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Abstract 

DNA methylation (DNAm) is an epigenetic mark with essential roles in disease development and 

predisposition. Here, we created genome-wide maps of methylation quantitative trait loci (meQTL) in 

three peripheral tissues and used Mendelian randomization (MR) analyses to assess the potential 

causal relationships between DNAm and risk for two common neurodegenerative disorders, i.e. 

Alzheimer’s disease (AD) and Parkinson’s disease (PD). Genome-wide single nucleotide polymorphism 

(SNP; ~5.5M sites) and DNAm (~850K CpG sites) data were generated from whole blood (n=1,058), 

buccal (n=1,527) and saliva (n=837) specimens. We identified between 11 and 15 million genome-wide 

significant (p<10-14) SNP-CpG associations in each tissue. Combining these meQTL GWAS results with 

recent AD/PD GWAS summary statistics by MR strongly suggests that the previously described 

associations between PSMC3, PICALM, and TSPAN14 and AD may be founded on differential DNAm in 

or near these genes. In addition, there is strong, albeit less unequivocal, support for causal links 

between DNAm at PRDM7 in AD as well as at KANSL1/MAPT in AD and PD. Our study adds valuable 

insights on AD/PD pathogenesis by combining two high-resolution “omics” domains, and the meQTL 

data shared along with this publication will allow like-minded analyses in other diseases.  
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Introduction  

Genome-wide associations studies (GWAS) in Alzheimer's disease (AD)1 and Parkinson's disease (PD)2 

continue to identify an increasing number of genetic variants associated with the risk for developing 

these neurodegenerative disorders. However, the functional mechanisms underlying these 

associations remain largely unknown. An individual’s predisposition for developing AD or PD results 

from the complex interplay between genetic and non-genetic factors unfolding their effects over a 

person’s lifetime3,4. Examples of non-genetic factors are lifestyle variables (e.g. smoking, nutritional 

habits), environmental exposures (e.g. air quality, place of residence), and epigenetic mechanisms (e.g. 

DNA methylation [DNAm], histone modifications). In the context of complex disease research, 

epigenetic mechanisms play a particularly interesting role as they lie at the intersection between 

lifestyle/environment, genetics, and the regulation of gene expression5–8. In this context, DNAm is one 

of the most widely studied epigenetic marks owing to the advent of high-throughput technologies 

allowing the interrogation of DNAm profiles on a genome-wide scale.  

One method to probe for epigenetic effects on disease risk is to conduct epigenome-wide association 

studies (EWAS). In AD, several such EWAS have been published using both brain9–13 and peripheral 

tissues14–16 highlighting a number of CpG sites that show differential DNAm with respect to disease 

state. Similar EWAS efforts have been completed in PD, e.g. using brain17 and blood18. Collectively, 

these studies have led to the initial delineation of DNAm profiles associated with these disorders. 

Despite this progress, one major caveat of most published EWAS is that cause-effect relationships are 

difficult to discern, i.e. to distinguish whether the observed differential DNAm patterns contribute to 

pathogenesis, and as such occur before or early during the disease process (potentially highlighting 

disease-causing mechanisms) or whether they are the result of the disease process itself (e.g. due to 

the accumulation of pathologic protein aggregates). One possibility to solve this inference problem is 

to use genetics as a “common denominator” variable, e.g. in the context of Mendelian Randomization 

(MR) analyses. In MR, which is a type of instrumental variable analysis, genetic risk variants (e.g. from 

GWAS) are combined with genetic variants affecting the exposure of interest (here: DNAm), so called 

methylation quantitative trait loci (meQTLs), allowing to draw direct inferences on a causal relationship 

between the two. If interpreted carefully19,20, MR can effectively shed new light on the “causality 

uncertainty” in EWAS. 

A prerequisite for meQTL-based MR analyses is the availability of meQTL GWAS data in the tissues of 

interest. For instance, meQTL GWAS have been performed in blood21,22, brain23–25, buccal26, and saliva 

samples27,28, although these initial reports used comparatively low-resolution DNAm microarrays (with 

n<500K CpG markers). One of the currently largest meQTL GWAS in terms of sample size was recently 

published for ~7,000 blood samples from two different ethnic descent groups, European and Asian22. 
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DNAm profiling in that study was based on the Illumina Infinium HumanMethylation450 BeadChip 

(450K), capturing ~450K CpG sites. The study identified approximately 11.2 million genome-wide 

significant SNP-CpG pairs, of which ~50% showed high cross-tissue correspondence. Another 

noteworthy meQTL study was recently published by the Genotype-Tissue Expression (GTEx; 

www.gtexportal.org) project which examined nine tissues from ~400 donors in parallel (breast, kidney, 

colon, lung, muscle, ovary, prostate, testis and whole blood)29. While considerably smaller in sample 

size than ref. 22, the GTEx team used the Illumina successor array, (Infinium MethylationEPIC [EPIC], 

containing nearly 850K CpGs)29. Neither study performed systematic MR analyses to quantify the 

impact of DNAm on disease risk. 

To close these gaps, we have created extensive genome-wide meQTL maps for three peripheral tissues 

(blood, buccals, and saliva) using the currently highest-resolution commercial DNAm microarray (EPIC) 

in sample sizes ranging from n=837 (saliva) to n=1,527 (buccals). Each of these meQTL GWAS identified 

between 11 and 15 million genome-wide significant (p < 10-14) SNP-CpG pairs, a large fraction showing 

high cross-tissue correspondence. Next, we combined these novel meQTL GWAS results with recent 

risk GWAS for AD1 (n= 1,474,097) and PD2 (n= 788,989) using various different MR and colocalization 

analysis paradigms to assess whether and which of the hitherto reported GWAS signals might unfold 

their effects by affecting DNAm. Our novel results strongly suggest that the GWAS-based risk 

associations between up to five known AD/PD GWAS loci may at least partially be due to differential 

methylation. The complete and novel meQTL GWAS results, which provide the backbone of our study, 

are made freely available (URL: https://doi.org/10.5281/zenodo.10410506) for use in like-minded 

analyses on different phenotypes.    
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Results 

Methylation quantitative trait locus (meQTL) genome-wide association studies (GWAS) and 

independent replication analyses  

For each of the three available tissues, blood (n=1,058), buccals (n=1,527) and saliva (n=837), we 

performed meQTL GWAS analyses testing approximately 5.5 million common (minor allele frequency 

[MAF] ≥0.05) SNPs for association with approximately 750,000 CpG probes after QC (Figure 1). In total, 

this procedure resulted in over 12 trillion statistical tests, of which approximately 1.7 trillion were 

independent, resulting in a conservative study-wide α-level of 1x10-14 (Methods). Using this threshold, 

we identified between 11 and 15 million genome-wide significant SNP-CpG pairs in each dataset 

(Figure 2). In blood, approximately 92% of meQTL were detected in cis (i.e. SNP-CpG distance within 

±1MB on the same chromosome), whereas 4% meQTL were in long-range cis (lr-cis, i.e. SNP-CpG 

distance >1Mb but located on the same chromosome), and 4% meQTL were in trans (i.e. SNP and CpG 

sites were located on different chromosomes). Comparable numbers of meQTLs were identified in 

GWAS analyses of buccal and saliva samples (Table 1; Supplementary Tables S1-S3). To the best of our 

knowledge, our study comprises the largest meQTL GWAS available for these latter two tissues to date. 

For buccal swab specimen, we had two independent datasets (Figure 1, Supplementary Figure S2) 

available allowing us to assess the degree of replication for meQTL associations within that particular 

tissue. These analyses revealed a very high (~94%) degree of replication of SNP-CpG pairs showing 

genome-wide significance in BASE-II samples (n = 837) when assessed in the combined BBHI-LCBC-

buccal (n=690) dataset. For this purpose, “replication” was assumed for SNP-CpG pairs showing the 

same direction of effect with at least nominal significance (i.e. p<0.05; Methods) as suggested 

previously22. To assess replication in blood, we compared our meQTL results to the findings recently 

reported by Hawe et al.22. Of the 11,165,559 genome-wide significant “cosmopolitan” meQTLs  

showing both ancestry-specific replication in samples from Europe and Asia22, 7,612,751 were also 

tested in BASE-II blood samples; of these 7,405,579 (~97%) showed consistent effect directions with 

at least nominal significance (p<0.05). Furthermore, we found a highly significant correlation of effect 

size estimates between significant (p<10-14) cosmopolitan meQTLs results from Hawe at al.22 and our 

analyses (r= 0.96, p<2.2×10-16). While no independent dataset of sufficient size was available to assess 

replication of meQTL effects in saliva, overall, these findings demonstrate that our meQTL results are 

highly robust and, for blood, are in good agreement with the literature.  
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Comparison of meQTL findings across three tissues: blood, buccals, saliva 

Next, we addressed the question as to how stable meQTL effects were across tissue types by estimating 

cross-tissue correspondence rates (using the same criteria defining replication outlined above). Since 

blood and buccal tissue data were partially obtained from the same individuals (i.e. participants of the 

BASE-II study; Figure 1) we used the independent blood meQTL results recently reported by Hawe et 

al.22 to compare replication and correlation of effect direction with the other tissues (Figure 3B-D). 

Overall, we observe high degrees of cross-tissue correspondence for cis SNP-CpG pairs ranging from 

71 to 94% across all three tissue types. The highest correspondence (94/96/97%) was seen when 

comparing cis/lr-cis/trans SNP-CpG pairs in buccal vs. saliva specimen (Figure 3D), while cis/lr-cis/trans 

SNP-CpG pairs in blood vs. buccals (Figure 3B) showed the lowest correspondence rates (71/74/74%). 

In contrast, the strongest correlation of effect sizes (r=0.92/0.92/0.90) was observed when comparing 

cis/lr-cis/trans SNP-CpG pairs in blood vs. saliva specimen (Figure 3C), while cis/lr-cis/trans SNP-CpG 

pairs in blood vs. buccals (Figure 3B) showed the weakest correlations (r=0.71/0.80/0.82).  

Next, we calculated how many of the genome-wide significant SNPs-CpGs pairs correspond across all 

three and at least two out of three tissue types and what proportion of SNPs-CpGs pairs is present in 

only one tissue (see Supplementary Figure S3). We identified a much larger proportion of cis meQTLs 

(67%) that are not tissue-specific vs. those that are tissue-specific (6%). This observation is similar to 

published cross-tissue meQTLs results29, although these did not investigate buccal or saliva samples. 

Overall, 67/78/86% of the cis/lr-cis/trans SNP-CpG pairs, respectively, showed significant signals in all 

three tissues. This suggests that meQTL associations become less tissue-specific with increasing 

distance between CpG site and SNP.  

 

Identification of long-range cis and trans meQTL regions shared across tissues 

Previous work suggested that blood meQTL SNPs acting in trans often regulate a large number (several 

hundreds to thousands) of CpGs located in the same functional unit (i.e. gene) of the genome arguing 

for shared molecular effects22. With the data from our study we were able to independently assess 

these findings in blood and extend them to buccal and saliva specimens. To this end, we first annotated 

trans meQTL SNPs to genes (Methods), which resulted in 9,302 genes in blood (vs. 6,816 in buccals, 

7,154 in saliva). We then examined whether the 20 most frequently annotated genes were also present 

in the 162 (~top 2% from 9302 genes) most frequently annotated genes in the other tissue types (see 

Table 2 and Supplementary Table S4 and S5). In general, all “top-20” genes from one tissue are 

observed to occur among the top ~2% (n=162) genes of the other tissues, except NFKB1, which had no 
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significant trans meQTL in buccal tissue, and RP11-876N24.2 which did not show up in blood. 

Conversely, trans meQTL SNPs were most frequently annotated to MAD1L1 in all three tissues. 

Analogously, we examined genes acting in long-range cis regions. For these SNPs, we identified 3610 

genes in blood (vs. 3189 in buccal, 3162 in saliva). Similar to trans regions, all top 20 genes range among 

the top signals in all three tissue types, i.e. all are observed in the top 2% (often even among the top 

50) genes of the other tissues (Supplementary Tables S6-S8). The meQTL SNPs in the lr-cis region were 

most frequently annotated to MSRA and RP11-574M7.2 in all three tissue types. 

Additionally, and following a similar visualization as in Hawe et al. 22, we annotated the top 1% of all 

significant trans SNPs to the most frequent meQTL genes within the +/-10 Mb region, to identify top 

independent regions (Figure 4A-C). This annotation revealed blood to have the highest number of 

independent regions (n=22), followed by buccal tissue (n=21) and saliva (n=16). While many of the 

meQTL act in a cell type dependent manner, i.e. a substantial proportion of the annotated top 1% 

independent regions in blood  is not included among the independent top 5% regions in buccals and 

saliva (i.e. 10/22= 45% and 2/22=9%, respectively), the results of the blood meQTL analyses are highly 

similar to those from Hawe at al. 22. In that study, 12 top independent regions were annotated, of 

which only one (LINC00273) is not included in the top 5% independent regions from our blood meQTL 

GWAS. A similarly high correspondence rate was observed within the two independent buccal 

datasets, where all top 1% regions in BASE-II are included in the top 5% of independent regions from 

the BBHI-LCBC-buccal dataset (Supplementary Figures S2). 

 

Causal relationships between DNA methylation and neurodegenerative diseases using summary data-

based Mendelian randomization (SMR) analysis 

In the next stage of our project, we addressed the question whether there is a causal link between 

DNAm and AD/PD risk using cis meQTL SNPs as instrumental variables via MR analyses. Disease-specific 

risk effects and association evidence was extracted from two recent GWAS on the respective disorders, 

i.e. the study by Bellenguez et al. (n=1,474,097)1  for AD and by Nalls et al. (n=788,989)2  for PD.  We 

used the SMR tool to prioritize significant SNP-CpG signals identified in our meQTL GWAS analyses for 

follow-up using two-sample MR analyses (next section).  

Overall, 118,757 SNPs overlapped in the AD GWAS and blood meQTL GWAS summary statistics and 

could be used in SMR (total n=311,882 unique genome-wide significant meQTL CpGs in cis across all 

tissue types). In blood, SMR results suggest a potential and study-wide (using a Bonferroni-corrected 

α of 0.05/311,882=1.6x10-7) significant causal relationship between DNAm and AD at 220 SNP-CpG 

pairs (Supplementary Tables S9). Of these pairs, 64 (of 220) show evidence for a single shared 
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underlying causal variant affecting both DNAm in blood and AD risk (i.e. P>0.05 in the HEIDI test). These 

64 SNP-CpG pairs map to 42 independent loci (25 map to genes, while 17 are located in intergenic 

regions; Supplementary Table S9). Equivalent analyses for the meQTL analyses in buccal (saliva) tissue 

prioritized 156 (176) study-wide significant SNP-CpG pairs and 33 (12) show evidence for a single 

shared underlying causal variant across 24 (11) loci (Supplementary Tables S10-S11; Supplementary 

Figure S4).  

For PD, a total of 118,945 SNPs overlapped between meQTL in blood and the PD risk GWAS and were 

used in the SMR analyses. In blood, we identified 114 SNP-CpG pairs with a potential causal 

relationship with PD (p<1.6×10-7; Supplementary Tables S12-S14) and 13 SNP-CpG pairs in blood 

showed evidence of a single shared underlying causal variant affecting both DNAm and PD risk (i.e. 

P>0.05 in the HEIDI test). These 13 SNP-CpG pairs map to 13 loci (6 map to genes, while 7 are located 

in intergenic regions; Supplementary Table S12). Of all 114, equivalent SMR analyses for the PD and 

meQTL analyses in buccals (saliva) prioritized 101 (101) study-wide significant SNP-CpG pairs of which 

10 (7) show evidence for a single shared underlying causal variant across 10 (7) loci (Supplementary 

Tables S12-S14; Supplementary Figure S5).  

 

Follow-up of SMR results by two-sample Mendelian randomization (MR) analyses 

Genes identified as significant by SMR are not necessarily causally related to the phenotype in 

question, they merely stand a higher chance of being in such a relationship (hence our use of SMR as 

a “prioritization” approach)30. Potential causal relationships were assessed by two-sample MR using 

the genes / loci prioritized by SMR using the MendelianRandomization tool31. In addition, we tested 

the top 10 CpGs emerging from the meQTL GWAS analyses for cis, lr-cis and trans loci in each of the 

three tissues (i.e. an additional 10x3x3=90 CpGs) as these capture particularly strong genetic effects 

on DNAm at these sites that may be missed by the standard SMR paradigm. A summary of our MR 

workflow and numbers can be found in Supplementary Figure S6. 

For AD, we identified 42 independent regions in blood (24 in buccal and 11 in saliva; p<1.59×10-7 & 

pHeidi>0.05) using SMR analysis. For MR analysis, we utilized a larger CpG selection to include all CpGs 

in the "prioritized" region, based on inclusion of all CpGs mapped to each region for which there is at 

least one significant meQTL SNP (p<10-14). This selection procedure resulted in 297 prioritized CpGs in 

blood tissue (214 in buccal, 60 in saliva). For each of these CpGs, we performed two-sample MR 

analysis if at least 3 independent meQTL SNPs (r2<0.1, 1000 kb and P<10-14) overlapping with SNPs from 

the respective GWAS summary statistics and not identified as outliers using the MR-PRESSO tool32 

were available. Overall, this procedure resulted in sufficient data for a total of 193 MR analyses in AD 
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(Supplementary Figure S6). In total, we identified nine (four in blood and five in buccal tissue) putative 

causal CpGs with p-values falling below the multiple-testing corrected threshold for this part of our 

study (p<1.47x10-4; Supplementary Figure S6) in all four MR models tested (Supplementary Figure S7). 

One example is KANSL1, which showed highly significant evidence for a causal relationship (i.e. a 

positive sign in the effect size estimate) with AD risk in blood (cg09860564, smallest p = 4.08×10-13) and 

buccal tissue (cg17642057, smallest p = 1.21×10-12). KANSL1 is functionally interesting as it maps to an 

inversed haplotype region on chr. 17q21 into the immediate vicinity of the gene encoding microtubule 

associated tau protein (MAPT), whose accumulation as neurofibrillary tangles represents a 

neuropathological hallmark of AD1. The other significant two-sample MR signals were elicited by 

individual CpG sites in PSMC3 (blood; smallest p = 1.2x10-12) and PRDM7 (buccal; smallest p = 9.6x10-

13), as well as two CpGs in TSPAN14 (buccal; smallest p = 2.72x10-21). In addition, there were three (of 

which two were observed in blood) CpGs from intergenic regions showing significant effects 

(Supplementary Figure S7). 

In PD, the equivalent number of CpGs assessed by two-sample MR analyses was 146 (Supplementary 

Figure S6). From these, we identified 15 putative causal CpGs showing study-wide significant evidence 

for potential causal effects of DNAm on PD risk across all three analyzed tissues (Supplementary Figure 

S8). Interestingly, all PD CpGs were located in the inversed haplotype region on chr. 17q21 in and near 

MAPT (within a ~500kb window encompassing CRHR1, MAPT, and KANSL1). Of note, none of the 

significant 17q21 CpGs in PD overlapped with those that emerged in this region for AD. No other PD 

loci outside the 17q21 region were highlighted by two-sample MR using our novel meQTL catalogs.  

 

Sensitivity analyses on the two-sample Mendelian randomization results 

MR results can be biased towards false-positive findings by residual correlation between SNPs used as 

“independent” instrumental variables33. The default correlation (i.e. linkage disequilibrium) threshold 

used in the primary analyses here was r2≤0.1, which represents a commonly applied cut-off in this type 

of MR setting19. To assess the stability of our MR results and to minimize potential bias due to residual 

correlation among SNPs, we recalculated all significant two-sample MR results using more stringent 

correlation thresholds, down to r2≤0.01 (Methods). As can be seen from Supplementary Tables S15 & 

S16, the number of usable independent SNPs dropped below the recommended minimum of three for 

many CpGs and only left one CpG each (AD: cg20307385 in PSMC3 [Figure 5; Supplementary Table 

S15]; PD: cg07936825 in MAPT [Supplementary Table S16]) for the MR analyses at the most stringent 

threshold of r2≤0.01. Both of these CpGs continued to show strong and consistent association by MR 

across all four models used. Using additional r2 thresholds between 0.1 and 0.01 enabled additional 

sensitivity MR analyses for a total of 13 out of 28 CpGs (Supplementary Tables S15 & S16). In the 
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majority of cases, the initial MR results were confirmed, although many showed less significant effects, 

likely owing to the lower number of instrumental variables (i.e. SNPs) available at these more stringent 

thresholds. Only the MR results for four CpGs (1 AD, 3 PD) yielded non-significant (p>0.05) results in at 

least one MR model using an r2 threshold <0.1 (Supplementary Tables S15 & S16). While this could 

indicate a possible bias in the primary MR analyses at these CpGs, we emphasize that non-significance 

only affected the “simple model” in each instance and the support remained highly significant even for 

these four CpGs in the three remaining MR models. Thus, by and large, these sensitivity analyses do 

not indicate the presence of a strong bias in our MR results, at least not for the CpGs where additional 

testing was possible.  

As an additional line of sensitivity analyses, we tested for colocalization of GWAS results, i.e. SNPs 

representing both meQTLs and risk variants. In general, evidence for colocalization (which indicates 

that the same variant is driving the meQTL and disease associations) is regarded as supportive of a 

significant MR finding19. In AD, support for colocalization was observed for four of the nine MR CpGs 

(Supplementary Table S17). This relates to CpGs in PSMC3 (1 CpG) and TSPAN14 (2 CpGs) as well as an 

intergenic probe on chromosome 11q14 (cg04441687), which is located approx. 100kb downstream 

of PICALM. Thus, for these four CpGs, all statistical evidence accrued in the multipronged analyses 

performed in this study unequivocally points to a causal relationship between DNAm and risk for 

disease. Interestingly, all four of the implied regions also show evidence for differential methylation in 

AD vs. control brain samples in the recent brain EWAS meta-analysis by Smith et al.11 (Supplementary 

Table S17 and next section). In PD, where we identified a large number of consistent and highly 

significant two-sample MR signals for CpG sites in a ~400kb region on chromosome 17q21 

(encompassing CRHR1-MAPT-KANSL1), none of the colocalization results favored the presence of a 

shared variant (H4), but in all instances pointed to the existence of two separate variants underlying 

DNAm and PD risk (H3; Supplementary Table S18). The most obvious scenario in which such 

“conflicting” results can occur is that the exposure and outcome have distinct causal variants that are 

in linkage disequilibrium, which in return may signify that one of the MR assumptions may be 

violated19. 

 

Comparison of novel meQTL-based MR results and brain-based EWAS for AD and PD  

As outlined in the introduction, the application of MR to imply causal relationships between exposure 

(here: DNAm) and outcome (here: AD/PD risk) can effectively circumvent the problem of “causality 

uncertainty” of EWAS. In this regard our study leverages the oftentimes substantially larger sample 

sizes typically used for disease risk GWAS (here ranging from 788,989 in PD2 to 1,474,097 in AD1) and 
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meQTL GWAS (here exceeding 1,500 samples for blood). The sample sizes for the largest (to our 

knowledge) primary EWAS in brain samples for AD are n~96011 and n~320 for PD17. Notwithstanding 

the (much) reduced power of these primary EWAS, evidence for differential DNAm at overlapping loci 

from these studies may still be regarded as supportive of the MR-based findings derived from our data. 

To this end, it is comforting to note that four of the eight top MR-based loci identified here are also 

supported by EWAS, at least in AD (Supplementary Tables S17 [AD] and S18 [PD]).  

First, TSPAN14 was reported as one of the top EWAS findings in the recent meta-analyses performed 

by Smith et al.11. In that study, the authors found evidence for differential DNAm at cg16988611 

(p=1.9x10-10 in prefrontal cortex, and p=9.98x10-12 in the cross-cortex analyses). While the two lead 

CpGs in this locus in our study (i.e. cg24699150 and cg22345419) were not analyzed by Smith et al.11 

since neither probe is included on the 450K array, it is reasonable to assume that these two signals 

represent the same underlying effect. Second, while for PSMC3, Smith et al.11 reported no significant 

results for our primary CpG (cg20307385), they did find genome-wide significant evidence for 

association with cg06784824 (p=3.0x10-8) which is located ~75kb proximal in the last exon of SPI1. In 

the most recent AD risk GWAS1, this general locus is annotated to extend from SPI1 to CELF1, and 

PSMC3 is one of five genes mapping into this interval (see Supplementary Fig. 16 in ref. 1). This could 

indicate that there are two independent DNAm sites acting in this region (one near the 3’ end of SPI1 

and one within PSMC3) or that they are pointing to the same signal that is also highlighted by the AD 

GWAS. Third, our MR signal near PRDM7 (elicited by cg16611967) is directly confirmed by Smith et 

al.11, who report at least nominal (p<0.05) evidence for differential methylation with this probe in their 

cross-cortex EWAS analyses. The much stronger statistical support here (p-values ranging from 3x10-3 

to 6x10-13; Supplementary Table S15) is likely afforded by the much larger sample sizes, and hence 

power, of our analyses. Fourth, our MR signal on chromosome 11q14 elicited by cg04441687 ~200kb 

upstream of PICALM cannot be directly compared with Smith et al.11 since this CpG site is missing from 

the 450K array. However, they report cg07180834, which maps approx. 30kb p-ter from our signal, to 

be differentially methylated in prefrontal cortex (p=0.001), implying the same general region 

surrounding our finding. Lastly, Smith et al.11 report genome-wide significant evidence for differential 

methylation with at least two CpGs in the general MAPT region on chromosome 17q21, i.e. 

cg20864568 (p=9.93x10-8 in prefrontal cortex) and cg15194531 (p=1.74x10-8 in the cross-cortex 

analyses), suggesting that the link between this locus and AD risk may, indeed, be mediated by 

differences in DNAm. While our MR results for this locus clearly imply causality underlying this link, we 

note that the missing evidence for colocalization (see previous section) may indicate some bias in the 

MR analyses.  
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While for PD essentially all of our MR results could be directly compared to the EWAS by Pihlström et 

al. 17 who also used the EPIC array, none of our PD-related results within the KANSL1/MAPT region on 

chromosome 17q21 showed evidence for differential DNAm in that study. This may, at least partially, 

be due to the exceedingly small sample size (n~320) used in that EWAS. 

In summary, there is either direct or indirect support for five of our seven MR-based DNAm loci from 

a recent AD EWAS using samples from different human brain regions. This can be seen as evidence for 

independent validation on two levels: i) Validating the overall approach taken here, i.e. combining 

peripheral (non-brain) meQTL data with AD genetics to derive mechanistically relevant links acting in 

the brain, and ii) for the involvement of DNAm underlying the well-established AD risk associations at 

these five loci. We note that the non-confirmation by EWAS of the remaining two intergenic CpGs 

(cg04043334 at 10q23 and cg02521229 at 11q12) does not necessarily imply the absence of a causal 

relationship owing to the much smaller genomics resolution of the primary EWAS11. We also note that 

the former of these two intergenic CpGs (cg04043334) maps ~143kbp of TSPAN14, which is one of the 

major brain EWAS signals in the study by Smith et al.11  
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Discussion 

In this work, we performed extensive genome-wide mapping of meQTLs in three peripheral human 

tissues of which two (buccal and saliva) were not sufficiently covered in comparable previous efforts. 

After performing more than 12 trillion statistical tests, we identified between 11 and 15 million 

genome-wide significant SNP-CpG pairs in each tissue. Most of these (~90%) were located in cis while 

long-range cis and trans effects comprised approx. 5% each of the remaining signals. In a second step, 

we combined these novel meQTL GWAS results with large risk GWAS for AD and PD using a 

multipronged MR and colocalization analysis approach to assess whether any of the hitherto reported 

AD/PD GWAS signals might unfold their effects by affecting DNAm. These analyses strongly suggest 

that the GWAS-based risk associations between PSMC3, PICALM, TSPAN14 in AD may (at least partially) 

be due to differential DNAm at or in the vicinity of these genes. In addition, there is strong – albeit less 

unequivocal – support for causal links between differential DNAm at PRDM7 in AD as well as at 

KANSL1/MAPT in AD and PD. To facilitate like-minded analyses in other complex human traits, we 

made the complete and entirely novel meQTL GWAS results freely available to the scientific 

community (URL: https://doi.org/10.5281/zenodo.10410506).   

Our study has several strengths, which include: i) utilizing comparatively large sample sizes across the 

three different tissue types (resulting in the largest meQTL GWAS ever performed in buccal and saliva 

specimens); ii) using the highest resolution DNAm microarray currently commercially available; iii) 

employing stringent statistical thresholds to declare genome-wide significance; iv) assessing and 

establishing independent replication for top meQTLs in buccal and blood tissue; and v) applying a 

multipronged and state-of-the-art analysis approach to infer potential causality between DNAm and 

disease associations for two common neurodegenerative disorders each based on the largest risk 

GWAS published in the respective fields.    

Despite these strengths, there are a number of caveats and potential limitations inherent in our study. 

First, all identified associations, including meQTL results and potentially causal disease links, are of a 

statistical nature and do not necessarily imply true molecular relationships. While we went to great 

lengths to limit false-positive or biased results throughout the various analysis arms of our work, none 

of the reported associations should be regarded as established until further validation from functional 

experiments. We note, however, that at least for buccal and blood tissue we observe very high (>>90%) 

replication rates for our top meQTL findings suggesting that the genetic effects on DNAm in these 

tissues are relatively stable and likely genuine. Second, by design, the meQTL maps provided are 

limited by the resolution of the utilized DNAm microarray. While this covers ~850K CpGs in functionally 

relevant regions of the human genome, this number still only represents ~1/30th of the CpG sites that 

can be measured by whole-genome DNAm sequencing approaches. While this difference in resolution 
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is substantial, the use of high-throughput microarrays is much more cost efficient allowing to assay 

much larger numbers of samples and, hence, to achieve greater statistical power. Third, performing 

and interpreting MR analyses for causal inferences has many drawbacks and potential limitations 

(extensively discussed in refs. 19,20). Again, we approached this topic with great caution by performing 

a large number of alternative and supporting analyses to derive the best possible inferences in the 

context of our study. However, we cannot exclude the possibility that some (or even all) of our MR-

based conclusions may be biased or false. Only dedicated molecular experiments directly testing the 

hypotheses put forward in our study can help to distinguish true from false causal links. Finally, both 

the newly derived primary meQTL maps as well as the AD/PD risk GWAS are based on individuals of 

European descent. Therefore, no inferences can be made with respect to potential causal links 

highlighted here in individuals of different ethnicities.  

In summary, our study represents a tour de force analysis resulting in the largest and most 

comprehensive catalogue of meQTL effects in human buccal and saliva tissues. Using these and 

additional blood-based meQTL data implicates a likely causal role of differential DNAm in AD and PD 

development in some genomic regions associated with disease risk by GWAS. Future work needs to 

independently replicate our results and elucidate the molecular mechanisms underlying these 

associations. 
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Methods 

1. Methylation quantitate trait locus (meQTL) genome-wide association study (GWAS) and 

independent replication analyses.  

1.1 Human samples 

In this study, we analyzed a total of 2,592 samples from three independent datasets (“Berlin Aging 

Study II” [BASE-II] recruited in Berlin, Germany, “Barcelona Brain Health Initiative” [BBHI] recruited in 

Barcelona, Spain, and “Lifespan Changes in Brain and Cognition” [LCBC] recruited in Oslo, Norway) 

collected under the auspices of the EU-funded Lifebrain study34. Lifebrain participants for this study 

were selected based on the parallel availability of genome-wide SNP genotype and genome-wide DNA 

methylation data. Supplementary Table S19 provides a summary of demographic characteristics of the 

datasets used in this study. The use of DNA samples for genomics and epigenomics analyses in Lifebrain 

was approved by the ethics committee of University of Lübeck (approval number: 19-391A). 

Berlin Aging Study II (BASE-II): The portion of the BASE-II dataset used in this study consists of adult 

residents (age range: 23-88 years) from the greater metropolitan area of Berlin, Germany 35,36. For this 

study, we included DNA samples collected from blood (n=1,058) and buccal swabs (n=837) collected 

at the second examination conducted between 2019-2020 as part of the “GendAge” project36. Of 

these, a total of n=830 BASE-II participants contributed DNAm data from both blood and buccal swabs, 

and this overlap was taken into account in analyses assessing the correspondence of meQTL effects in 

these two tissues (Supplementary Table S19). The BASE-II/GendAge studies were conducted in 

accordance with the Declaration of Helsinki and approved by the ethics committee of the Charité—

Universitätsmedizin Berlin (approval numbers: EA2/144/16, EA2/029/09). 

Barcelona Brain Health Initiative (BBHI): The Barcelona Brain Health Initiative (BBHI) is an ongoing, 

longitudinal study recruiting participants from the greater metropolitan area of Barcelona, Spain, with 

the focus on evaluating factors determining brain health37. For this study, there were buccal samples 

from n=372 BBHI participants (age range: 30 to 67 years) available which were subjected to genome-

wide SNP and DNAm profiling (Supplementary Table S19). Collection of BBHI samples was conducted 

in accordance with the Declaration of Helsinki and following the recommendations of the “Unió 

Catalana d’Hospitals” with written informed consent from all subjects. The protocol was approved by 

the Unió Catalana d’Hospitals (approval number: CEIC 17/06). 

Lifespan Changes in Brain and Cognition (LCBC): This dataset comprises a collection of n=1,155 

participants (age range: 20-81) recruited mostly in the larger metropolitan area of Oslo, Norway, by 

investigators at LCBC, as well as through other collaborations within Norway. The sample comprises 

phenotypically well-screened individuals with comprehensive neuropsychology, MRI, lifestyle, health, 
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biomarkers, and other measures. For this study, DNA extracts used for genome-wide SNP genotyping 

and DNAm profiling originated from n=318 buccal swabs and n=837 saliva samples, which were non-

overlapping (Supplementary Table S19). The studies were approved by the Regional Ethical Committee 

of South East Norway. Written informed consent was obtained from all participants.  

1.2 Genome-wide SNP genotyping, quality control, and imputation 

DNA for all samples was extracted using standard procedures as described previously (BASE-II & BBHI: 

ref. 14 ; LCBC: ref. 38). Genome-wide SNP genotyping was performed using the Global Screening Array 

(GSA; Illumina, Inc., USA) at the Institute of Clinical Molecular Biology at UKSH Campus Kiel on an iScan 

instrument according to the manufacturer's recommendations. Genotype calling, quality control (QC) 

and imputation steps were performed using an automated bioinformatics workflow described 

previously39,40. Briefly, genotype determination from the raw intensity data was performed using 

GenomeStudio (Illumina, Inc., version 2.0.2), QC with the PLINK program (version 1.9) 41,42. Imputation 

of untyped variants was performed with MiniMac3 43 software using the "Haplotype Reference 

Consortium" (HRC; v1.1 [EGAD00001002729 including 39,131,578 SNPs from ~11K individuals]) 

reference panel 44. Finally, allele dosages (i.e. genotype probabilities) of ~39 million SNPs per proband 

were available for post-imputation QC. This entailed filtering at both the SNP and individual levels using 

the following criteria. SNP-filtering: SNPs were excluded with low imputation quality score (r2 < 0.7), 

minor allele frequency (MAF) below 5%, genotyping rate below 98%, and significant deviations from 

Hardy-Weinberg Equilibrium (HWE) in control individuals (p < 5 × 10-6). DNA sample filtering: 

individual-level genotyping data were excluded in case of low genotyping efficiency (< 98%), 

discrepancies between genetic and clinical recorded sex, duplicated DNA samples, cryptic relatedness 

(--king-cutoff 0.025), and samples with implausible heterozygosity (mean ± 6 × SD). To correct for 

population stratification, genetic ancestry was mapped onto genotype data from the 1000 Genomes 

project (using that study’s five “superpopulation” codes), followed by principal component analysis 

(PCA) performed in PLINK (v2.0). Only samples clustering to the “CEU” population cluster were retained 

for analyses. Genomic location of SNPs throughout this manuscript are based on human genome 

build GRCh37/hg19. 

1.3 DNA methylation measures and quality control in blood, buccal and saliva tissues 

Genome-wide DNA methylation (DNAm) profiles were generated in the same individuals whose 

samples were also used in the genotyping experiments. DNAm was measured using the Infinium 

Human MethylationEPIC array (Illumina, Inc., USA) at the Institute of Clinical Molecular Biology at UKSH 

Campus Kiel on an iScan instrument according to the manufacturer's recommendations. QC and data 

processing were performed using the same procedures as described previously 12,14. Briefly, data pre-
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processing was performed in R (version 3.6.1) using the package bigmelon (version 1.22.0) with default 

settings45. Cell-type composition estimates were obtained with the R package EpiDISH (version 2.12.0) 

46 and used for correction of DNAm β-values. Samples were excluded from the analysis if (a) the 

bisulfite conversion efficiency was below 80% according to the bscon function in the bigmelon 

package, (b) the sample had a beadcount < 3 in more than 5% of all probes, (c) the sample had a 

detection p-value below 0.05 in more than 1% of all probes, (d) the sample was identified as an outlier 

according to the outlyx function in the bigmelon package using a threshold of 0.15, (e) the sample 

showed a large change in β-values after normalization according to the qual function in the bigmelon 

package with a threshold of 0.1, (f) the sample showed a discrepancy between predicted sex according 

to the Horvath multi-tissue epigenetic age predictor and reported sex, or (g) there was a greater than 

70% discrepancy between genotypes of 42 SNPs determined concurrently from the EPIC and GSA SNP 

genotyping array. All samples were normalized with the dasen function of bigmelon. Further details 

on QC and data processing can be found in refs. 12 and 14 from our group. Genomic location of CpGs 

throughout this manuscript are based on human genome build GRCh37/hg19. 

1.4 Identification of genetic factors influencing methylation, (meQTL GWAS) 

After QC of both genome-wide SNP genotypes and DNAm patterns, we performed meQTL genome-

wide association analyses separately for blood, buccal mucosa, and saliva using the R package 

MatrixeQTL47. In detail, we applied linear regression models including sex, the first ten principal 

components of a PCA assessing genetic ancestry, and the first five principal components of DNAm 

levels at pruned CpGs as covariates (see ref. 12,48 and supplementary methods). For the buccal datasets 

an additional dummy variable was introduced to adjust for laboratory batches. We retained only test 

statistics from SNP-GpG pairs showing p-values less than 0.05. To account for multiple testing, we 

applied the same study-wide threshold as in Hawe et al.22  (i.e. α = 1x10-14), which was based on the 

~4.3 trillion tests performed in that study conducting a meQTL GWAS in one tissue (blood). While here 

we performed approximately three times the number of tests owing to the analysis of two additional 

tissue types, we note that not all of these were independent owing to the correlation structures 

between SNPs (in Europeans there are approximately 1M independent SNPs at MAF≥0.05) and CpGs 

(the EPIC array contains approx. 530K independent CpGs49. Assuming that the meQTL effects are 

completely independent across the three tissues used in our study, this would amount to a total of 

3x1Mx530K=1.7x1012 independent tests and an effective Bonferroni-corrected α-level of 

0.05/1.59x1012 = 3.1x10-14 which is slightly less conservative than the level actually applied (i.e. α = 

1x10-14). Following the analyses by Hawe et al.22 , we separated our findings into cis meQTL (SNP-CpG 

distance within 1 Mb), lr-cis meQTL (>1 Mb apart but on the same chromosome) and trans meQTL 

(associations between SNPs and CpG sites on different chromosomes). 
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1.5 Independent replication analyses 

To assess the replicability of meQTL results in buccal tissue, we were able to use two independent 

datasets in this study: one discovery dataset containing samples from the Berlin Aging Study II (BASE-

II) and another replication dataset containing samples from the Barcelona Brain Health Initiative (BBHI) 

and the Centre for Lifespan Changes in Brain and Cognition (LCBC). For the meQTL GWAS, BBHI and 

LCBC were analyzed jointly adjusting for center using a dummy variable. We assumed that a meQTL 

from the discovery dataset was replicated if it showed evidence of association at P values <0.05 and 

consistent direction of effect in the replication dataset. 

For meQTL results replication in blood tissue, we have downloaded the results from Hawe et al.22  who 

performed a meQTL GWAS in blood identifying of 11,165,559 study-wide significant meQTLs. To 

calculate the replication rate, we considered only the SNPs and CpGs that also remained in our analysis 

after QC. For the SNP-CpG pairs with a P value above 0.05, the test statistic was recalculated and saved. 

We considered a meQTL as replicated if they showed evidence for association at p-values <0.05 and 

an effect direction consistent with that reported in Hawe et al.22.  

For salivary tissue, we could not estimate the replication rate because no additional data were 

available. 

2. Comparison of meQTL findings across three tissue types: blood, buccal, saliva 

For comparison, we used meQTLs results from Hawe et al 22  to estimate the replication rate and 

correlation of effect estimates between the different tissues. These previous results were compared 

to post-QC SNPs-CpGs pairs from each dataset analyzed here (i.e. buccal and saliva). For the SNP-CpG 

pairs with a P value above 0.05, the test statistic was recalculated and saved. We considered a meQTL 

as replicated if they showed evidence for association at p-values <0.05 and an effect direction 

consistent with that reported in Hawe et al.22. Furthermore, we calculated the correlation of meQTL 

effect estimators using Pearson's method.  

3. Identification of long-range cis and trans meQTL regions shared across tissues 

We identified the shared regions by annotating the significant meQTL SNPs to genes using ANNOVAR 

software50 based on their physical position on the chromosomes (hg19/GRCh37) as provided on the 

UCSC genome browser (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ensGene.txt.gz) 

. For comparison of tissue-specific regions at the SNP level, we estimated the top 1% SNPs across all 

detected long-range cis and trans associations and annotated the top SNP to the most common gene 

in a +/-10 Mb region. When two genes are equally frequent in one region, we chose the gene previously 

reported in Hawe at al.22, when present. We also looked at the most frequently annotated genes within 
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all lr-cis and trans SNPs in each dataset and compared the top 20 genes within blood, buccal, and saliva 

tissues. 

4. Linking DNA methylation and Alzheimer’s and Parkinson’s disease using Mendelian randomization  

4.1. Summary data-based Mendelian randomization (SMR) analysis 

To run an initial test for association between AD/PD risk and DNAm levels across all three analyzed 

tissues (blood, buccal, and saliva) and to prioritize downstream two-sample MR analyses, we applied 

the Summary data–based Mendelian Randomization (SMR) approach30. Only SNP-CpG pairs attaining 

study-wide genome-wide significance (i.e. p-values of the top associated cis meQTL were <10−14) were 

considered in this analysis. The disease-specific data were retrieved from summary statistics of the two 

most recent GWAS meta-analyses on risk for AD1 (n total = 487,511) and PD2 (n total = 482,730). To 

account for multiple testing within this arm of our study, we considered the total number of unique 

genome-wide significant methylation CpGs in cis, that were included in the analysis from blood 

(n=118,955), buccal (n=92,694), and saliva tissues (n=100,233) yielding a total number of n= 311,882 

comparisons. Accordingly, the Bonferroni adjusted α level was set to α = 0.05/311882 = 1.6×10-7. 

Whenever more than three SNPs were in linkage disequilibrium (LD; r2 > 0.1 , 1,000 kb) with a cis-SNP, 

a heterogeneity test (HEIDI) was performed to distinguishing functional association from linkage, as 

implemented in the SMR-Tool30.  

For gene prioritization from SMR, we assigned the significant CpGs to genes based on the information 

in the Infinium MethylationEPIC manifest file (version 1.0 B5, Illumina, Inc., USA). 

4.2 Systematic two-sample Mendelian randomization (MR) analyses 

To test for potential causal relationships between DNAm and AD/PD, we examined SMR-prioritized 

regions, i.e. those showing with SMR p<1.6×10-7, at least one genome-wide significant meQTL SNP 

(p<1×10-14), and no evidence for significant heterogeneity (HEIDI test p>0.05) by two-sample 

Mendelian randomization (MR) analyses. Two-sample MR was performed using the R package 

MendelianRandomization 31 running four analysis models: simple median 51, weighted median 51, 

inverse variance weighted (IVW)52 and Egger regression 53. Each model makes different assumptions 

and uses different strategies to avoid false positive causal inferences. As recommended by the authors, 

we only consider those MR results further which show consistently significant signals across all four 

models. 

In addition to testing regions prioritized by the SMR method, we also analyzed the 10 most frequently 

associated CpGs with SNPs in independent regions. Genes corresponding to these CpGs were 

annotated using the Infinium MethylationEPIC Manifest file (version 1.0 B5, Illumina, Inc., USA). CpGs 
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in intergenic regions (i.e. not annotated to any gene) were assumed to represent one independent 

region each. Only independent (r2<0.1, 1,000 kb) SNPs present in at least one GWAS summary statistic 

(i.e. AD and/or PD) with a MAF >0.05 and showing p-values <1×10-14 in the meQTL GWAS were included 

in these analyses. In these high-frequency regions, MR was performed if there were at least 3 

independent SNPs after outlier correction with MR-PRESSO32. To estimate study-wide significance for 

this arm of our study we used Bonferroni’s method considering the total combined number of tests 

performed in AD (n=193) and PD (n=146), i.e. α = 0.05/349 = 1.47×10-4.   

4.3 Sensitivity analyses  

We performed an extensive sensitivity analysis using several methods. On one hand, we tested for 

heterogeneity, as implemented in the MendelianRandomization31 package  and assume that 

instrumental variables with a p-value greater than 0.05 reject heterogeneity. On the other hand, we 

performed a global test to identify outliers in the data as implemented in the MR-PRESSO tool32. If the 

global test yields a p-value greater than 0.05, we assume that the data are consistent and have no local 

outliers. Finally, the intercept parameter is another indicator representing the average pleiotropic 

effect of a genetic variant31. If the intercept p-value remains greater than 0.05, we assume that there 

is no pleiotropy.  

In two-sample MR analysis, the selection of correlated instrumental variables (SNPs) within a gene can 

lead to numerically unstable estimates of the causal effect33. For this reason, we recalculated the MR 

using squared correlation up to r2≤0.01 for significant CpGs identified with (r2<0.1, 1,000 kb) SNPs. We 

lowered the r2 threshold to the point where less than 3 SNPs remained for analysis, or we achieved an 

r2 value of 0.01. 

We used colocalization as part of Mendelian randomization sensitivity analysis, testing assumptions 

about instrumental variables (SNPs) for a given genetic region (gene and CpGs within) using the R-

package susieR54. In the analysis, we included all SNPs (not filtered for LD) used for MR in cis regions. 

If there is strong evidence that exposure and outcome are influenced by different causal variants, then 

it is implausible that variants in that region are valid instrumental variables for exposure19. 
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Main Tables 

Table 1. Number of significant (p < 10-14) meQTL results across tissue types.  

meQTL  
Blood 

(# CpGs/# SNPs; %) 
Buccal  

(# CpGs/# SNPs; %) 
Saliva 

(# CpGs/# SNPs; %) 

cis   
13,861,999 

(118,955/2,955,700; 0.92) 
10,610,037 

(92,694/2,792,056; 0.92) 
10,683,104 

(100,233/2,648,648; 0.93) 

long-range cis   
606,035 

(2,066/102,826; 0.04) 
531,305 

(1,645/94,094; 0.05) 
479,377 

(1,714/89,074; 0.04) 

trans   
551,691 

(4,954/287,333; 0.04) 
347,081 

(3,156/208,584; 0.03) 
374,550 

(3,504/199,877; 0.03) 

total 
15,019,725 

(123,703/3,010,228; n.a.) 
11,488,423 

(95,791/2,837,984; n.a.) 
11,537,03 

(103,668/2,690,318; n.a.) 
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Table 2. The 20 genes most frequently annotated to genome-wide significant SNPs representing trans 

meQTL in blood.  

 blood trans meQTL  buccal trans meQTL saliva trans meQTL 

Gene name #SNPs rank (1-9302) #SNPs rank (1-6816) #SNPs rank (1-7154) 

MAD1L1 8337 1 4163 1 5487 1 

SENP7 7329 2 562 79 814 52 

NFKB1 7013 3 NA NA 3666 2 

ZNF568 4304 4 1921 5 2483 7 

RP11-574M7.2 3763 5 3156 2 2579 6 

ZNF266 3308 6 1082 28 1678 18 

SIPA1L3 3158 7 1677 10 2200 10 

ZNF559-ZNF177 3057 8 1078 29 1528 21 

ERICH1 3039 9 1143 24 1256 28 

CTDP1 2733 10 1291 19 1892 15 

ZNF420 2711 11 1548 14 1896 14 

FANCA 2437 12 1452 16 1650 19 

CTD-3105H18.16 2433 13 1708 9 2251 9 

RP11-426C22.5 2380 14 1254 20 1829 16 

RP11-105N13.4 2374 15 1813 6 2924 3 

KANSL1 2333 16 1749 7 2850 4 

EHMT1 2258 17 1519 15 1546 20 

ZNF177 2257 18 794 41 1116 31 

RASA3 2140 19 624 65 795 56 

MAPT 2140 20 1630 11 2664 5 

 

The number of genes in blood is compared to equivalent numbers of genes in buccal and saliva tissues. 

Rank = rank order in each respective tissue. Equivalent Tables using buccal and saliva results as 

reference can be found in Supplementary Tables 4 & 5, respectively. 

 

 

 

 

Supplementary Tables 

Can be found in Supplementary Tables document. 
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Legends to figures: 

Main Figures 

Figure 1. Flowchart of meQTL study design and analysis strategies applied in this work. More details 

on the SMR/MR analyses can be found in Supplementary Figure S6. 

Figure 2. Chessboard plots for study-wide significant SNP-CpG associations results in all three tissue 

types analyzed here: blood, buccal mucosa and saliva. A. SNP-CpG pairwise associations in blood 

dataset (i.e. BASE-II; n=1,058). B.  SNP-CpG pairwise associations in available buccal datasets (i.e. BASE-

II, LCBC and BBHI; n=1,527). C. SNP-CpG pairwise associations in saliva dataset (i.e. LCBC; n=837). Each 

dot represents a SNP-CpG pair that has exceeded the study-wide significance level (P<10-14; Methods). 

CpG positions are shown on the x-axis, and SNP positions are shown on the y-axis. CpG position and 

CpG density (#CpGs/Mb) are provided on the x axis, while SNP position and SNP density (#CpGs/Mb) 

are provided on the y axis. SNP-CpG pairs are coded according to their genomic distance: cis = for pairs 

within 1 Mb (green markers; appear as a diagonal line); long-range cis = for pairs on the same 

chromosome but >1Mb apart (purple markers); trans = for pairs located on different chromosomes 

(black markers). 

Figure 3. Correspondence of effect sizes from SNP-CpG pairs identified by meQTL analysis. A-C: Results 

from Hawe et al.22 (blood*) compared to blood from this study (A), buccal (B) and saliva (C). D: Effect 

sizes of meQTL analysis in buccal tissue compared to saliva specimens using data generated in this 

study. 

Figure 4. Manhattan plots of trans acting SNP-CpG associations in A. blood (i.e. BASE-II; n=1058), B. 

buccal mucosa (i.e. BASE-II, LCBC and BBHI; n=1527), and C. saliva (i.e. LCBC; n=837) dataset. Each dot 

represents a SNP marker. Genomic location of SNPs is on the X-axis, the number of CpG sites associated 

in trans with each SNP are on the Y-axis. Red dots indicate the top 1% SNPs across all detected trans 

associations. Gene names are provided for regions of the top 1% SNPs. SNPs are annotated to most 

frequent meQTL genes in +/-10 Mb region and in 1% all top SNPs. When two genes are equally 

frequent, we chose the gene previously reported in Hawe at al.22, when present. 

Figure 5. Example MR analysis using four models estimated causal link to cg20307385 in PSMC3 in AD 

using independent instrumental variables (SNPs) at A. r2<0.1., and B. r2<0.01. Effect sizes and p-values 

corresponding to these analyses are depicted in Supplementary Table S15. 
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Supplementary Figures 

Figure S1. Chessboard plots for study-wide significant SNP-CpG association results in buccal mucosa. 

A. SNP-CpG pairwise associations in the BASE-II dataset (n=837). B. Pairwise SNP-CpG associations in 

the combined BBHI-LCBC dataset (n=690). Each dot represents a SNP-CpG pair that has exceeded the 

study-wide significance level (P<10-14; Methods). CpG positions are shown on the x-axis, and SNP 

positions are shown on the y-axis. CpG position and CpG density (#CpGs/Mb) are provided on the x 

axis, while SNP position and SNP density (#CpGs/Mb) are provided on the y axis. SNP-CpG pairs are 

coded according to their genomic distance: cis = for pairs within 1 Mb (green markers; appear as a 

diagonal line); long-range cis = for pairs on the same chromosome but >1Mb apart (purple markers); 

trans = for pairs located on different chromosomes (black markers). 

Figure S2. Manhattan plots of trans acting SNP-CpG associations. A. BASE-II-buccal dataset (n=837). B. 

BBHI-LCBC-buccal (n=690) dataset. Each dot represents a SNP marker. Red dots indicate the top 1% 

SNPs across all detected trans associations.  

Figure S3. Proportion of significant SNP-CpG pairs that replicate in three out of three or two out of 

three tissue types, or that are present only in one tissue. Results are separated depending on distance 

between CpG and SNP into A. cis regions, B. lr-cis regions, and C. trans regions. 

Figure S4. Manhattan plots illustrating association results from A. AD GWAS, SMR results for an 

association between AD risk and DNAm in B) blood , C) buccals, and D) saliva. The red horizontal lines 

represent the genome-wide significance level for GWAS (P=5 × 10−8) and SMR analysis (P=1.6 × 10-7). 

Effects that passed the HEIDI test for heterogeneity (P≥0.05) are highlighted in red. 

Figure S5. Manhattan plots illustrating association results from A. Parkinson's disease GWAS, B. SMR 

results for an association between DNAm in blood dataset and Parkinson's disease, C. SMR results for 

an association between DNAm in buccal dataset and Parkinson's disease, D. SMR results for an 

association between DNAm in saliva dataset and Parkinson's disease. The red horizontal lines 

represent the genome-wide significance level for GWAS (P=5 × 10−8) and SMR analysis (P=1.6 × 10-7). 

Effects that passed the HEIDI test for heterogeneity (P≥0.05) are highlighted in red. 

Figure S6. Flowchart of MR study design and analysis strategies applied. Each CpG is annotated with a 

gene from the Illumina manifest. CpGs in intergenic regions are assumed to be one independent 

genomic locus each.  

Figure S7. Forest plot of MR results for association between AD risk and DNAm using four different 

MR methods for A) blood and B) buccal tissue (no study-wide significant results were observed for 

saliva). The plot shows study-wide significant (p<1.47×10-4) results of MR analyses using at least three 

independent (r2<0.01, 1000 kb) SNPs as instrumental variables. 
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Figure S8. Forest plot of MR results for association between Parkinson’s disease risk and DNAm using 

four different MR methods for A) blood, B) buccal, and C) saliva tissue. The plot shows study-wide 

significant (p<1.47×10-4) results of MR analyses using at least three independent (r2<0.01, 1000 kb) 

SNPs as instrumental variables. 
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