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Abstract 10 

 11 

Background Ovarian cancer (OC) is a significant gynecological malignancy characterized by its 12 

high mortality rate, poor long-term survival rate, and late-stage diagnosis. OC is the 5th leading 13 

cause of cancer death among woman and counts 2.1% of all cancer death. OC survival rates 14 

are much lower than other cancers that affect woman. Its 5-year survival rate is less than 50%.  15 

Only ~17% of OC patients are diagnosed within the early stage. The majority are diagnosed at 16 

an advanced stage, making early detection and effective treatment critical challenges. Currently, 17 

the identified OC predictive genes are still very sparse, resulting in pool prognostic performance.  18 

There exists unmet needs to identify novel prognostic gene biomarkers for OC occurrence, 19 

survival, and clinical stages to promote the likelihood of survival and to perform optimal 20 

treatments or therapeutic strategies at the earliest stage possible.  21 

Methods Previous RNAseq analysis on OC focused on detecting differentially expressed (DE) 22 

genes only. Many genes, although having weak marginal differential effects, may still exude 23 

strong predictive effects on disease outcomes though regulating other DE genes. In this work, 24 

we employed a new machine learning method, netLDA, to detect such predictive coregulating 25 

genes with weak marginal DE effects for predicting OC occurrence, 5-year survival, and clinical 26 

stage. The netLDA detects predictive gene networks (PGN) containing strong DE genes as hub 27 

genes and detects coregulating weak genes within the PGNs. The network structures of the 28 

detected PGNs along with the strong and weak genes therein are then used in outcome 29 

prediction on test datasets.   30 

Results We identified different sets of signature genes for OC occurrence, survival, and clinical 31 

stage. Previously identified prognostic genes, such as EPCAM, UBE2C, CHD1L, TP53, CD24, 32 

WFDC2, and FANCI, were confirmed. We also identified novel predictive coregulating weak 33 

genes including GIGYF2, GNPAT, RAD54L, and ELL. Many of the detected predictive gene 34 

networks and coregulating weak genes therein overlapped with OC-related biological pathways 35 
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such as KEGG tight junction, ribosome, and cell cycle pathways. The detection and 36 

incorporation of the gene networks and weak genes significantly improved the prediction 37 

performance. Cellular mapping of selected feature genes using single-cell RNAseq data further 38 

revealed the heterogeneous expression distributions of the signature genes on different cell 39 

types.  40 

Conclusions We established a transcriptomic gene network profile for OC prediction. The novel 41 

genes detected provide new targets for early diagnostics and new drug development for OC. 42 

  43 
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Introduction 44 

Ovarian cancer (OC) is a significant gynecological malignancy characterized by its high 45 

incidence rate, poor survival, late-stage diagnosis, and limited treatment options [1,2]. It ranks 46 

as one of the most lethal cancers and the 5th leading cause of cancer death among woman [3]. 47 

It counts 2.1% of all cancer death. Ovarian cancer survival rates are much lower than other 48 

cancers that affect woman. Its 5-year survival rate is less than 50%.  Its survivors often face 49 

physical and psychological challenges, including long-term side effects of treatment, infertility, 50 

and anxiety about cancer recurrence. Women diagnosed before the cancer has spread have a 51 

much higher five-year survival rate than those diagnosed at a later stage. However, only ~17% 52 

of ovarian cancer patients are diagnosed within the early stage. The majority of OC cases are 53 

diagnosed at an advanced stage, making early detection and effective treatment critical 54 

challenges [4].  55 

 56 

Advances in transcriptomic and genomic research have provided new insights in the discovery 57 

of OC oncogenes. Dozens of OC susceptibility genes, such as BRCA1 [5-8], BRCA2 [5-7], 58 

EPCAM [9,10], TP53 [11,12] and CHD1L [13-15], have been identified over the past decades. 59 

However, the sensitivity and specificity using only these genes in prognostics remain 60 

suboptimal. Efforts of using machine learning (ML) methods to identify novel gene biomarkers 61 

for predicting OC occurrence are still ongoing.  62 

 63 

Compared to cancer occurrence, less research in the literature has been conducted on 64 

prediction of OC survival [15,16] and clinical stages [17,18]. It is particularly of scientific interest 65 

to investigate whether it is the same or different sets of genes that contribute to OC 66 

development and progression (including survival and clinical stages). Identification of novel 67 

oncogenes for predicting OC patients’ survival and clinical stages would be extremely helpful to 68 

promote the likelihood of survival and optimal treatment or therapeutic strategies at the earliest 69 

stage as possible, even after the patients being diagnosed of OC.    70 

 71 

Through a series of work, Li et al. [19-23] have shown that in cancer-genomic studies, some 72 

genes, even though having weak marginal differential effects (DE), may still exude strong 73 

prediction effects on disease outcomes though regulating other strong DE genes. These weak 74 

DE genes (or weak genes), together with their coregulated strong genes and the coregulations 75 

between them, form predictive gene networks (PDN). Detecting such PDNs and the weak genes 76 

therein and integrating them into disease outcome prediction could significantly improve the 77 
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prediction accuracy. In this project, we used a novel cancer-genomics analytical tool that we 78 

recently developed: netLDA – network-based linear discriminant analysis 79 

(https://github.com/lyqglyqg/netLDA) – to detect predictive gene networks and strong/weak 80 

signature genes for predicting OC occurrence, 5-year survival, and clinical stages, using both 81 

bulk and single-cell RNAseq (scRNAseq) data.  82 

 83 

By looking at the gene-gene coregulation networks and weak genes, novel signature genes 84 

were identified, and the outcome prediction accuracy was significantly increased. The results 85 

helped with a better understanding of the underlining dynamic mechanisms of OC development 86 

and progression. They may shed light on promotion of precision medicine and new gene 87 

therapy development. 88 

 89 

Materials 90 

Data acquisition and processing. Bulk RNAseq and clinical data of 419 OC patients from The 91 

Cancer Genome Atlas (TCGA) program and 88 non-disease controls from The Genotype-Tissue 92 

Expression (GTEx) project were combined and used as the training data for OC occurrence 93 

prediction. Bulk RNAseq data in GSE18521 for 53 OC tumor samples and 10 normal ovary 94 

tissue samples from the Gene Expression Omnibus (GEO) database were used as an 95 

independent test dataset in the case-control study. There were 11,069 mapped genes on both 96 

training and test datasets.  97 

 98 

Bulk RNAseq and survival data from GSE26712 for 195 OC patients were downloaded from 99 

GEO and used as the training dataset in the survival prediction. The same types of data for 53 100 

OC patients were downloaded from GSE18521 and used as a test dataset. There were 12,645 101 

common genes mapped on both datasets. The reason for not using TCGA data as the training 102 

data is that TCGA subjects cross a wide range of OC stages, which are heavily confounded with 103 

the survival. We did not find a GEO dataset that contains both survival and clinical stage 104 

outcomes. Therefore, we used two GEO datasets (both of which contained only late-staged OC 105 

patients) as the training and test datasets to alleviate the confounding effect from clinical stages.  106 

 107 

Bulk RNAseq and clinical data from 419 TCGA OC patients and from 77 GSE63885 OC patients 108 

were used as the training and test data, respectively, in the OC clinical stage prediction. There 109 

were 17,490 mapped genes on both training and test datasets. 110 

 111 
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Single-cell RNAseq data of 22,153 cells and 47,913 transcripts from GSE229343 were used in 112 

the scRNAseqs data analysis and cellular mapping for the signature genes selected in each 113 

study. 114 

 115 

The RNAseq data went through quality control before analysis using R package edgeR [24] or 116 

Seurat [25]. For the bulk RNAseq data, genes with counts less than 10 for more than 70% of the 117 

samples were removed from analyses. For the scRNAseq data, cells with UMI numbers below 118 

500, gene numbers below 300 or greater than 6,000, or mitochondrial-derived UMI counts of 119 

more than 15% were considered low-quality and were removed [103]. 120 

 121 

Methods 122 

Three studies were conducted for prediction of different OC outcomes: i) occurrence prediction 123 

of OC v.s. healthy, ii) 5-year survival prediction of survival longer than 5 years v.s. shorter than 5 124 

years, and iii) severity prediction of clinical stage ≤ III v.s. V. The following methods were used in 125 

each study.  126 

 127 

PGN and network-based weak gene selections. We use the netLDA [20] in both feature 128 

selection and outcome prediction. Figure 1 depicts the major steps of netLDA. First, netLDA 129 

selects top strong DE gene as hub genes according to their marginal DE effects. Then for each 130 

strong DE gene, netLDA selects its coregulated gene network containing its highly correlated 131 

genes (having a Pearson correlation coefficient 𝜌 with |𝜌| ൐ 0.8 ). Next, netLDA assigns the 132 

following predictive score, or network-adjusted DE effect, to each gene in a selected 133 

coregulating network, 𝑃𝑆௜ ൌ ∑ Ω௜  ሺ𝐸ത௝
ሺଵሻ െ 𝐸ത௝

ሺଶሻሻ௝∈஼೔ , where 𝑖 and 𝑗 are gene indices, 𝐶௜ is the set of 134 

genes connected to gene 𝑖 through a coregulation path,  Ω௜ is the precision matrix (inverse of 135 

the covariance matrix) that characterizes the coregulation information (directions and strengths) 136 

between genes in 𝐶௜, and  𝐸ത௝
ሺଵሻ and 𝐸ത௝

ሺଶሻ are the average expression level of gene 𝑗 in outcome 137 

groups 1 and 2, respectively. The predictive score integrates, for each targeted gene, how many 138 

other genes it coregulates, the strengths and directions of those regulations, and expression 139 

levels of its coregulated genes, as well as expression levels of the targeted gene itself. The 140 

most predictive genes are selected according to the strengths of their predictive scores. 141 

Selected predictive genes with small marginal DE effects are weak coregulating genes. For 142 

prediction, netLDA uses only the selected predictive genes and the coregulation network 143 

structures between them to predict outcomes on the test data. Figure 2 explains the calculation 144 
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of the predictive scores using toy example data. We also developed permutation tests to 145 

evaluate the significance of selected individual genes and PGNs. 146 

 147 

Prediction performance comparison with competing ML methods. We compared the 148 

prediction performance of netLDA with other commonly used cancer-genomics ML methods 149 

including Lasso [26], Ridge [27], ElasticNet [28], XGboost [29], and linear discriminate analysis 150 

(LDA) using only the strong genes and ignoring the coregulatory network structures between 151 

them. Prediction sensitivities, specificities, and the areas under the receiver operating 152 

characteristic curves (ROC) were evaluated to assess the prediction. 153 

 154 

Kepler-Meijer analysis. Kepler-Meijer (KM) analysis is a commonly used biomarker validation 155 

approach in cancer genomics studies. It compares the survival or KM curves between high- and 156 

low- expressed groups of a DE gene [30]. Here we generated KM curves according to the long- 157 

and short-term survival groups predicted by using the selected strong and weak genes, and 158 

their PGN structures. We compared the KM curves to the ones generated from only using the 159 

top strong genes’ expression levels.  160 

 161 

Gene set enrichment analysis. To validate our identified genes and PGNs from a biological 162 

perspective, we conducted gene set enrichment analysis (GSEA) [31], a knowledge-based 163 

approach for interpreting transcriptome profiles, using GeneOntology (GO) [32] and Kyoto 164 

Encyclopedia of Genes and Genomes (KEGG) [33] pathways. The selected strong/weak genes 165 

and PGNs were mapped to the top enriched KEGG pathways to confirm their oncological 166 

functionals. 167 

 168 

Cellular mapping for the selected genes. To reveal the cellular expression heterogeneity of 169 

the selected signature genes, we also performed a scRNAseq analysis for cell type profiling and 170 

cellular mapping of the selected genes.  171 

 172 

Results 173 

Predictive gene network and network-based gene selections. Top selected genes in the 174 

three studies are listed in Table 1. Marginal expression patterns for the selected genes are 175 

depicted in Figure 3. Top selected PGNs harboring the selected genes were listed in Table 2. 176 

Topological structures (illustrating the connection topologies) and connection matrices 177 

(illustrating the connection strengths) of the PNGs, along with marginal and network-adjusted 178 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.23300414doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300414


7 
 

DE effects of the genes within, were depicted in Figure 4. Most of the selected strong genes 179 

have both a significant marginal p-value (from marginal tests) and a significant permutation test 180 

p-value (<10-4, from a network-based test). While majority of the selected weak genes have only 181 

a significant permutation test p-value. This demonstrates that integrating of coregulation 182 

between genes helps to promote the significance of weak genes in their empirical distributions. 183 

For many of the top selected genes, we found literature evidence supporting their associations 184 

with OC (last column in Table 1). Most of the selected predictive gene networks have significant 185 

permutation test p-values (<0.05). Full lists of the selected genes and PGNs are given in the 186 

Supplemental Materials. 187 

 188 

We confirmed strong genes previously reported. SMPDL3B (marginal p-value=8.8×10-182, 189 

network-adjusted permutation p-value < 10-4) and SLC34A2 (marginal p-value=1.9×10-190, 190 

network-adjusted permutation p-value < 10-4) were confirmed in the OC occurrence study, 191 

TRAFD1 (marginal p-value = 0.0013, network-adjusted permutation p-value < 10-4) and CHD1L 192 

(marginal p-value = 0.0021, network-adjusted permutation p-value < 10-4) were confirmed in the 193 

5-year survival study, and FANCI (marginal p-value = 0.0016, network-adjusted permutation p-194 

value < 10-4) was confirmed in the clinical stage study. Expression of SMPDL3B was found 195 

related to specific aptamers for ovarian tumors, such as AptaC2 and AptaC4, through molecular 196 

docking [34]. SLC34A2 overexpression was reported related to development and progression of 197 

OC, brain cancer, and pancreatic cancer [35]. TRAFD1 suppression was observed in ovarian, 198 

colon, brain, and renal cancers [36]. CHD1L overexpression was reported to augment ovarian 199 

carcinoma metastasis [15]. FANCI has recently been identified as a new ovarian cancer 200 

predisposing gene [37,38]. We also discovered some strong genes not been reported before to 201 

be associated with OC. For example, ILDR1 (marginal p-value = 2.1×10-204, network-adjusted 202 

permutation p-value < 10-4) in OC occurrence study, and TRAPPC14 (marginal p-value = 203 

5.6×10-4, network-adjusted permutation p-value = 2×10-4), RRP1 (marginal p-value = 0.0019, 204 

network-adjusted permutation p-value = 6×10-4), and ZSWIM8 (marginal p-value = 0.0045, 205 

network-adjusted permutation p-value = 6×10-4) in 5-year survival study. 206 

 207 

We also identified weak genes in regulations with the strong genes, such as PPP1CA (marginal 208 

p-value = 3.3×10-9, network-adjusted permutation p-value < 10-4) and HMGA1 (marginal p-value 209 

= 1.0×10-57, network-adjusted permutation p-value < 10-4) in occurrence study, RPS8 (marginal 210 

p-value = 0.044, network-adjusted permutation p-value = 0.016), RPL28 (marginal p-value = 211 

0.36, network-adjusted permutation p-value = 0.024), and RPL31 (marginal p-value = 0.042, 212 
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network-adjusted permutation p-value = 0.18) in 5-year survival study, and MAPKAPK5 213 

(marginal p-value = 0.0017, network-adjusted permutation p-value < 10-4) and BYSL  (marginal 214 

p-value = 0.042, network-adjusted permutation p-value < 10-4) in the clinical stage study. 215 

PPP1CA is a catalytic subunit gene and plays an essential role in the growth of cancer cells 216 

[39]. HMGA1 plays a crucial role in the self-renewal and drug resistance of ovarian cancer stem 217 

cells [40]. Ribosomal genes, including RPS8, RPL28, and RPL31, have been recently identified 218 

as a novel therapeutic target against high-grade OC [41]. Long noncoding RNA MAPKAPK5-219 

AS1 promotes cancer cell proliferation by cis-regulating the nearby gene MK5 [42]. BYSL 220 

expression was reported to be elevated and promote tumor cell growth [43]. 221 

 222 

Several novel OC-associated weak genes that have not been reported in the literature before 223 

were identified in our study, such as GIGYF2 (marginal p-value = 0.35, network-adjusted 224 

permutation p-value < 10-4), GNPAT (marginal p-value = 0.21, network-adjusted permutation p-225 

value < 10-4) and RAD54L (marginal p-value = 0.066, network-adjusted permutation p-value < 226 

10-4) in the clinical stage study.   227 

 228 

Table 2 lists the top detected PGNs from each of the three studies. Many of these PGNs are 229 

overlapping with the top enriched KEGG and/or GO pathways (also see GSEA results). Genes 230 

in a KEGG/GO pathway are biologically validated to be related to systematic biology or 231 

oncology. Links between genes in a KEGG/GO pathway are lab-confirmed molecular 232 

interaction, reaction, and regulations. Overlapping between our selected PGNs and KEGG/GO 233 

pathways can serve as biological evidence of our findings. In the OC occurrence study, one of 234 

the two netLDA-detected gene networks contains overlapping genes CLDN7 (weak), CLDN4 235 

(weak), CLDN3 (strong) that are also in the tight junction pathway (enrichment p-value=1.86×10-236 
3), leukocyte transendothelial migration pathway (enrichment p-value=1.76×10-3), and cell 237 

adhesion molecules cams pathway (enrichment p-value=2.68×10-3). Weak genes TJP3 and 238 

CRB3, in the same network, are also overlapped in the tight junction pathway. The other 239 

predictive gene network selected in OC occurrence study contains two weak genes PTTG1 and 240 

CDC20 that are overlapping with cell cycle pathway (enrichment p-value=1.85×10-5). In the 241 

survival study, one detected predictive gene network is largely overlapped with ribosome 242 

pathway (enrichment p-value=1.97×10-30). Twenty-eight out of thirty-one genes in the network 243 

are in the ribosome pathway, which accounts for 31.8% of the 88 leading genes in the ribosome 244 

pathway). In the clinical stage study, multiple detected gene networks overlap with KEGG cell 245 

cycle pathway (enrichment p-value=4.40×10-4), KEGG pathways in cancer (enrichment p-246 
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value=8.12×10-3), GO DNA replication pathway (enrichment p-value=6.91×10-9), GO DNA 247 

recombination pathway (enrichment p-value=2.09×10-8), and GO chromosome segregation 248 

pathway (enrichment p-value=1.49×10-7). Genes overlapping with KEGG cell cycle pathway 249 

include MCM2 (strong), CREBBP (weak), ABL1 (weak), PLK1 (weak), MCM4 (weak), MCM6 250 

(weak), BUB1 (weak), CDC20 (weak), CCNB1 (weak), ORC3 (weak), SMAD2 (weak), GSK3B 251 

(weak), and PCNA (weak). Genes overlapping with KEGG pathways in cancer include PTGS2 252 

(strong), KRAS (strong), WNT6 (strong), ABL1 (weak), MTOR (weak), SMAD2 (weak), STK4 253 

(weak), CREBBP (weak), MSH3 (weak), RXRB (weak), and GSK3B (weak). Genes overlapping 254 

with GO DNA replication pathway include PRIM1 (strong), MCM6 (weak), DDX23 (weak), and 255 

WDHD1 (weak). Genes overlapping with GO DNA recombination pathway include MCM2 256 

(strong), MCM4 (weak), HMCES (weak), and RUVBL1 (weak). Genes overlapping with GO 257 

chromosome segregation pathway include BUB1 (weak), PRC1 (weak), KIF2C (weak), CDC20 258 

(weak), PLK1 (weak), and RMI2 (weak). 259 

 260 

Prediction performance comparison with competing ML methods. ROC curves in each 261 

study are depicted in Figure 5. In the occurrence study, all methods gave almost perfect 262 

prediction results – area under the ROC curve (AUC) equaling 1 – as all top genes (strong and 263 

weak) have much significant differentiating effects compared to top genes in the survival and 264 

clinical stage studies. In the survival study, netLDA gave an AUC = 0.91, much higher than using 265 

only the strong genes and Lasso/Ridge/elasticNet (0.85-0.87). XGboosting gave a comparable 266 

AUC of 0.90. In the clinical stage study, netLDA also gave the highest AUC = 0.65, XGboosting 267 

gave an AUC = 0.61, and Lasso/Ridge/elasticNet and LDA using only the strong genes gave an 268 

AUC around 0.5, similar to a random guess. 269 

 270 

KM analysis. Figure 6 shows the Kepler-Meijer curves and log-rank test results in the 5-year 271 

survival study. Figure 6 (a) is for the KM curves and log-rank test between the two netLDA 272 

predicted groups using both selected strong/weak genes, and PGN structures. Figure 6 (b-d) 273 

are KM curves and log-rank tests between high- and low-expression (above and below the 274 

median expression value) groups of top three selected strong genes. The two KM curves were 275 

more separated, and the log-rank test p-value were more significant between the netLDA 276 

predicted groups than those between the expression level groups from a single strong gene, 277 

demonstrating the effects of weak genes and PGNs] in improving the classification results. 278 

 279 
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GSEA. Figure 7 shows KEGG and GO pathway enrichment analysis results. The left panels are 280 

examples of the top enriched KEGG pathways for each of the three studies. Tight junction 281 

pathway was enriched in the OC occurrence study (enrichment p-value = 1.86×10-3), ribosome 282 

pathway was enriched in the 5-year survival study (enrichment p-value = 1.97×10-30), cell cycle 283 

pathway was enriched in the clinical stage study (enrichment p-value = 4.40×10-4). Many of the 284 

weak genes (highlighted in yellow) overlap with these top enriched pathways, confirming that 285 

the weak genes play a biological role in the development and progression of OC. A complete list 286 

of enriched KEGG pathways is given in the appendix. The right panels in Figure 7 list the top 287 

enriched GO pathways for each study. Top GO pathways enriched in the occurrence study 288 

include cell-cell junction organization (enrichment p-value = 4.26×10-10), tight junction assembly 289 

pathway (enrichment p-value = 3.55×10-9), and epidermis development pathway (enrichment p-290 

value = 7.00×10-9). Top GO pathways enriched in the survival study include SRP-dependent 291 

cotranslational protein targeting to membrane (enrichment p-value = 2.54×10-55) and nuclear-292 

transcribed mRNA catabolic process (enrichment p-value = 2.16×10-53). Top GO pathways 293 

enriched in the clinical stage study include DNA replication (enrichment p-value = 6.91×10-9) 294 

and recombinational repair (enrichment p-value = 1.59×10-7). Table 3 lists the top enriched 295 

KEGG pathways. Lists of top enriched GO pathways are provided in the Supplemental 296 

Materials. 297 

 298 

Cellular mapping for the selected genes using scRNAseq data. Figure 8 shows the cellular 299 

distribution of the GSE229343 scRNAseq data and the expression maps of the selected feature 300 

genes. In Figure 8 (a), Seurat was first used to identify 28 cell subtype clusters using resolution 301 

= 0.2. For OC occurrence study, many genes are expressed on epithelial cells (including strong 302 

genes: CLDN3, SLC34A2, SMIM22, FOLR1, and weak genes: CLDN7, MAL2, SPRINT1, 303 

PRSS8, EHF, ELF3, KRT8, SLPI, KRT18, EPCAM, VAMP8, KRT7, CLDN4, WFDC2, CD24, 304 

MSLN); on fore/mid/hindgut epithelial cells (including strong genes: CLDN3, SMIM22, and weak 305 

genes: CLDN7, MAL2, SPINT1, PRSS8, ELF3, KRT8, SLPI, KRT18, EPCAM, KRT7, CLDN4); 306 

on cycling neural program/mesenchymal stem cells (including weak genes: UBE2C, CDC20, 307 

PTTG1, UBE2T); on airway/retinal  epi/ciliated cells (including strong genes: CLDN3, SMIM22, 308 

FOLR1, and weak genes: ELF3, KRT8, UCP2, SLPI, EPCAM, KRT7, CLDN4, WFDC2, CD24); 309 

on myeloid/T cells (including weak genes: UCP2, VAMP8); and on immature neuron cells 310 

(including weak gene CD24). For the clinical stage study, many genes are overexpressed on 311 

cycling neural program/Mesenchymal stem cells (including weak genes: CDC20, UBE2T, 312 

NUSAP1, CCNB1, PLK1, ASPM, PRC1, KIF20A); on immature neuron cells (including strong 313 
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gene TUBB2B); and on myeloid cells (including weak gene CD163). For the survival study, as 314 

there were very few genes mapped to the scRNAseq GSE229343 gene set, we did not observe 315 

a particular cellular express pattern for the selected genes. 316 

 317 

Summary and Discussion  318 

We confirmed previously identified prognostic genes such as EPCAM, UBE2C, CHD1L, TP53, 319 

CD24 [53], WFDC2 [53], and FANCI associated with OC occurrence, survival, or clinical stage. 320 

We identified novel susceptibility strong genes including: ILDR1 in ocurrence study, 321 

TRAPPC14, RRP1, and ZSWIM8 in the survival study, as well as novel coregulating weak 322 

genes including GIGYF2, GNPAT, RAD54L, and ELL in the clinical stage study. Our identified 323 

gene networks overlapped with KEGG tight junction, leukocyte transendothelial migration, and 324 

cell cycle pathways in the occurrence study; with ribosome pathway in the survival study; and 325 

with cell cycle pathway and pathways in cancer in the clinical stage study. We found many 326 

identified genes particularly expressed on epithelial cells in the occurrence study and on cycling 327 

neural program/Mesenchymal stem cells in the clinical stage study. By incorporating gene 328 

network structures and weak genes, netLDA significantly improves the prediction performance 329 

compared to other ML/DL methods such as Lasso, Ridge, elasticNet, XGboost, and LDA with 330 

only strong genes. 331 

 332 

A major contribution of this work is the identification of prognostic oncogenes, especially weak 333 

genes in the OC related pathways. The CLDN genes (CLDN7 and CLDN4 detected in the OC 334 

occurrence study) in the tight junction pathway and cell adhesion molecules cams pathway, 335 

which functioning as one of the protective barriers in the epithelial and endothelial cells, were 336 

also observed to overexpress on fore/mid/hindgut epithelial cells in the single cell analysis. The 337 

weak genes detected in the survival study, mainly ribosomal genes, such as RPS8 and RPL28, 338 

overlapping with ribosome pathway, which was known to promote protein homeostasis in 339 

cancers by fine-tuning protein synthesis and preventing toxic protein aggregation [102]. The 340 

CCN gene family (CCNB1 detected in the clinical stage study) and CDK genes (CDK2 within the 341 

detected network indexed by PRIM1 in clinical stage study, see Table 2, even though it is not in 342 

the final selected weak gene set) are coregulating genes in the cell cycle pathway. These 343 

regulating weak genes were not reported in the literature, as they were difficult to detect by 344 

themselves.  345 

 346 
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Although netLDA incorporates gene coregulation network structures into calculating gene 347 

differential expressions, it assumes the same network structures (topology, coregulation 348 

direction and strength, etc.) between different outcome groups. In real applications, the network 349 

structures can be different between groups, in which case a quadratic discriminant analysis 350 

might be a better approach. However, accurate and robust inference of different network 351 

structures requires large sample sizes per group. Moreover, gene coregulations are usually 352 

more stable and robust compared to individual gene expression levels. That is, even individual 353 

gene expression levels can vary a lot between different disease groups, cell types, and 354 

environments, but the gene-gene coregulation maintains rather stable across the 355 

heterogeneous situations. Such robustness in gene networks is critical for assembling a 356 

dynamic biology system. Essentially, the network structures inferred by netLDA are the average 357 

of different groups when the same network structure assumption is violated.  358 

 359 

Most of the weak genes selected in the OC occurrence study also have strong marginal DE 360 

effects. In that sense, they may also be considered as strong genes. The prediction 361 

performance is dominated by the top strong genes; therefore, the prediction performance 362 

(Figure 5) was not much different between netLDA and LDA using only strong genes and other 363 

competing methods. The predictive effects of weak genes were manifested in the survival and 364 

clinical stage studies, where the marginal DE differential effects of genes are much weaker than 365 

that in the occurrence study (Figure 3 and Figure 5). Especially in the clinical stage study, as 366 

the strong genes only explained a small portion of the outcome variation on the training data, 367 

netLDA dug deeper with more weak genes residing in more predictive networks compared to 368 

the occurrence and survival study, in order to accumulate sufficient information to optimize the 369 

prediction accuracy on the test data. 370 

 371 

The selected gene sets from the occurrence, survival, and stage studies are non-overlapping. 372 

This is mainly because the input gene sets are different for the three studies. Moreover, it also 373 

reveals that the OC development and progression may have different underlying molecular 374 

mechanisms. 375 

 376 

Since gene expressions in bulk RNAseq data are averaged expressions over different types of 377 

cells, DE effects of some genes might be washed out in the averaging. For example, a gene 378 

that is significantly differentially expressed only on a particular cell type but not on other cell 379 

types might exhibit only a marginally weak DE effect. A gene differentially expressed on two cell 380 
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types but in different directions will show no marginal DE effect due to signal cancellation. The 381 

netLDA is a desired method for detecting such genes. It would be an optimal validation 382 

approach to confirm the DE effects of the selected genes using scRNAseq data from both 383 

cohorts. Our feature mapping of the selected genes using scRNAseq data helped identify which 384 

types of cells the genes are particularly expressed on. Investigators are recommended to 385 

conduct DE analyses using scRNAseq data on the identified cell types to further validate the 386 

findings.  387 

 388 

 389 

Abbreviations 390 

DE  Differentially expressed  391 

GEO  Gene Expression Omnibus 392 

GO  GeneOntology 393 

GSEA  Gene set enrichment analysis 394 

GTEx  The Genotype-Tissue Expression project 395 

KEGG  Kyoto Encyclopedia of Genes and Genomes 396 

KM  Kepler-Meijer 397 

LDA  Linear discriminant analysis 398 

OC  Ovarian cancer 399 

PGN  Predictive gene networks 400 

RNAseq RNA sequencing 401 

scRNAseq single cell RNA sequencing 402 

TCGA  The Cancer Genome Atlas  403 
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 404 

Figure 1.  Analysis steps of netLDA. Step 1, netLDA selects top strong DE gene as hub coregulating 
genes. Step 2, for each strong DE gene, netLDA selects its coregulated gene network containing its 
highly correlated genes. Step 3, netLDA assigns the following predictive score to each gene in the 
coregulating network. The most predictive genes are selected according to the strength of their 
predictive scores, including strong DE genes and weak coregulating genes. Step 4, netLDA uses the 
selected strong and weak genes and their network structures to predict outcomes on the test data. 
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 405 

 406 

Figure 2. Detecting weakly differentiating genes but predictive by integrating gene-gene 
coregulations. (a) An example of coregulatory gene network containing five genes. Gene 2 has a 
strong marginally differentiating effect. The other four genes do not exhibit differentiating effects 
marginally, as shown in (c). The unidirectional coregulations between the five genes are presented 
by the edge connections between them. Solid edges represent a positive coregulation and dashed 
edges represent a negative coregulation. If two genes are not connected by an edge, it means there 
is no known coregulation between them. The coregulation strength is represented by the width of the 
edges with the actual values marked aside. (b) Connection matrix corresponding to the network in 
(a). Numbers on the diagonal are the marginal variances for the five genes. Numbers off diagonal 
are the coregulation strength between genes. (c) Marginal expression differences between two 
groups. Only gene 2 exhibits a strong differential effect. (d) The coregulation adjusted differential 
effects are achieved by multiply the marginal effects by the connection matrix. Genes 3 and 4 also 
exhibit strong differential effects after the adjustment because of their coregulations with the strong 
gene 2.  
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 407 

408 

(c) 

(a) (b) 

Figure 3. Heatmaps of expression of 
selected genes. (a) Cancer occurrence. 
(b) 5-year survival. (c) Clinical stage. 
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409 

(a-1) (a-2) 

(a-3) 

Figure 4, part I. Network topologies of the selected PGNs and strong/weak genes therein. Red nodes 
represent strong genes and yellow nodes represent weak genes. Node sizes are proportional to their 
marginal effect sizes. Solid line edges represent positive regulations, dotted line edges represent 
negative regulations. Strength of connections is represented by the width of the edges.  (a-1) Cancer 
occurrence. (a-2) 5-year survival. (a-3) Clinical stage. 
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 410 

(b-1) (b-2) 

Figure 4, part II. Precision matrix plots of the selected strong and weak genes. Each off diagonal cell in 
a matrix plot indicates the partial correlation (or coregulation) between the two genes indexed by the 
corresponding row and column names. Red indicates a positive regulation and blue indicates a 
negative regulation. The strength of the regulation is indicated by the color scale. The top horizontal 
histogram depicts the marginal differentiating effect of each gene. The right vertical histogram depicts 
the network-adjusted differentiating effect (PS) of each gene. Red bars indicate strong genes. Yellow 
bars indicate regulating weak genes.  

(b-3) 
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 411 

 412 

(a) (b) 

Figure 5. Area under the ROC curves from netLDA 
and other competing methods. (a) Cancer 
occurrence. (b) 5-year survival. (c) Clinical stage. 

(c) 
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 413 

(a) (b) 

Figure 6. Kepler-Meijer curves and log-rank test results. (a) KM curves and log-rank test between the 
two netLDA predicted groups: long survival (≥ 5 years) and short survival (< 5 years). (b-d) KM curves 
and log-rank tests between high- and low-expression level (above and below the median expression 
value) of top selected strong genes. (b) For gene TRAFD1. (c) For gene TTC31. (d) For gene CHD1L.    

(c) (d) 
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 414 

(a) 

(b) 

Figure 7. Gene set enrichment analysis results. Left panels: Example top enriched KEGG pathways 
and genes therein selected by netLDA. Red: selected as strong genes. Yellow: selected as weak genes. 
(a) Tight Junction pathway (p-value=1.9×10-3). (b) Ribosome pathway (p-value=2.0×10-30). (c) Cell 
Cycle pathway (p-value=4.4×10-4). Right panels: Top enriched GO pathways. For both left and right 
panels, (a) Cancer occurrence. (b) 5-year survival. (c) Clinical stage. 

(c) 
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 415 

(a) 

(b-2) 

Figure 8. Cellular distribution of 
expression profile for the selected 
feature genes. (a) Cell type profiling 
using scRNAseq data GSE229343 of 
three patients with immature ovarian 
teratoma. Cellular expression profiles 
are presented in: (b-1) & (b-2) for strong 
and weak genes, respectively, detected 
in occurrence study, (c) for weak gene 
detected in 5-year survival study, and (d-
1) & (d-2) for strong and weak genes, 
respectively, detected in clinical stage 
study.  

(c) (d-1) 

(b-1) 

(d-2) 
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Table 1. Top selected genes 

Gene name Gene type Network-
adjusted DE 

Permutation p-
value for 
network-
adjusted DE† 

Marginal DE Marginal p-
value‡ 

Literature 
on selected 
gene 

Cancer occurrence prediction 
BRCA2** strong -- <0.0001* 1.19 <2.2×10-16 5-8 
BRCA1** strong -- <0.0001* 1.11 <2.2×10-16 5-7 
PPP1CA weak -0.98 <0.0001* 2.21 3.3×10-9 39 
UBE2C weak 0.81 <0.0001* 2.46 3.0×10-134 44-46 
SMPDL3B strong 0.72 <0.0001* 2.50 8.8×10-182 47 
ILDR1 strong 0.71 <0.0001* 2.50 2.1×10-204  
SLC34A2 strong 0.61 <0.0001* 2.43 1.4×10-190 48 
CLDN7 weak -0.56 <0.0001* 2.45 8.5×10-96 30 
EPS8L1 weak -0.52 <0.0001* 2.35 2.2×10-60 49 
HMGA1 weak 0.51 <0.0001* 2.44 1.0×10-57 50, 51 
TMEM238 weak 0.49 <0.0001* 2.43 1.1×10-116 52 
INAVA weak 0.46 <0.0001* 1.41 4.2×10-125 53 
CDC20 weak 0.43 <0.0001* -0.44 1.3×10-101 54 
SPINT1 weak -0.38 <0.0001* 4.43 6.7×10-60 55 
SMIM22 strong 0.35 <0.0001* 0.87 1.2×10-184 56 
5-year survival prediction 
TRAFD1 strong -0.64 <0.0001* -0.64 0.0013 57 
ADPGK strong -0.63 <0.0001* -0.63 6.4×10-5 58 
CHD1L strong -0.61 <0.0001* -0.61 0.0021 59-62 
PIAS3 strong -0.60 <0.0001* -0.60 0.0018 63 
TTC31 strong -0.63 0.0002* -0.63 1.8×10-4 64 
TRAPPC14 strong -0.61 0.0002* -0.61 5.6×10-4  
TRPM4 strong -0.58 0.0003* -0.58 0.0014 65 
TMEM214 strong -0.56 0.0004* -0.56 0.0013 66 
IMPDH2 strong 0.56 0.0004* 0.56 0.0043 67 
CNOT9 strong -0.56 0.0005* -0.56 2.6×10-4  
PLD2 strong -0.55 0.0005* -0.55 0.0036 68 
CTNNBIP1 strong -0.56 0.0006* -0.56 9.5×10-4 69 
RRP1 strong -0.55 0.0006* -0.55 0.0019  
ZSWIM8 strong -0.55 0.0006* -0.55 0.0045  
SRPK2 strong -0.54 0.0006* -0.54 0.0018 70 
FHOD1 strong -0.54 0.0007* -0.54 0.0024 71 
RBM7 strong 0.54 0.0007* 0.54 <0.0019 72 
RPS8 weak 1.45 0.016* 0.47 0.044 73 
RPL28 weak -1.27 0.024 0.22 0.36 74 
RPL31 weak -1.06 0.042 0.29 0.18 75 
Clinical stage <IV vs. IV prediction 
MAPKAPK5 weak -1.63 <0.0001* -0.57 0.0017 76 
BYSL weak -1.62 <0.0001* -0.47 0.042 77, 78 
GIGYF2 weak 1.16 <0.0001 0.57 0.35  
TGOLN2 weak -1.10 <0.0001 0.24 0.073 80 
TSC2 weak 0.96 <0.0001 0.35 0.22 81 
SNX5 weak 0.91 <0.0001 0.14 0.37 82 
PTPRA weak 0.86 <0.0001 -0.50 0.18 83 
GNPAT weak 0.84 <0.0001 0.23 0.21  
RAD54L weak -0.81 <0.0001 0.40 0.066  
FANCI strong -0.77 <0.0001* 0.35 0.0016 84, 85 
MAP3K7 weak -0.76 <0.0001* 0.24 0.0045 86 
ELL weak 0.69 <0.0001 -0.42 0.47  
HNRNPLL weak -0.67 <0.0001 -0.33 0.057 87 
MAP4K3 weak 0.67 <0.0001 0.26 0.50 88 
TNRC6A weak 0.67 <0.0001 -0.11 0.32 89, 90 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.23300414doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300414


24 
 

DDX23 weak -0.66 <0.0001* -0.27 0.027 91 
CLASP1 weak 0.65 <0.0001 -0.43 0.42 92 
WDHD1 weak -0.64 <0.0001* 0.22 0.026 93, 94 
PCNA weak -0.64 <0.0001* -0.59 0.017 95 
LRRC75A strong -0.63 <0.0001* -0.59 0.0016 96 
SNRPB weak 0.62 <0.0001 -0.05 0.13 97 
UBN2 weak 0.61 <0.0001 0.80 0.46 98 
KIF2C weak 0.60 <0.0001 -0.14 0.41 99 
RAD52 weak -0.57 <0.0001* -0.46 0.026 100, 101 
† Permutation p-value calculated from permutation test of running the netLDA on the selected gene networks 
10,000 times. 
‡ Marginal p-value calculated from two-sample t test on each individual gene.  
* Weak gene that has a significant permutation test p-value at level .05 and a significant marginal p-value at 
level .05. 
** BRCA1 and BRCA2 genes were not selected by netLDA as strong genes, as they were both filtered out in the 
data preprocessing by edgeR due to the facts that 84% of samples have counts <10 for BRCA1 and 93% of 
samples have counts <10 for BRCA2. By default, edgeR requires a minimum count of 10 for samples. We included 
them in the table because they were widely reported to be associated with ovarian cancer in the literature. Their 
marginal p-values were achieved from marginal t-tests. 

  416 
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Table 2. Top selected predictive gene networks 

Network 
index hub 
gene 

Network 
size 

Strong 
gene(s) 
within 
network 

Connect genes and selected weak 
genes within network 

Permutation 
network p-
value 

Cancer occurrence prediction 
ILDR1 31 CLDN3, ILDR1, 

AP1M2, 
OVOL2, 
FOLR1, 
SMPDL3B 

CLDN4, PRSS8, ELF3, EPCAM, ESRP1, KDF1, 
C1orf210, GRHL2, KRT8, CLDN7, CRB3, MAL2, 
ST14, SPINT1, TJP3, KRT7, GRB7, MARVELD2, 
LSR, C6orf132, TMPRSS3, PKP3, MSLN, 
EPS8L1, TMC4 

<0.0001 

SLC34A2 29 KLK8, KLK7, 
SLC34A2, 
SMIM22 

FAM83H, KLK6, EHF, TMEM238, VAMP8, 
PPP1CA, UCP2, ZDHHC12, RGS19, BSPRY, 
SAMD10, HMGA1, TPD52, INAVA, KRT18, 
CXXC5, WFDC2, SLPI, SPINT1-AS1, UBE2C, 
CD24, CRABP2, PTTG1, UBE2T, CDC20 

<0.0001 

5-year survival prediction 
RPS3 31 RPS3 RPS8, RPL31, RPS18, RPS24, RPS23, RPL27A, 

RPS14, RPS29, RPS15A, RPS13, RPL35A, 
RPS3A, RPL30, RPS15, RPLP1, RPS27, RPL7,   
RPLP0, RPL18, RPL13A, RPS11, RPL28, RPS19, 
RPL29, EEF1A1, TPT1, RPS4X, RPS17, RPL41, 
RPL10 

<0.0001 

Clinical stage <IV vs. IV prediction 
PRIM1 31 PRIM1, SENP1 CDK2, DDX23, RACGAP1, TUBA1B, HNRNPL, 

WDR76, HAUS2, MCM6, CTDSPL2, NUSAP1, 
LMNB1, RFC5, GATC, UNG, RNF34, ANAPC7, 
PWP1, RMI1, UBQLN1, C9orf64, ZNF367, NAA35, 
NCBP1, WDHD1, SOCS4, DLGAP5, EXOC5, 
POLE2, MAPK1IP1L 

0.024 

PLEKHM3 31 PLEKHM3 SRCAP, HCFC1, POM121, POM121C, YLPM1, 
SMCR8, ASXL2, BIRC6, HEATR5B, SLC30A6, 
USP34, PUM2, MED1, CDK12, SYNRG, 
GPATCH8, FBXL20, KANSL1, MGA, TP53, INO80, 
VPS39, ZNF106, ZSCAN29, ZBTB40, UBR4, 
SPEN, CLCN6, MTOR, RBM33 

0.032 

PDK1 31 PDK1, PPFIA4 HAT1, DYNC1I2, SP3, ZC3H15, GORASP2, 
WDR75, DCAF17, TLK1, METTL8, CWC22, 
PRPF40A, SSB, PRKRA, PLEKHA3, UBE2E3, 
BZW1, OLA1, SUMO1, ATF2, SF3B1, CREB1, 
NCKAP1, NFE2L2, HNRNPA3, PFKFB4, HK2, 
KDM3A, SLC2A1, OXSR1 

 0.0064 

RNFT2 31 RNFT2 SART3, BRAP, NAA25, PRDM4, ATXN2, PTPN11, 
C12orf43, SPPL3, EIF2B1, DENR, VPS33A, 
DIABLO, IFT81, USP30, ZNF84, MAPKAPK5, 
C12orf76, RSRC2, SFSWAP, DDX51, RBM19, 
FBRSL1, SBNO1, PUS1, KDM2B, CAMKK2, 
DHX37, ZNF664, ANAPC5, RNF10 

<0.0001 

IQCC 31 IQCC S100PBP, RBBP4, TXLNA, BSDC1, KPNA6, 
ZMYM4, CEP85, EYA3, PDIK1L, EXOSC10, 
HP1BP3, MFN2, ZMYM1, ZMYM6, IPP, PUM1, 
REV1, GPBP1L1, SNRNP40, ZCCHC17, EIF3I, 
PEF1, HDAC1, PPP1R8, TMEM234, PHC2, 
SRSF4, UBXN11, ZBTB8OS, TRNAU1AP 

0.0020 

RPRD1A 31 RPRD1A, 
PIK3C3 

ELP2, ZNF24, SLC39A6, ZNF397, ZSCAN30, 
TRAPPC8, C18orf21, INO80C, RNF138, TPGS2, 
SNRPD1, IER3IP1, SMAD4, EPG5, SMAD2, DYM, 
MBD1, ZNF396, KIAA1328, TTC30B, ESCO1, 
LZTFL1, HDHD2, HNRNPLL, XPO1, MAP4K3, 
ZFR, DHX9, FBXO11 

0.0001 

RHOBTB1 31 RHOBTB1 CHSY1, AKAP13, ASB7, MEF2A, ABHD2, TCF12, 
DPY19L1, KBTBD2, HERPUD2, AZI2, MCFD2, 
VPS41, KIAA1549, SMO, UBN2, DGKD, TTC26, 
JARID2, TET1, ACVR2B, SALL2, ZNF660, 

<0.0001 
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FAM117B, ZNF605, ZNF697, DCHS1, ADAMTS7, 
LAMB1, TRAM2, SEMA7A 

KRAS 31 KRAS FGFR1OP2, KLHL42, ETNK1, MRPS35, TM7SF3, 
STK38L, RECQL, GOLT1B, STRAP, WBP11, 
C12orf4, AEBP2, IPO8, DNM1L, ATF7IP, CCDC91, 
MATR3, ATF6, C2CD5, CMAS, PLEKHA5, 
PYROXD1, ATN1, TULP3, RPAP3, SCAF11, ATF1, 
ASB8, TWF1, CCNT1 

0.019 

SLC1A4 31 SLC1A4 IMMT, KCMF1, USP39, CIAO1, PTCD3, MRPL35, 
SMC1A, KDM5C, HUWE1, MED14, DDX3X, 
POLA1, VCP, UBAP1, UBE2R2, TESK1, DNAJA1, 
SMU1, ACTR2, RAB1A, PPP3R1, UGP2, RAB10, 
AFTPH, TEX261, PCBP1, TMEM127, DCTN1, 
TGOLN2, STAU1 

0.0001 

CEP97 31 CEP97 ZBTB11, TBC1D23, PCNP, ZNF143, CGGBP1, 
ZNF148, SPICE1, GTF2E1, GSK3B, SLC35A5, 
BBX, TFG, SENP7, ZBTB41, NSUN3, RCOR3, 
DDX17, WDR11, ARL6, CPOX, CLDND1, 
ABHD10, EFCAB7, LANCL1, CCP110, THUMPD1, 
KNOP1, COQ7, ERI2, NFATC2IP 

0.0028 

ZNF669 31 ZNF669 ZNF670, ZNF124, CNST, DESI2, B3GALNT2, 
SPRTN, AHCTF1, HNRNPU, ARID4B, HEATR1, 
WDR26, RAB3GAP2, COG2, GNPAT, TAF5L, 
IARS2, TSNAX, EXOC8, SH3BP5L, ZNF672, 
PARP1, ZNF496, PGBD2, 
TRIM11, RBBP5, KLHL12, CDC73, DSTYK, 
NUCKS1, RPS6KC1 

0.00030 

C20orf96 31 C20orf96 SOX12, ZCCHC3, IDH3B, NRSN2, PSMF1, 
UBOX5, PCED1A, RBCK1, CRLS1, MRPS26, 
ITPA, CDS2, DZANK1, EFHC1, BBS5, TASP1, 
NEK11, NPHP1, DHX35, CTNNBL1, DDX27, 
CDK5RAP1, SRSF6, 
UQCC1, BTBD3, RBBP9, GZF1, PBRM1, SPAST, 
MSL1 

0.011 

MYEF2 31 MYEF2 GABPB1, ARPP19, COPS2, DTWD1, USP8, 
ANP32A, SLTM, SON, RTF1, PRRC2C, DPP8, 
SP1, TCERG1, RBM27, DDX46, HNRNPH1, PNN, 
PRPF38B, SRSF10, SRRM1, PNRC2, SFPQ, 
HNRNPA2B1, HNRNPDL, HNRNPH3, YTHDC1, 
HNRNPK, FUS, SIRT1, CTCF 

0.0025 

DET1 31 DET1 UNC45A, CRTC3, SEMA4B, SNX1, PEX11A, 
SCAMP2, TTC23, TM2D3, SSRP1, LRRC28, 
CSNK1G1, ARPIN, MRPL46, MRPS11, SEC11A, 
WDR61, ZFAND6, HDDC3, SLC24A1, SPG11, 
PDCD7, HERC1, PIAS1, DIS3L, SCAPER, ARIH1, 
DENND4A, CLPX, FBXO22, MAN2C1 

0.017 

Bolded genes are the selected genes (including both strong and weak genes) within the network. 
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Table 3. Top enriched KEGG pathways and their overlapping selected gene 
networks 

Pathway 
name 

Enrichm
ent pval 

Enrichm
ent padj 

NES Path
way 
size 

LeadingEdge genes in pathway Overlapping with 
selected genes 
networks 

cc       
KEGG_CEL
L_CYCLE 

2.36×10-5 1.38×10-3 1.79 112 E2F2/CDKN2A/CDC45/TTK/PKMYT1/C
DC20/CCNA1/BUB1B/PTTG1/SFN/BUB
1/CCNB2/ESPL1/CCNE1/CDK1/CDC6/
MAD2L1/CCNB1/PLK1/E2F3/CDKN2B/C
CND1/MCM2/E2F1/CCNA2/MCM4/CHE
K1 

CDC20/PTTG1 

KEGG_LEU
KOCYTE_T
RANSENDO
THELIAL_MI
GRATION 

1.51×10-3 2.26×10-2 1.68 83 CLDN6/CLDN3/CLDN9/CLDN16/CLDN4
/CLDN7/CLDN10/MMP9/VAV3/VAV1/CX
CR4/THY1/CLDN1/CYBA/ITGAL/CYBB/
OCLN/RAC2/ITGB2 

CLDN3/CLDN4/CLDN7 

KEGG_TIGH
T_JUNCTIO
N 

1.63×10-3 2.26×10-2 1.63 97 CLDN6/CLDN3/CLDN9/CLDN16/TJP3/C
RB3/CLDN4/CLDN7/CLDN10/MYH14/P
PP2R2B/PARD6B/PRKCQ/CLDN1/PRK
CZ/CGN/OCLN 

CLDN3/TJP3/CRB3/CLDN
4/CLDN7 

KEGG_CEL
L_ADHESIO
N_MOLECU
LES_CAMS 

2.04×10-3 2.38×10-2 1.64 85 CLDN6/CLDN3/CLDN9/CLDN16/CLDN4
/CLDN7/CLDN10/HLA-
DQA2/CDH1/L1CAM/SDC1/ICOSLG/HL
A-DQA1/HLA-
DQB1/SELPLG/NRCAM/HLA-
DRB5/HLA-DOA/CLDN1/ICAM3/HLA-
DMB/HLA-DRA/ITGAL/CADM3/HLA-
DPA1/HLA-DRB1/VCAN/HLA-
DMA/OCLN/HLA-
DPB1/ITGB2/CDH2/CD4/ITGB8/NECTIN
1/PTPRC/SDC4/CADM1/ICAM1/SDC3 

CLDN3/CLDN4/CLDN7 

surv       
KEGG_RIBO
SOME 

1.97E-30 3.29E-28 3.11 81 MRPL13/RSL24D1/RPS25/RPL36AL/RP
L10A/RPS3/RPL30/RPS8/RPS12/RPS2
6/RPL15/RPS23/RPL35A/RPL18A/RPS5
/RPL8/RPS15/RPS20/RPL18/RPL36/RP
L9/RPL11/FAU/RPS27/RPS15A/RPL10/
RPS19/RPS13/RPL27/RPL37/RPS3A/R
PS4X/RPS24/RPS29/RPL35/RPL5/RPL
23/RPS27A/RPL7/RPS27L/RPS21/RPL1
0L/RPL34/RPL32/RPL28/RPLP2/RPL14/
RPLP1/RPSA/RPL24/RPLP0/RPS6/RPL
3/RPL27A/RPL31/RPS18/RPS16/RPS11
/RPL19/RPL13/RPL13A/RPS17/RPS10/
RPL7A/RPL23A/RPL29/RPS2/RPL41/R
PL4/RPL22/RPL38/UBA52/RPS7/RPL12 

RPS3/RPL30/RPS8/RPS2
3/RPL35A/RPS15/RPL18/
RPS27/RPS15A/RPL10/R
PS19/RPS13/RPS3A/RPS
4X/RPS24/RPS29/RPL7/R
PL28/RPLP1/RPLP0/RPL2
7A/RPL31/RPS18/RPS11/
RPL13A/RPS17/RPL29/R
PL41  

Stage       
KEGG_CEL
L_CYCLE 

0.00044 0.0072 -1.75 113 TGFB2/CCND2/CDC6/CDC7/E2F1/CDC
45/MCM2/CDC25A/ORC3/RBL1/TTK/E2
F3/E2F5/CCNE1/MCM3/SMAD4/BUB1B/
SMAD2/E2F2/PKMYT1/CCNA2/MAD2L1
/CREBBP/WEE1/ESPL1/PCNA/CDK2/S
KP2/CCNB2/PLK1/CHEK1/CDC25B/CH
EK2/ANAPC7/STAG1/CDKN1C/CCNB1/
CDKN1B/ATM/ORC6/RBL2/CDK1 

CDK2/ANAPC7 
CCNB2/CCNB1/CDK1 
SMAD4/SMAD2 
TTK 
MCM2/MCM3 
ORC3                  
E2F1/RBL1/CCNA2/PLK1
CDC6/BUB1B/PCNA 
CREBBP  

KEGG_BAS
AL_CELL_C
ARCINOMA 

0.0016 0.022 -1.87 35 WNT6/FZD5/GLI2/FZD10/GLI3/WNT10A
/FZD2/LEF1/WNT2B/STK36 

STK36 
WNT6                                    

KEGG_PAT
HWAYS_IN_
CANCER 

0.0081213
85 

0.075 -1.43 237 WNT6/LAMA1/MMP9/CXCL8/TGFB2/FZ
D5/GLI2/ARNT2/FZD10/GLI3/BCL2/KRA
S/WNT10A/LAMC3/LAMB3/MECOM/E2
F1/FZD2/LEF1/CSF3R/WNT2B/E2F3/CC
NE1/IGF1R/STK36/SMAD4/PLCG1/FGF
R1/SMAD2/LAMB1/E2F2/PIAS2/CREBB

STK36     
CDK2 
PLCG1 
WNT6                            
SMAD4/SMAD2        
LAMB1 
KRAS 
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P/CBLB/PDGFB/VHL/CDK2/SKP2/MAP
K8/MLH1 

E2F1 
MAPK8 
CREBBP  

KEGG_HED
GEHOG_SI
GNALING_P
ATHWAY 

0.0145528
4 

0.11 -1.68 31 WNT6/LRP2/ZIC2/GLI2/GLI3/WNT10A/
WNT2B/STK36 

STK36                        
WNT6                                    

KEGG_MEL
ANOGENES
IS 

0.021 0.16 -1.48 63 WNT6/FZD5/FZD10/KRAS/WNT10A/PL
CB4/ADCY5/GNAO1/FZD2/LEF1/WNT2
B/ADCY7/PLCB1/CREBBP/CREB1/CRE
B3L4/ADCY6 

WNT6     
CREB1                                   
KRAS 
CREBBP  

KEGG_MIS
MATCH_RE
PAIR 

0.062 0.36 -1.51 21 EXO1/RFC4/RFC5/RFC3/PCNA/MLH1/P
OLD3/MSH2/LIG1/RFC1/RPA1/MSH3/M
SH6 

RFC5 
MSH3 
MSH2/MSH6 
EXO1/PCNA        

KEGG_GLY
COSYLPHO
SPHATIDYLI
NOSITOL_G
PI_ANCHOR
_BIOSYNTH
ESIS 

0.064 0.36 -1.51 19 PIGF/PIGG/PIGN/PIGQ/PIGB/PIGU/PIG
O/PGAP1/PIGM/PIGT/PIGX/PIGP/PIGV 

PIGN                  

KEGG_DNA
_REPLICATI
ON 

0.060 0.36 -1.47 33 DNA2/MCM2/RFC4/RFC5/PRIM2/MCM3
/RFC3/PCNA/POLE/POLD3/LIG1/RFC1/
RPA1/POLA1/FEN1 

RFC5 
POLE 
FEN1                                     
MCM2/MCM3  
POLA1                       
PCNA        

KEGG_ECM
_RECEPTO
R_INTERAC
TION 

0.072 0.38 -1.37 59 COL2A1/LAMA1/SV2A/LAMC3/LAMB3/I
TGA7/HMMR/LAMB1/SDC1/THBS4 

LAMB1                            
COL2A1                         
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