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Abstract 8 

To date, clinical genetic testing and approaches to classify genetic variants in Mendelian disease genes 9 
have focused heavily on exonic coding and intronic gene regions. This multi-step study was undertaken 10 
to provide an evidence base for selecting and applying bioinformatic approaches for use in clinical 11 
classification of 5’ cis-regulatory region variants. Curated datasets of rare clinically reported disease-12 
causing 5’ cis-regulatory region variants, and variants from matched genomic regions in population 13 
controls, were used to calibrate six bioinformatic tools as predictors of variant pathogenicity.  14 
Likelihood ratio estimates were aligned to code weights following ClinGen recommendations for 15 
application of the American College of Medical Genetics (ACMG)/American Society of Molecular 16 
Pathology (AMP) classification scheme. Considering code assignment across all reference dataset 17 
variants, performance was best for CADD (81.2%) and REMM (81.5%). Optimized thresholds provided 18 
moderate evidence towards pathogenicity (CADD, REMM), and moderate (CADD) or supporting 19 
(REMM) evidence against pathogenicity. Both sensitivity and specificity of prediction were improved 20 
when further categorizing variants based on location in an EPDnew-defined promoter region. 21 
Combining predictions (CADD, REMM, and location in a promoter region) increased specificity at the 22 
expense of sensitivity.  Importantly, the optimal CADD thresholds for assigning ACMG/AMP codes PP3 23 
(≥10) and BP4 (≤8) were vastly different to recommendations for protein-coding variants (PP3 ≥25.3; 24 
BP4 ≤22.7); CADD <22.7 would incorrectly assign BP4 for >90% of reported disease-causing cis-25 
regulatory region variants. Our results demonstrate the need to consider a tiered approach and 26 
tailored score thresholds to optimize bioinformatic impact prediction for clinical classification of cis-27 
regulatory region variants. 28 
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Introduction 32 

Advances in genomic sequencing technology have led to dramatic improvements in diagnostic rates 33 
for inherited disease. Fundamental to these developments were the American College of Medical 34 
Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) recommendations 35 
for clinical interpretation of genomic variants, which provided guidelines for classifying a given 36 
variant’s potential role in disease (1). To date, the overwhelming majority of variants classified as 37 
disease-causing are located in the protein-coding region of the genome (2). The non-coding region, 38 
despite representing approximately 98% of the genome, remains largely unexplored as an explanation 39 
for Mendelian disease.  40 

The non-coding sequence upstream of protein-coding genes, known as the cis-regulatory region, has 41 
important regulatory functions (3). Variants in non-coding regions with known or suspected cis-42 
regulatory function are thus high priority for investigating potential impact on gene function and 43 
disease predisposition.  44 

Cis-regulatory regions contain a number of different functional domains (Figure 1), typically including: 45 
a core promoter which enables gene transcriptional output; a proximal promoter; and an upstream 46 
untranslated region (5’ UTR). Further, the 5’ UTR may contain introns that modulate gene output e.g. 47 
expression level, spatial or temporal modifications. Within these domains are identifiable cis-48 
regulatory sequence motifs. The cis-regulatory region domains can contain: promoter motifs required 49 
for transcription initiation such as a TATA box; downstream promoter element (DPE); initiator element 50 
(Inr); or motif ten element (MTE) (4-6). Additionally, domains such as CpG islands, CCAAT regions, 51 
regions of open chromatin and various epigenetic markers, can convey regulatory function and are 52 
enriched in promoter regions (7-11). Finally, a diverse range of transcription factor binding motifs enable 53 
temporal and spatial gene modulation (12). The variable composition of domains and motifs in the cis-54 
regulatory region upstream of a gene dictate its expression and behavior. Thus, while not directly 55 
encoding protein sequence, the cis-regulatory regions proximal to the protein-coding gene sequence 56 
are crucial for normal biological function. 57 

 58 

 59 

Figure 1. Overview of features associated with cis-regulatory regions.  60 
Promoter regions contain a variety of motifs, with substantial diversity in features present and relative 61 
locations of motifs between genes. The cis-regulatory region includes the main regulatory regions 62 
upstream (5’) to the translation start site (TSS), including the core and proximal promoter/s, and 63 
encompassing any untranslated regulatory introns and exons, and the transcription initiation site (TIS). 64 
The functional components of the core promoter may include a Beta recognition element (BRE), a TATA 65 
box or variation thereof (TATA), an initiator sequence (termed Inr), and/or a downstream promoter 66 
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element (DPE). These sequence features are generally observed within -40 bp to +40 bp of the TSS (+1 67 
position within the Inr). The cis-regulatory region also contains a variety of transcription modulating 68 
regions, including CCAATT box sites and transcription factor binding sites (TFBs) which regulate 69 
temporal and spatial control of gene expression. Not represented in this image are a number of 70 
additional cis-regulatory elements, including the E box, X box and GC sites. Cis-regulatory elements are 71 
observed in various combinations, sometimes with multiple instances of a functional element, and 72 
also are not all found concurrently. 73 

Variants in cis-regulatory regions cause inherited disease through impacting gene function, generally 74 
via altering gene regulation. Disease-causing variants have been observed across the range of cis-75 
regulatory motifs, and these variants have generally been reported to cause phenotypes similar to 76 
pathogenic variants within the associated protein-coding regions (13). Some previously reported 77 
examples include: variants upstream of PTEN that reduce promoter activation causing Cowden 78 
syndrome (14); variants in the TATA box recognition sites of HBB and HBD that alter transcription 79 
initiation by TATA Binding Protein and are reported as causal for β- and δ-thalassemia (15); deletions 80 
upstream of the TSS in the APC gene promoters 1A or 1B identified as causal for Familial Adenoma 81 
Polyposis (16); and variants in the 5’ UTR of MLH1 that reduce transcription that have been reported to 82 
cause hereditary non-polyposis colorectal cancer (also known as Lynch Syndrome) (17). Despite such 83 
examples establishing precedence, cis-regulatory region variants are not routinely examined in the 84 
clinical diagnostic setting (2).  85 
 86 
Ellingford et al. (2) recently published recommendations to support the interpretation of non-coding 87 
variants in alignment with the ACMG/AMP variant classification guidelines (1). These recommendations 88 
included a general description regarding use of bioinformatic prediction tools for non-coding variant 89 
interpretation, with reference to several tools that might be used to predict variant impact on splicing, 90 
or deleteriousness of other categories of non-coding region variants. The authors specifically 91 
highlighted the importance of accurately annotated true positive pathogenic variants for training, and 92 
cautioned against over-interpretation of output from genome-wide predictors. 93 
 94 
Another important consideration for regulatory region variant effect prediction is how to prioritize, 95 
compare and select bioinformatic tool/s for both calibration and ongoing use. There are numerous 96 
tools with potential relevance for impact prediction of non-coding variants (see Table S1 for examples). 97 
For ease of application in a variant curation setting, ideally bioinformatics tool/s should be: current 98 
and maintained; easy to use (if possible, even for those without coding skills); publicly available 99 
without cost; and capable of batch variant annotation. While many previous studies have compared 100 
tool performance in the process of assessing a new bioinformatic tool for non-coding regions, we 101 
identified relatively few apparently impartial reviews of computational tools that predict impact on 102 
function for non-coding variants  (2, 18-25). Of the latter, only one study (24) identified optimal thresholds 103 
for predicting impact of non-coding variants, and reported tool sensitivity and specificity using these 104 
thresholds. While sensitivity and specificity are key factors in selecting which tool/s may be used to 105 
predict variant pathogenicity, formal calibration of a tool using known pathogenic and benign variants 106 
is required to determine the appropriate evidence weight for application in clinical variant 107 
classification (26). Bayesian modelling of the ACMG/AMP variant classification guidelines has provided 108 
a framework on how to assign evidence weights based on likelihood ratio (LR) towards pathogenicity 109 
(27). Recently, a ClinGen computational subgroup (Pejaver et al. 2022) used this approach to define 110 
score thresholds for bioinformatic prediction evidence weighting for missense variants (28). In this study, 111 
only four of the 13 tools assessed were potentially applicable for non-coding variants: two 112 
conservation/constraint scores (GERP and PhyloP) and two meta-predictors (CADD and BayesDel) (29-113 
32). Given that the mechanisms underlying cis-regulatory region function are quite different to those 114 
for protein-coding regions, we hypothesized that the score thresholds and evidence weights derived 115 
for missense variant impact cannot be assumed to be applicable for cis-regulatory region variants.   116 
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We applied multiple quality control and filtering steps to publicly accessible information to generate 117 
refined reference datasets of reported disease-causing variants (representing pathogenic variants) and 118 
region-matched control variants, exclusively located in cis-regulatory regions. These reference datasets 119 
were used to compare performance of, and evaluate evidence weight for, scores from six bioinformatic 120 
prediction tools and promoter region annotation. The results from this calibration study demonstrate 121 
the need to consider a tiered approach with tailored score thresholds to optimize impact prediction 122 
for clinical classification of cis-regulatory region variants. 123 

Methods 124 

Scoping analyses relating to variant effect and location in non-coding regions 125 

A preliminary dataset of non-coding variants was sourced from ncVarDB (20), and annotated using VEP 126 
(online GUI version 109, 28 March 2023) to obtain the Ensembl molecular consequence and CADD 127 
PHRED scores (v1.6).  CADD score profiles for benign and pathogenic variants, categorized as defined 128 
by ncVarDB, were compared using a density plot. Non-coding variants were then grouped by Ensembl 129 
molecular consequence, with splicing-related molecular consequences were collapsed into a single 130 
‘splicing’ group, and variants with no molecular consequence annotated were collapsed into a single 131 
group ‘other’. The CADD PHRED score of benign and pathogenic variants was compared for each 132 
molecular consequence group using bar graph visualization. 133 

Sourcing reported disease-causing cis-regulatory variants 134 

Source data included large-scale studies and variant databases (20, 33-35), and smaller research 135 
publications (published up to February 2023) reporting Mendelian disease-causing regulatory region 136 
variants identified in the clinical setting (clinically reported and/or patient-identified). Variants that 137 
were annotated by the original source as 5’ UTR, upstream or regulatory region variants were selected 138 
to generate a combined dataset of 962 variant records (Table S2). 2 variants 139 
(NC_000001.11:g.11023351G>A, NC_000014.9:g.75958692G>A) were excluded based on literature 140 
reporting their location as 3’ UTR (though the original source annotation as 5’UTR). 141 

These reported disease-causing variants (hereafter also referred to as disease variants) were 142 
investigated for literature and functional evidence via the following approaches: ClinVar (collected 143 
November 2022)(36); dbSNP; LitVar search using rsID and/or variant location; and Google search (online 144 
search completed  6 December 2022) for variant MANE transcript associations, HGVS 145 
nomenclature/dbSNP identifiers, gene and alternate gene references, and promoter-related 146 
information. PMIDs were recorded for all publications that appeared to capture evidence specific to 147 
the variant (Table S3). After removal of duplicates, 576 unique cis-regulatory region variants remained. 148 

Identifying cis-regulatory regions of interest, 5kb upstream regions of MANE transcripts 149 

The translation and transcription start sites for all MANE_Select and MANE_Plus_Clinical transcripts 150 
were collected using BioMart (Ensembl) (37). The region start was determined as genomic location 5kb 151 
upstream of the transcription start site for the positive strand or 5kb downstream of the transcription 152 
start site for the negative strand. The last nucleotide 5’ to the translation start site in positive strand 153 
or first nucleotide 3’ to the translation start site in the negative strand was designated the region end 154 
location. A ‘region of interest’ input BED file (38) was then created to match the relevant genes for the 155 
cis-regulatory reported disease variants. 156 

Population variant frequency/conservation correlation 157 

Variants located within the regions of interest (MANE genes) were selected from gnomAD v3.0 VCF 158 
files (39). Maximum population allele frequency (maxAF) was calculated for 314,817 variants by 159 
selecting variants based on the highest alternative AF from (non-founder) populations (Non-Finnish 160 
European, South-Asian, African-American/African ancestry, Latino, East Asian). Precomputed GERP 161 
(version homo_sapiens GRCh38, downloaded 02 February 2023) and phyloP 100V GRCh38 vertebrate 162 
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(version hg38.100way.phyloP100way 2015-05-11, downloaded 02 February 2023) scores were 163 
sourced from UCSC and gnomAD variants annotated with precomputed scores via VEP (See 164 
Supplementary Methods). GERP and phyloP 100V scores were obtained for single nucleotide variants 165 
only. The correlation between maxAF and GERP, and maxAF and phyloP 100V, was investigated via 166 
scatterplot with linear regression and Spearman’s correlation coefficient.  167 

gnomAD variants were binned into seven groups by maxAF: [1] 0 -0.00001, [2] >0.00001-0.00002, 168 
[3] >0.00002-0.0001, [4] >0.0001-0.001, [5] >0.001-0.01, [6] >0.01-0.1, and [7] >0.1–1. 169 

Summary statistics of both phyloP 100V (Table S4) and GERP (Table S5) were calculated for each of 170 
these bins, including mean and standard deviation of each maxAF bin.  171 

Based on conservation metrics for the different bins, the maxAF bin [3] >0.00002-0.0001 was used as 172 
source for a presumed benign control variant set. To enable analysis via web-based annotation 173 
platforms (e.g. CADD web annotation recommends limiting to around 10 000 variants), a subset of the 174 
maxAF bin [3] was created by random selection of 10% of the total 127,868 variants. This formed the 175 
initial control variant set comprising 12,788 variants (Table S6), hereafter also referred to as control 176 
variants. 177 

Compilation of reference datasets 178 

To select refined reference datasets of cis-regulatory region variants for calibrating bioinformatic tools, 179 
the 576 reported disease-causing variants (Table S3) and 12,788 control variants (gnomAD population 180 
variants with maxAF >0.00002-0.0001) (Table S6) were filtered to remove variants with potential to 181 
confound the analysis. Variants were excluded from the reference datasets if they: were predicted to 182 
alter an amino acid in any transcript; overlapped with the coding region of the MANE transcript 183 
(including introns between coding exons); were predicted to alter splicing by max SpliceAI delta score 184 
≥0.2 (of which a subset had published evidence for impact on splicing, Table S7); had VEP-annotated 185 

ClinVar classification in opposition with the reference dataset grouping (i.e. disease variants with a 186 
benign classification or control variants with a pathogenic classification); were GWAS-identified with 187 
experimental evidence supporting causality for common disease (40); or had ambiguity concerning their 188 
role in disease from a broad literature search (e.g. some variants were reported in cis with a second 189 
potentially causal variant). Annotations relating to all variant exclusions are shown in Table S8, and 190 
detailed description of variant exclusion methods is provided in the Supplemental methods. 191 

Selection of bioinformatic impact prediction tools 192 

A literature search identified 269 bioinformatic tools with potential application for non-coding variant 193 
classification (Table S1). To prioritize tools for further clinical evaluation and calibration, we selected a 194 
subset of six tools previously evaluated as highly performing in Wang et al. 2022. In addition, the 195 
EPDnew database of promoter regions (version H. sapiens 006, GRCh38) (41) was selected as a source 196 
of experimental and computationally derived promoter locations.  197 

Bioinformatic tool score collection and variant annotation 198 

Variant annotations from multiple sources were combined in R (version 4.2.3), further information on 199 
tools and datasets can be found in Supplemental Methods and Table S9, and a full collation of 200 
reference dataset variant annotations can be found in Table S10.  201 

In summary, the annotations were as follows. VEP (online GUI version 109, 28 March 2023) was used 202 
to source RefSeq transcripts, consequence (from Ensembl), MANE_Select, MANE_Plus_Clinical, Amino 203 
Acids, CLIN_SIG (ClinVar classification) annotations. Custom VEP command line version 99.2 (42) was 204 
used to collect GERP, vertebrate phyloP 100V, LINSIGHT, and Eigen annotations. CADD (v1.6), FATHMM-205 
MKL, FATHMM-XF and REMM (V0.4) annotations were obtained via web GUI. In addition, promoter-206 
associated “sub”-annotations were extracted from the CADD results table (web GUI sourced), including; 207 
CpG, percent CpG in a window of +/- 75bp (default: 0.02); GC percent, percent GC in a window of +/- 208 
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75bp (default: 0.42); RemapOverlapTF, Regulatory region map number of different transcription 209 
factors binding (default: - 0.5); and Encode Regulatory Region Feature annotations. Control and disease 210 
variant scores were compared, using default CADD score settings. For Encode regulatory features, 211 
regulatory feature overlap categories were lumped to calculate the dataset proportion overlap with 212 
any regulatory feature. Splicing prediction analysis was performed using SpliceAI (43). Based on 213 
calibration results reported previously (44), maximum delta score of ≥0.2 was considered as 214 

bioinformatic evidence for predicted impact on splicing. Annotation of variant location within a 215 
promoter region was extracted via locational overlap with EPDnew (version H. sapiens 006, GRCh38) 216 
using the R GenomicRanges (version 1.50.2).  217 

All annotations were performed on GRCh38, except LINSIGHT and FATHMM-MKL, for which variant 218 
GRCh37 positions were determined using web-based UCSC LiftOver tool, annotations collected using 219 
GRCh37 positions and returned to the corresponding GRCh38 locations. 220 

Statistics and bioinformatic tool calibration  221 

Figures were generated in R (version 4.2.3)/R Studio (2023.06.01), Microsoft excel and/or Inkscape 222 
(0.92). Statistical analyses were performed using R/R Studio, including linear regression, Spearman’s 223 
correlation, Wilcoxon rank sum tests, Chi-Square tests and summary statistics.   224 

The overall bioinformatic tool evaluation was performed by: (i) allocating score categories; (ii) 225 
calculating the score category LR and resulting evidence category/strength; (iii) evaluating the 226 
combined performance of the categories. An online LR calculation tool developed and applied for 227 
calibration of splicing prediction tool thresholds (44) was used to determine the area under the curve 228 
(AUC), Youden’s index and the score threshold corresponding to the Youden’s index. Upper and lower 229 
thresholds defining score categories were determined using the score defined by Youden’s index to 230 
designate the central point for an uncertain zone comprised of approximately 10% of variants. 231 
Sensitivity, specificity and accuracy of the scored variants were determined based on the defined score 232 
categories. LRs were estimated for the different bioinformatic score categories by comparison of the 233 
proportions observed for control and reported disease-causing variants, as described previously (45). 234 
ACMG/AMP criteria weights were assigned based on LR, following published LR range/threshold 235 
recommendations (27). 236 

The evaluation of selected bioinformatics impact predictor tools was then adjusted to include all 237 
variants (including unscored and uninformative variants combined, referred to as the undetermined 238 
group), with these whole reference set evaluation results designated as the clinical performance. For 239 
clinical performance comparisons, the overall score category alignment with the reference set 240 
experimental group was determined as correct, incorrect and undetermined. Correct referred to the 241 
variant scoring in a category providing at least supporting evidence consistent with the reference set 242 
status, either towards pathogenicity for disease variants (true positive) or against pathogenicity for 243 
control variants (true negative). Incorrect referred to the variant scoring in a category providing 244 
evidence inconsistent with reference set status, either against pathogenicity for disease variants (false 245 
negative) or towards pathogenicity for control variants (false positive). Undetermined referred to both 246 
any variant that did not score (no score) and/or variants for which the respective tool did not reach an 247 
LR corresponding to at least supporting evidence either towards or against pathogenicity 248 
(uninformative). 249 

Results 250 

Non-coding variants have distinct impact prediction score profiles  251 

Non-coding regions contain motifs with a variety of functions, therefore it should be anticipated that 252 
non-coding variants can cause impact on gene expression/function via a broad set of mechanisms. We 253 
hypothesized that this may present as large variability in variant impact prediction scores depending 254 
on specific non-coding region features, with implications for selection of appropriate thresholds for 255 
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assigning evidence towards or against pathogenicity. The bioinformatic prediction tool CADD was 256 
selected for preliminary analysis based on its common use as a variant impact predictor in clinical 257 
settings (28), and CADD (CADD_PHRED) scores for different Ensembl variant consequence categories 258 
were compared for variants in the publicly accessible dataset of non-coding variants ncVarDB (20, 31).  259 
Variants in different locational-based consequence categories showed different CADD score profiles 260 
(Figure 2), indicating need to consider non-coding variant location category when calibrating 261 
bioinformatic tools for predicting clinical impact for this broad group of variants.  262 

 263 

 264 

Figure 2.  CADD scores of ncVarDB variants separated by Ensembl consequence category.  265 
A) Density plot of CADD scores (CADD PHRED) for ncVarDB variants, comparing benign (Ben; n=7228) 266 
and pathogenic (Path; n=721) variants. Categorization as benign or pathogenic is as per ncVarDB. 267 
Vertical lines indicate missense variant thresholds (28), BP4 indicates the category in which variants 268 
would meet at least supporting level of evidence for benignity  and PP3 indicating the category in 269 
which variants would meet at least supporting level of evidence for pathogenicity according to the 270 
missense calibrated thresholds (28). B) CADD scores median (box center line), 25th and 75th percentiles 271 
(upper and lower box boundaries respectively), the inter-quartile range (whisker line), with outlier 272 
points plotted individually (dots) comparing benign and pathogenic variants, separated by Ensembl 273 
consequence; ‘splicing’ includes grouped splicing type consequences, and ‘other’ includes those 274 
variants that did not annotate with a molecular consequence. The number of variants is indicated 275 
above each group. 276 

Our subsequent analysis focused on the cis-regulatory region of the genome, since it is a relatively 277 
well-studied non-coding region with a number of recognizable motifs. For the purposes of this study, 278 
the cis-regulatory region was defined as the 5kb sequence upstream of the translation start site to the 279 
transcription start site (the nucleotide 5’ to the ATG start site). This region spans the 5’ UTR, any 280 
untranslated introns, the core promoter and the proximal promoter, and is an area generally 281 
understood to regulate transcription of the neighboring gene (and would include the 5’ UTR and 282 
upstream gene region as defined in the ncVarDB (20)). 283 

Identifying a set of disease-causing cis-regulatory region variants 284 

We collated a set of 576 unique variants located in a cis-regulatory region, as defined by their source 285 
dataset, and reported as Mendelian disease-causing (see Methods, Table S3). The variant list included 286 
mostly single nucleotide variants (SNVs) (536, 92%), but also other small insertion/deletion variants 287 
(44, 7.6%), including insertion, deletion and small multi-substitution variants. These 576 variants were 288 
located in the cis-regulatory region of 317 genes (or 1523 RefSeq transcripts), meaning some variants 289 
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were in proximity to, and therefore potentially functionally relevant for, multiple genes and/or 290 
transcripts. We then: (i) selected the clinically relevant gene, the gene reported to be causal for the 291 
clinically reported condition; (ii) identified the MANE transcript for that gene; and (iii) selected the 292 
variant annotations relevant to this MANE transcript. For 14 variants where a MANE transcript was not 293 
available, the relevant transcript was identified based on the original clinical report of the variant 294 
(identified via publication, or ClinVar submission). When considering the clinically relevant gene and 295 
transcript, the 576 variants annotated to 193 genes. The revised gene and transcript-based annotation 296 
identified a range of Ensembl consequences across the 576 reported disease cis-regulatory variants, 297 
including 231 5’ UTR variants, 310 upstream gene variants and 11 intron variants but also 15 splicing 298 
variants, one stop-gained variant, one start-lost, five frameshift and two missense variants (Figure S1). 299 
This observation raises the importance of considering multiple alternative mechanisms for the impact 300 
of potential “regulatory region” variants, and also highlights the need to ensure calibrations are 301 
performed on a verified set of solely cis-regulatory region variants.  302 

In cis-regulatory regions, population maximum allele frequency correlates with conservation 303 

Variant observation and frequency in large population datasets, such as gnomAD, is used to inform 304 
variant pathogenicity (46). Following the ACMG/AMP classification guidelines, absence from gnomAD is 305 
considered evidence for pathogenicity (code PM2), while presence in gnomAD at a frequency higher 306 
than expected for disease prevalence provides evidence against pathogenicity (codes BA1, BS1) (1) . 307 
Previous studies have used variants with high population allele frequency (e.g. a population frequency 308 
greater than 5%) as presumed benign controls for bioinformatic tool development and evaluation (20, 309 
34). We hypothesized that high variant frequency will correlate with lower conservation, and since 310 
conservation is a key component of many bioinformatic prediction tools, selecting very common 311 
variants as controls could potentially confound tool calibration.  312 

Analysis of gnomAD variants located within the cis-regulatory regions of interest (i.e. matched to those 313 
for the reported disease variants) showed an inverse correlation between maxAF and conservation 314 
score (Figure 3). Evidence for the negative correlation remained after grouping variants into seven 315 
maxAF bins, with lower conservation scores for variants observed when maxAF>0.0001 (Figure 3). 316 
Based on this information, variants with a gnomAD maxAF of >0.00002 to ≤ 0.0001 were considered 317 

suitable for inclusion as a control group, as this bin showed minimal conservation skewing but 318 
importantly remained within maxAF levels defined as evidence against pathogenicity from the ClinGen 319 
ENIGMA BRCA1 and BRCA2 Variant Curation Expert Panel VCEP (See CSpecs, 320 
https://clinicalgenome.org/affiliation/50087/; BS1 _Supporting may be applied for MAF >0.00002 to 321 
≤ 0.0001).  322 
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 323 

Figure 3. Correlation of population allele frequency with conservation scores.  324 
The maxAF for 314,817 single nucleotide variants across 193 cis-regulatory gene regions was selected 325 
from non-founder gnomAD populations and binned into maxAF groups. (A) Correlation scatterplot 326 
comparing maxAF to phyloP 100V. Spearman’s rank correlation coefficients were determined as rho-327 
value -0.05492315, S = 3.9247e+15, p-value < 2.2e-16. (B) Correlation scatterplot comparing maxAF to 328 
GERP scores. Spearman’s rank correlation coefficients were determined as rho value -0.01679457, S = 329 
4.0028e+15, p-value < 2.2e-16. MaxAF was then grouped into the following maxAF bins: [1] 0 -0.00001, 330 
[2] >0.00001-0.00002, [3] >0.00002-0.0001, [4] >0.0001-0.001, [5] >0.001-0.01, [6] >0.01-0.1, and 331 
[7] >0.1 – 1. Conservation measures were compared for variants in different maxAF bins, using (C) 332 
mean phyloP 100V scores (line indicates 25-75% IQR) and (D) mean GERP scores (line indicates 25-75% 333 
IQR)). The number of values per bin, and other summary characteristics, are indicated in Table S4 334 
(phyloP 100V) and Table S5 (GERP).   335 

 336 

Selection of reference variants for tool calibration 337 

To select reference datasets of cis-regulatory region variants for calibrating bioinformatic tools, the 338 
576 reported disease variants (Table S3) and 12,788 control variants (gnomAD population variants with 339 
maxAF >0.00002-0.0001) (Table S4) were combined and filtered to remove variants with potential to 340 
confound the analysis. A substantial proportion of variants were excluded after applying filters: 341 
1221/13,364 (or 9.14%) were located between the transcriptional start and transcriptional end of a 342 
MANE transcript (including introns between coding exons); 210/13,364 or 1.57%) were predicted to 343 
alter an amino acid (when considering any protein-coding transcripts); 52 variants, 26 each disease 344 
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and control, were predicted to alter splicing by max SpliceAI score ≥0.2,  of which 18 disease variants 345 
had published evidence for impact on splicing (Table S7); 26 disease variants had a maxAF >0.01 and 346 
would be considered too common to be disease-causing; 61 variants had a reported ClinVar 347 
classification in opposition with the reference dataset grouping (53/576 or 9.20% of disease variants 348 
and 8/12,788 or 0.06% of control variants); one GWAS-identified variant had experimental evidence 349 
supporting it as functionally causal for common disease (40); and a broad literature search identified 350 
another 19 variants where manual review identified ambiguity in disease causality (see Methods). 351 
Details relating to all variant exclusions are shown in Table S8 and Supplemental Methods.  352 

As summarized in Table 1, after application of these filters a combined cis-regulatory region reference 353 

dataset consisting of 445 reported disease variants (representing “pathogenic” reference variants) and 354 

9,505 control variants (representing “benign” reference variants) was compiled. This combined cis-355 

regulatory region reference dataset included 8,872 SNVs and 1,078 indels.  356 

Table 1. Filters applied to select reference datasets. 357 
 Reported disease-

causing variants 
gnomAD control 
variants 

STARTING set1 576 12,788 

Coding regions (between start and end of MANE 
transcript) 

47 1,174 

Coding (amino acid annotation, any transcript) 35 175 

Disease-associated identified by GWAS (40) 1 - 

Clinical association unclear in literature 19 - 

gnomAD maxAF >0.01 26 - 

Reported disease variants with ClinVar benign 
classification 

53 - 

Control variants with ClinVar pathogenic classification - 8 

Predicted spliceogenic variants (SpliceAI max delta ≥

0.2) 

26 26 

Additional control variants excluded based on location 
in regions associated with excluded reported disease 
variants 

- 2,650 

FINAL refined reference dataset 445 9,505 
1 Some variants met more than one criterion for exclusion. 358 

    359 

Calibration of bioinformatic tools for predicting pathogenicity of cis-regulatory region variants 360 

We selected six variant impact prediction score tools for calibration, based on their relatively high 361 
evaluation performance in Wang 2022, CADD, REMM, FATHMM-MKL, FATHMM-XF, Eigen and LINSIGHT 362 
(24, 31, 35, 47-50). The distribution of prediction scores differed between control and reported disease 363 
variants for all six bioinformatic tools analyzed (Figure 4).  To determine the clinical utility of the impact 364 
prediction scores for variant curation against ACMG/AMP recommendations for evidence weighting, 365 
we calibrated each of these six tools using the cis-regulatory region variant reference datasets. Variant 366 
scores were categorized into three groups based on an optimal score threshold as defined by the 367 
Youden’s index, an upper and lower threshold were then designated to capture an intermediate, 368 
uninformative group of approximately 10% of the variants (Table 2). Distribution of score ranges for 369 
the reference datasets and the determined thresholds for each bioinformatic prediction score are 370 
shown in Figure 4.   371 
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Considering the calibrated score categories of successfully scored variants only, all of the tools showed 372 
sensitivity above 74% and specificity above 67%. Accuracy was highest for FATHMM-MKL (87.28%, 373 
7,738/8,866) and FATHMM-XF (88.33 %, 7,309/8,275) compared to REMM (81.47%, 8,106/9,950) and 374 
CADD (81.22%, 8,081/9,949) (Table 2). However, there was a relatively large proportion of unscored 375 
variants for FATHMM-MKL (10.89%), FATHMM-XF (16.88%) and Eigen (19.84%) which do not score 376 
indels (Table 2), and an extremely high number of unscored variants for LINSIGHT (86.11%) which relies 377 
on dbSNP ID for annotation (and not genomic location/allele).  378 

To evaluate bioinformatic tool performance consistent with application in a clinical diagnostic setting, 379 
sensitivity, specificity and accuracy were adjusted against a baseline of all reference set variants 380 
(scored and unscored). This evaluation revealed highest clinical accuracy for CADD (81.22%, 381 
8,081/9,950 variants) and REMM (81.47%, 8,106/9,950) (Table 2). To determine the strength of 382 
evidence provided by the calibrated score categories, the likelihood ratio (LR) associated with each 383 
score category was then calculated (Table 2). LRs estimated for the optimal score category groups are 384 
shown graphically in Figure 4. The LRs indicate that all six tools can be used to provide at least 385 
supporting evidence towards and against pathogenicity for cis-regulatory region variants. Evidence 386 
towards pathogenicity reached moderate level (LR >4.3) for CADD, FATHMM-MKL, FATHMM-XF, Eigen 387 
and REMM, and supporting level (LR >2.08) for LINSIGHT (Table 2). Evidence against pathogenicity 388 
reached moderate level (LR <0.23) for CADD, Eigen, FATHMM-MKL and LINSIGHT, and supporting level 389 
(LR <0.48) for REMM and FATHMM-XF (Table 2).  390 

 391 

  392 
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Table 2. Bioinformatic tool performance and calibration using optimal thresholds. 393  
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# scored variants 9949 9950 8866 8275 7975 1399 

# control 9504 9505 8452 7929 7632 1154 

# disease 445 445 413 340 343 227 

# unscored 1 0 1084 1680 1974 8568 

AUC 0.88 0.87 0.91 0.90 0.9 0.82 

Youden’s Index 0.643 0.612 0.646 0.637 0.714 0.514 

Threshold 8.93 0.83 0.50 0.13 0.49 0.21 

Lower threshold 8.00 0.80 0.39 0.12 0.394 0.16 

Upper threshold 10.00 0.86 0.59 0.14 0.594 0.24 

Sensitivity (% scored variants) 80.72 74.94 78.84 74.40 91.08 86.19 

Specificity (% scored variants) 87.40 88.28 91.51 91.33 82.43 67.58 

Accuracy (% scored variants) 81.22 81.47 87.28 88.33 78.43 64.05 

Unscored (%) 0.01 0.00 10.89 16.88 19.84 86.11 

Uninformative (%) 6.74 7.09 3.56 2.06 4.23 1.14 

Undetermined (%)1 6.75 7.09 14.45 18.94 24.07 87.25 

LR negative2 0.22 0.29 0.23 0.28 0.11 0.21 

95% CI low (LR negative) 0.18 0.24 0.19 0.23 0.08 0.15 

95% CI high (LR negative) 0.27 0.34 0.28 0.34 0.15 0.29 

LR (uninformative)2 1.00 0.82 0.97 0.95 0.99 0.90 

95% CI low (uninformative) 0.70 0.56 0.59 0.47 0.63 0.55 

95% CI high (uninformative) 1.42 1.20 1.58 1.90 1.57 1.48 

LR positive2 6.41 6.49 9.30 8.60 5.19 2.68 

95% CI low (LR positive) 5.25 5.49 7.68 7.15 3.66 1.90 

95% CI high (LR positive) 7.81 7.67 11.25 10.34 7.35 3.78 

Clinical sensitivity (% all variants) 75.28 70.56 70.34 55.51 66.52 40.67 

Clinical specificity (% all variants) 81.49 81.98 78.12 74.30 62.69 7.52 

Clinical accuracy (% all variants) 81.22 81.47 77.77 73.46 62.86 9.01 
1Undetermined refers to variants that are both unscored and/or uninformative 394 
2 LR negative refers to LR estimate for bioinformatic score range predicting no impact; LR positive 395 
refers to LR estimate for bioinformatic score range predicting impact; LR uninformative refers to LR 396 
estimate for the bioinformatic score range for variants in the middle “uninformative” category.  397 
 398 
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 399 

Figure 4. Bioinformatic tool calibration for prediction of cis-regulatory region variant pathogenicity.  400 
The panels on left show the distribution of scores for disease variants compared to the control 401 
reference dataset variants, with designated optimal thresholds indicated by lines. The panels on the 402 
right show results from bioinformatic tool calibration, with LRs for each of the three optimal categories 403 
defined in Table 2, LRpos (LR positive) indicating the LR of the bioinformatic impact score category 404 
predicting the variant as disease-causing, LRneg (LR negative) indicating the LR of negatively predicting 405 
variant impact, or predicting as a control variant, and LRuninf (LR uninformative) indicates the LR for 406 
variants that score between categories. For all LRs, the 95% confidence interval (CI) is indicated by 407 
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horizontal lines. Colored vertical lines represent LR boundaries set for evidence strengths as per (27), 408 
with evidence strength categories indicated on the graphs. (A,B) CADD. (C,D) REMM. (E,F) FATHMM-409 
MKL. (G,H) FATHMM-XF. (I,J) Eigen. (K,L) LINSIGHT. 410 
 411 

 412 

Figure 5. Comparison of score prediction categories for the six tools assessed.  413 
Heatmap indicating score categories for (A) control reference dataset variants and (B) disease variants. 414 
Blue, score category of variant predicts no impact (against pathogenicity); Red, score category of 415 
variant predicts impact (towards pathogenicity); Yellow, score category of variant considered 416 
uninformative; Grey, unscored (no score returned). (C) Comparison of overall performance of each tool 417 
for the reported disease and control variants combined; correct (blue), referring to percentage of 418 
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variants with a score category that aligns with reference dataset group, incorrect (orange),  referring 419 
to percentage of variants with a score category in contradiction with reference dataset  group, and 420 
undetermined (grey), referring to percentage of variants that were unscored or had scores that did not 421 
reach sufficient strength to provide classification evidence (uninformative). (D) LRs obtained when 422 
considering both CADD and REMM optimal categories combined, the specific score limits of each 423 
combined category indicated. The LR of each combinatorial category are indicated (black dot) with the 424 
95% confidence interval (CI) indicated by horizontal lines. Colored vertical lines represent LR 425 
boundaries set for evidence strengths as per (27), with evidence strength categories indicated on the 426 
graph. 427 

 428 

Concordance of score categories between tools was assessed to consider potential value in combining 429 
outputs of different tools for improved performance (Figure 5). This highlighted the absence of scores 430 
returned by LINSIGHT relative to the other tools, for control variants especially (Figure 5A), but also 431 
for reported disease variants (Figure 5B). CADD and REMM showed the highest concordance, while 432 
FATHMM-MKL, FATHMM-XF and Eigen showed a generally similar pattern to CADD and REMM for 433 
scored variants. Since CADD and REMM also showed the highest performance when considering 434 
accuracy for the entire dataset (representing clinical diagnostic application), we investigated if 435 
combining CADD and REMM score categories would improve prediction over use of either tool alone. 436 
As expected, combining categories increased the proportion of variants with an undetermined call, 437 
due to variants with a conflict in category assignment by the two tools (Figure 5C). As shown in Figure 438 
5D, the LR towards pathogenicity for a variant with high CADD and high REMM score category was 439 
increased (LR 10.73) compared to that for either tool alone (CADD LR 6.41, REMM LR 6.49), but 440 
remained within the moderate evidence strength range. Similarly, the LR against pathogenicity was 441 
shifted more clearly into moderate evidence for a variant with low CADD and low REMM category 442 
(CADD/REMM LR 0.20 vs CADD LR 0.22 and REMM LR 0.29, which each alone had met only supporting 443 
level of evidence).  444 

Using genomic features to improve disease variant impact prediction 445 

We next assessed if specific genomic features of core-promoter regions differed between reference 446 
dataset disease or control variants, to determine if these features might be useful to improve 447 
prediction accuracy (Figure 6). Reported disease variants showed increased GC percentage, CpG 448 
percentage and TFB overlap, and higher max DNAse hypersensitivity scores. Further, a considerably 449 
higher proportion of reported disease variants (75.7%) overlapped with an Ensembl regulatory feature 450 
(combining annotated regulatory elements from the Ensembl Regulatory Build (51)) compared to 451 
control variants (43.9%). The enrichment of promoter-related features in reported disease versus 452 
control variants highlighted features underlying the bioinformatic tool prediction performance, and 453 
showed the value of considering promoter region overlap for pathogenicity prediction.  454 
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  455 

Figure 6. Promoter-related components of CADD score are enriched in disease versus control variants. 456 
Comparison of promoter-related CADD score component annotations for control variants (n=9,505 457 
scored) and reported disease variants (n=445 scored). A) GC percent averages. B) CpG percent averages 458 
(Percent GC in a window of +/- 75bp; default: 0.42). C) REmapOverlapTF average per CADD bin (Remap 459 
number of different transcription factors binding; default: - 0.5). D) Encode DNAse Hypersensitivity 460 
max score. A) to D) Plots show median (box center line), 25th and 75th percentiles (upper and lower box 461 
boundaries respectively), the inter-quartile range (whisker line) with outlier points plotted individually 462 
(dots). E) The proportion of the variants in the test group overlapping with an Ensembl Regulatory 463 
Feature (all regulatory features combined) for control variants compared to reported disease variants. 464 
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Annotation of variant location within a promoter region improves pathogenicity prediction. 465 

As promoter region features were enriched in disease variants compared to controls (see Figure 6), we 466 
compared the proportion of control to disease variants located within a promoter region, as defined 467 
using the EPDnew promoter prediction database annotation (41). A significantly greater proportion of 468 
reported disease variants (34.8%) were located within EPDnew-defined promoter regions compared 469 
to control reference dataset variants (1.8%) (Figure 7). Using EPDnew-region as the definition of 470 
promoter location, we calculated that variant location within a promoter region provides moderate 471 
evidence towards pathogenicity (LR 19.36, 95% CI 18.08-20.72); location outside of a promoter region 472 
did not reach LR thresholds required to provide evidence against pathogenicity (LR 0.66, 95% CI 0.62-473 
0.71).  474 

Based on these findings, we reassessed the evidence strength based on CADD and REMM for the 475 
subset of variants outside of the promoter region by recalculating the likelihood ratio for variants 476 
outside of EPDnew regions (Figure 7B, 7C). Reassessment showed that the impact prediction tool score 477 
thresholds calibrated based on the complete reference dataset remain appropriate for providing 478 
evidence towards and against pathogenicity for variants outside of the promoter region. For variants 479 
outside of an EPDnew promoter region, LRs for the CADD categories were: ≤8 LR 0.27, 8-10 LR 0.93 480 
(including 7% control, 4% disease variants), ≥10 LR 6.53 (Figure 7C). LRs for the REMM categories were: 481 
≤0.8 LR 0.34, 0.8-0.86 LR 0.73 (including 4% control, 4% disease variants), ≥0.86 LR 6.60 (Figure 7D). 482 
Considering CADD and REMM together for variants outside of the promoter region (Figure 7E), overall 483 
findings were similar to those for combined CADD and REMM without considering promoter region 484 
location (Figure 5). The LRs were further increased if both scores were in the high category or low 485 
category compared to using a single scores information, but there was no change in the evidence 486 
strength applicable (Table S11). The proportion of incorrect calls decreased to 7.37%, but at the 487 
expense of proportion of correct predictions (Figure 7F). Additional details are in Table S12.  488 

Overall these analyses inform a process for variant annotation and bioinformatic categorization, where 489 
combining information from EPDnew and impact prediction scores into increasingly defined categories 490 
can be applied in cis-regulatory region variant classification. By first determining location in an EPDnew 491 
promoter region, followed by annotation of CADD or REMM score for variants outside of the promoter 492 
region, the process can provide evidence reaching at least supporting strength for classification of 493 
variants located within a cis-regulatory region. This combined two-step process increased the number 494 
of variants with a bioinformatic score category applicable, without compromising accuracy. While 495 
decreased sensitivity and evidence strengths based on LR estimates do not justify combined use of 496 
CADD and REMM, this might nevertheless be considered a more cautious approach in the clinical 497 
setting due to improved specificity. 498 
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 Figure 7. Location within a core-promoter region provides evidence towards variant pathogenicity 500 
A) Proportion of variants located within EPDnew-defined promoter regions. Significantly more 501 
reported disease variants (n= 155/445 34.83%) than control variants (171/9,505, 1.78%) were located 502 
in a promoter region (χ-squared = 1,550.6, df = 1, p-value <2.2e-16). B) LRs estimated for variants 503 
overlapping EPDnew promoter regions (Epos), compared to variants outside of EPDnew region (Eneg). 504 
C) LRs estimated from CADD score categories outside of EPDnew regions (EPDnew negative regions). 505 
D) LRs estimated from REMM score categories outside of EPDnew regions (EPDnew negative regions). 506 
E) LR estimates of combined CADD and REMM score categories outside of EPDnew regions. (C-E) are 507 
calculated from EPDnew location-negative variants. F) Breakdown of process accuracy for each score 508 
combination showing proportion of correctly called control and disease variants combined (blue), 509 
incorrectly called control and disease variants combined (orange), and variants with undetermined 510 
bioinformatic category, reflecting both variants unscored and for which evidence criteria thresholds 511 
were not met (grey). 512 

 513 

Discussion 514 

This multi-step study was undertaken to provide an evidence base for selecting and applying 515 
bioinformatic approaches for use in classification of 5’ cis-regulatory region variants, in the context of 516 
Mendelian disease.  517 

Analysis of existing public data highlighted the need to establish tool thresholds according to variant 518 
location and type (inferring likely molecular consequence). Further, our observation that population 519 
control frequency is negatively correlated with conservation scores informed selection of control 520 
reference dataset variants with substantially lower allele frequency. This provided a reference dataset 521 
that was not inherently enriched for lower conservation and thereby lower overall tool scores. An 522 
additional advantage to this approach to control reference dataset collection is that the bioinformatic 523 
calibration process better reflects application in the clinical variant curation setting, where variants are 524 
prioritized for more detailed curation generally after exclusion of common variants that meet 525 
ACMG/AMP population frequency codes. We also demonstrate the need for careful compilation of 526 
reported disease and control variants using various filtering strategies, particularly to ensure that 527 
reference dataset variants are exclusively located in 5’ regulatory regions.  528 

Our analyses showed that all six impact prediction tools assessed, when appropriately calibrated using 529 
refined reference sets, could potentially be used to inform regulatory region variant classification 530 
based on the thresholds optimized for this variant type. However, it is critical to consider the 531 
proportion of variants that will scored by a given tool, to measure accuracy in the clinical context. The 532 
extremely high proportion of unscored variants for LINSIGHT (86.11%) would render this tool unusable 533 
in the diagnostic laboratory setting. Although FATHMM-MKL and FATHMM-XF showed the highest 534 
accuracy based on correct predictions for scored variants, they were unable to return scores for indels, 535 
which comprised 11.29% of the full variant reference dataset. When considering all reference dataset 536 
variants, REMM and CADD achieved similar clinical accuracy (CADD 81.22%, REMM 81.47%) and 537 
provided similar strengths of evidence towards and against pathogenicity. Combining CADD and REMM 538 
increased the strength of evidence both towards and against pathogenicity and resulted in fewer 539 
incorrectly assigned evidence categories, but compromised accuracy (fewer variants with correctly 540 
applied evidence). Combining scores therefore represents a cautious approach focused on minimizing 541 
false prediction of impact.  542 

To facilitate the application of bioinformatic annotations for interpretation of 5’ cis-regulatory region 543 
variants, we summarize in Figure 8 a staged process by which to consider the potential impact of such 544 
variants. The application of thresholds as derived from our reference datasets is considered 545 
appropriate for the interpretation of non-coding variants within the 5kb upstream and 5kb 546 
untranslated/UTR of the clinically relevant transcript. After confirmation of variant location as 547 
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exclusively non-coding, and without potential splicing impact, variants would be annotated for location 548 
within a promoter region using EPDnew, followed by scoring using CADD and/or REMM for variants 549 
outside an EPDnew-defined promoter region. These annotations combined may be used individually 550 
or combined to determine whether a computational code (PP3, BP4) may be applied for the variant. 551 
Although LRs derived from this study indicate that specific categories may be used to provide moderate 552 
evidence towards or against pathogenicity, we suggest a conservative approach would be to apply this 553 
bioinformatic evidence at supporting level in the first instance. The justification for such a conservative 554 
approach is that the variants identified as disease-causing to date may be biased towards those that 555 
were prioritized for functional and clinical follow-up precisely because they lay in recognizable 556 
promoter elements. Replication studies, using independent reference dataset variants, would be 557 
helpful to assess if such caution is justified.  558 

To reiterate the need to calibrate thresholds considering variant location and type, we refer to a recent 559 
study calibrating tools for missense variant impact prediction, which reported that CADD scores ≥560 

25.3 provide supporting evidence towards pathogenicity (PP3) and CADD scores ≤22.7 provide 561 

supporting evidence against pathogenicity (BP4) (28). Our findings show clearly that these thresholds 562 
are inappropriate for regulatory region variants; use of CADD <22.7 would incorrectly assign a benign 563 
prediction code for the majority of reported disease variants located in a genuine cis-regulatory region 564 
(93.5% in our final disease reference dataset). Calibration using our compiled cis-regulatory region 565 
reference datasets determined that CADD score ≥10 provides moderate evidence towards 566 

pathogenicity (LR 6.41), and score ≤8 or provides moderate evidence against pathogenicity (LR 0.22). 567 

Only 6.88% of variants would be considered “no code applicable/undetermined”.  Additionally, a tiered 568 
approach combining EPDnew promoter region location with CADD and/or REMM scores enabled 569 
increased evidence strength (LR>10 rather than >6) for a proportion of variants, and fewer variants 570 
with incorrectly designated evidence (7% all predictions combined, rather than >9% via all other 571 
approaches). However, this approach comes with a compromise in terms of fewer variants assigned a 572 
bioinformatic category (84% with all predictions combined rather than >90% with a single tool). 573 

We stress that our study design has not provided tool calibration for regulatory region variants that 574 
also overlap in location with a coding region, for which bioinformatic score thresholds are likely to be 575 
different. Recognizing this limitation, our calibration study using carefully refined reference datasets 576 
represents an important advance for use of bioinformatic prediction evidence in the clinical 577 
classification of variants located exclusively within 5’ cis-regulatory regions of Mendelian disease genes.  578 

 579 

 580 

  581 
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 582 

 583 

Figure 8. Recommended process for assigning computational evidence of predicted impact for cis-584 
regulatory region variant classification.  585 
The presented calibration metrics are specific for use in cis-regulatory region variants. We suggest that 586 
before applying the metrics the following be verified: the variant is definitely within the cis-regulatory 587 
region (5kb 5’ to the transcription start site to the translation start site of the clinically relevant 588 
transcript); the variant is not also within a protein-coding region since thresholds defined here have 589 
not been validated for variants that overlap with any coding region; the variant is not predicted to 590 
impact splicing, a reasonably well predicted mechanism of variant impact likely to take molecular 591 
precedence over variant impact on gene regulation. When the variant is verified as a predicted cis-592 
regulatory region variant, EPDnew overlap (location in a promoter region), CADD and REMM scores 593 
can be used to determine if the variant has predicted impact, no predicted impact, or if the impact 594 
remains undetermined (no evidence provided). Based on the categories as defined above, 595 
computational evidence can then be used to assign at least supporting evidence for computational 596 
ACMG/AMP code PP3 (predicted impact/towards pathogenicity) or BP4 (predicted no impact/against 597 
pathogenicity). 598 
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