⁻¹⁰ 3.22 x 10⁻⁹

MCV Rothman 1.61 x 10⁻¹² 2.31 x 10⁻¹⁴ 2.38 x 10⁻¹¹

MCV Crits-Christoph 1.24 x 10⁻⁸ 5.15 x 10⁻⁹ 2.97 x 10⁻⁸

MCV Spurbeck 2.56 x 10⁻¹² 8.84 x 10⁻¹⁴ 2.05 x 10⁻¹¹

MCV Brinch 1.96 x 10⁻¹⁰ 8.48 x 10⁻¹¹ 4.70 x 10⁻¹⁰

Table S5: RAi/p(1%) for selected viruses. Viruses covered: Norovirus GI, GII, SARS-CoV-2, HIV, MCV, BKV, JCV)
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Virus Difference at 5% Difference at 25% Difference at 50% Difference at 75% Difference at 95%

BKV -2.56 -1.78 -1.46 -1.23 -1

JCV -2.29 -1.56 -1.28 -1.1 -0.93

MCV -0.6 -0.38 -0.29 -0.28 -0.27

Norovirus (GI) -0.76 -0.56 -0.51 -0.48 -0.42

Norovirus (GII) -1.75 -1.36 -1.17 -1.01 -0.88

SARS-COV-2 -0.76 -0.49 -0.42 -0.41 -0.44

Table S6: Log-fold RA(1%) difference between un-enriched (A, B, C, D, I, J) and enriched (E, F, G, H) Spurbeck

2023 samples, shown between 5th, 25th, 50th, 75th, and 95th percentiles respectively. Viruses covered:

Norovirus (GI), Norovirus (GII), SARS-COV-2, MCV, JCV, BKV

Virus Difference at 5% Difference at 25% Difference at 50% Difference at 75% Difference at 95%

BKV -0.68 -0.38 -0.22 -0.17 -0.09

JCV 1.2 0.86 0.78 0.75 0.7

MCV 0.45 0.24 0.22 0.19 0.22

Norovirus (GI) -0.46 -0.33 -0.27 -0.2 -0.13

Norovirus (GII) -0.97 -0.86 -0.78 -0.72 -0.63

SARS-COV-2 -1.48 -1.12 -0.94 -0.8 -0.62

Table S7: Log-fold RA(1%) difference between the HTP site and the geometric mean of all other Rothman

2022 sampling sites, shown between 5th, 25th, 50th, 75th, and 95th percentiles respectively. Viruses covered:

Norovirus (GI), Norovirus (GII), SARS-COV-2, MCV, JCV, BKV
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Virus Study Median 25th Percentile 75th Percentile Detection
Threshold (reads)

Norovirus (GII) Crits-Christoph 1.19 x 10⁷ 3.32 x 10⁷ 4.89 x 10⁶ 10

Norovirus (GII) Rothman 7.57 x 10⁴ 1.17 x 10⁵ 4.92 x 10⁴ 10

Norovirus (GII) Spurbeck 3.26 x 10⁸ 7.15 x 10⁸ 1.62 x 10⁸ 10

Norovirus (GII) Mean (geometric) 6.65 x 10⁶ 1.41 x 10⁷ 3.39 x 10⁶ 10

SARS-COV-2 Crits-Christoph 6.07 x 10⁷ 1.49 x 10⁸ 2.54 x 10⁷ 10

SARS-COV-2 Rothman 1.28 x 10⁸ 2.09 x 10⁸ 8.21 x 10⁷ 10

SARS-COV-2 Spurbeck 1.12 x 10¹¹ 3.07 x 10¹¹ 4.81 x 10¹⁰ 10

SARS-COV-2 Mean (geometric) 9.54 x 10⁸ 2.12 x 10⁹ 4.64 x 10⁸ 10

Norovirus (GII) Crits-Christoph 1.19 x 10⁸ 3.32 x 10⁸ 4.89 x 10⁷ 100

Norovirus (GII) Rothman 7.57 x 10⁵ 1.17 x 10⁶ 4.92 x 10⁵ 100

Norovirus (GII) Spurbeck 3.26 x 10⁹ 7.15 x 10⁹ 1.62 x 10⁹ 100

Norovirus (GII) Mean (geometric) 6.65 x 10⁷ 1.41 x 10⁸ 3.39 x 10⁷ 100

SARS-COV-2 Crits-Christoph 6.07 x 10⁸ 1.49 x 10⁹ 2.54 x 10⁸ 100

SARS-COV-2 Rothman 1.28 x 10⁹ 2.09 x 10⁹ 8.21 x 10⁸ 100

SARS-COV-2 Spurbeck 1.12 x 10¹² 3.07 x 10¹² 4.81 x 10¹¹ 100

SARS-COV-2 Mean (geometric) 9.54 x 10⁹ 2.12 x 10¹⁰ 4.64 x 10⁹ 100

Norovirus (GII) Crits-Christoph 1.19 x 10⁹ 3.32 x 10⁹ 4.89 x 10⁸ 1000

Norovirus (GII) Rothman 7.57 x 10⁶ 1.17 x 10⁷ 4.92 x 10⁶ 1000

Norovirus (GII) Spurbeck 3.26 x 10¹⁰ 7.15 x 10¹⁰ 1.62 x 10¹⁰ 1000

Norovirus (GII) Mean (geometric) 6.65 x 10⁸ 1.41 x 10⁹ 3.39 x 10⁸ 1000

SARS-COV-2 Crits-Christoph 6.07 x 10⁹ 1.49 x 10¹⁰ 2.54 x 10⁹ 1000

SARS-COV-2 Rothman 1.28 x 10¹⁰ 2.09 x 10¹⁰ 8.21 x 10⁹ 1000

SARS-COV-2 Spurbeck 1.12 x 10¹³ 3.07 x 10¹³ 4.81 x 10¹² 1000

SARS-COV-2 Mean (geometric) 9.54 x 10¹⁰ 2.12 x 10¹¹ 4.64 x 10¹⁰ 1000

Table S8: Weekly sequencing required for detection at 1% cumulative incidence. Viruses covered: Norovirus

GII, SARS-CoV-2 Thresholds covered: 10 reads, 100 reads, 1000 reads
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Virus Study Median 25th Percentile 75th Percentile Detection Threshold
(reads)

Norovirus (GII) Crits-Christoph $3,221 $8,955 $1,306 10

Norovirus (GII) Rothman $22 $33 $15 10

Norovirus (GII) Spurbeck $95,722 $209,318 $46,321 10

Norovirus (GII) Mean (geometric) $1,896 $3,962 $958 10

SARS-COV-2 Crits-Christoph $20,543 $48,448 $10,390 10

SARS-COV-2 Rothman $38,667 $62,425 $24,295 10

SARS-COV-2 Spurbeck $31,877,527 $92,092,175 $13,087,461 10

SARS-COV-2 Mean (geometric) $293,650 $653,058 $148,936 10

Norovirus (GII) Crits-Christoph $32,207 $89,550 $13,063 100

Norovirus (GII) Rothman $221 $332 $145 100

Norovirus (GII) Spurbeck $957,216 $2,093,181 $463,207 100

Norovirus (GII) Mean (geometric) $18,957 $39,623 $9,580 100

SARS-COV-2 Crits-Christoph $205,432 $484,481 $103,903 100

SARS-COV-2 Rothman $386,666 $624,247 $242,950 100

SARS-COV-2 Spurbeck $318,775,271 $920,921,750 $130,874,613 100

SARS-COV-2 Mean (geometric) $2,936,498 $6,530,585 $1,489,363 100

Norovirus (GII) Crits-Christoph $322,067 $895,496 $130,630 1000

Norovirus (GII) Rothman $2,210 $3,319 $1,453 1000

Norovirus (GII) Spurbeck $9,572,164 $20,931,813 $4,632,075 1000

Norovirus (GII) Mean (geometric) $189,567 $396,230 $95,798 1000

SARS-COV-2 Crits-Christoph $2,054,321 $4,844,811 $1,039,032 1000

SARS-COV-2 Rothman $3,866,659 $6,242,473 $2,429,503 1000

SARS-COV-2 Spurbeck $3,187,752,706 $9,209,217,497 $1,308,746,129 1000

SARS-COV-2 Mean (geometric) $29,364,976 $65,305,846 $14,893,629 1000

Table S9: Yearly sequencing cost for detection at 1% cumulative incidence. Cost is set at $5,500 per billion read

pairs. Viruses covered: Norovirus GII, SARS-CoV-2 Thresholds covered: 10, 100, 1000.
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