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ABSTRACT 

Objective: To enhance the accuracy and reliability of diverse medical question-answering (QA) 

tasks and investigate efficient approaches deploying the Large Language Models (LLM) 

technologies,  We developed a novel ensemble learning pipeline by utilizing state-of-the-art 

LLMs, focusing on improving performance on diverse medical QA datasets. 

Materials and Methods: Our study employs three medical QA datasets: PubMedQA, MedQA-

USMLE, and MedMCQA, each presenting unique challenges in biomedical question-answering. 

The proposed LLM-Synergy framework, focusing exclusively on zero-shot cases using LLMs, 

incorporates two primary ensemble methods. The first is a Boosting-based weighted majority vote 

ensemble, where decision-making is expedited and refined by assigning variable weights to 

different LLMs through a boosting algorithm. The second method is Cluster-based Dynamic 

Model Selection, which dynamically selects the most suitable LLM votes for each query, based on 

the characteristics of question contexts, using a clustering approach. 

Results: The Majority Weighted Vote and Dynamic Model Selection methods demonstrate 

superior performance compared to individual LLMs across three medical QA datasets. 

Specifically, the accuracies are 35.84%, 96.21%, and 37.26% for MedMCQA, PubMedQA, and 

MedQA-USMLE, respectively, with the Majority Weighted Vote. Correspondingly, the Dynamic 

Model Selection yields slightly higher accuracies of 38.01%, 96.36%, and 38.13%. 

Conclusion: The LLM-Synergy framework with two ensemble methods, represents a significant 

advancement in leveraging LLMs for medical QA tasks and provides an innovative way of 

efficiently utilizing the development with LLM Technologies, customing for both existing and 

potentially future challenge tasks in biomedical and health informatics research. 
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INTRODUCTION 

Question Answering (QA) tasks in the medical domain involve a complex process of accurately 

interpreting and responding to healthcare-related queries[1]. QA tasks typically encompass two 

formats: open-ended and structured. In open-ended QA, respondents provide a complete sentence 

incorporating essential information in response to a question. In structured QA, the question is 

presented with several options, and the respondent selects the correct option or options by its 

corresponding identifier. Medical QA systems are designed to provide reliable and precise answers 

to questions ranging from disease symptoms and treatment options to medical research findings. 

These systems leverage advanced technologies like natural language processing (NLP) and 

machine learning approaches to understand and process medical terminology and concepts, 

making them invaluable tools for healthcare professionals and patients seeking medical 

information. The effectiveness of these systems is crucial, as they directly impact healthcare 

decision-making and patient care[2-5].  

Previously, transformer models like BERT (Bidirectional Encoder Representations from 

Transformers) played a pivotal role in QA. For instance, He, Yun, et al.[6] infused disease 

knowledge into a basket of BERT-based models for health question answering, demonstrating the 

viability of disease knowledge infusion in NLP models. And Alzubi, Jafar A., et al.[7] developed 

another BERT-based model named CoBERT specifically designed for QA related COVID-19. The 

expansion of medical corpora and textual resources has necessitated leveraging these large datasets 

more effectively. This need has been met by the emergence of Large Language Models (LLMs) as 

a transformative approach to medical QA tasks. Pretrained on extensive and diverse datasets, 

LLMs like GPT-4 possess a deep understanding of language nuances and medical terminology, 

enabling them to generate highly accurate and relevant responses to medical queries[8]. They 

represent a significant milestone while dealing with natural language processing (NLP) tasks[9], 

such as text generation[10], question answering (QA)[11], Named Entity Recognition (NER)[12], 
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etc. Moreover, LLMs include large-sized models like GPT-4 and Llama-2[13], as well as some 

relatively small yet efficient LLMs like Vicuna[14], and Stanford Alapaca. These LLMs, 

characterized by their vast size, have demonstrated remarkable capabilities in understanding and 

generating human language across a diverse array of domains[15]. 

Currently, the development and application of LLMs face distinct challenges based on their 

accessibility and capabilities[16]. On the one hand, closed-source models, such as GPT-3.5, GPT-

4, and PaLM2[17], often maintained by large corporations, demonstrate advanced capabilities yet 

lack public accessibility. This limitation restricts their use in broader research and application 

contexts, including the situation of medical QA, especially when it comes to customized 

enhancements or applying potentially powerful techniques like fine-tuning[18]. On the other hand, 

open-source LLMs, like Open Llama2[19], Vicuna[14], and Alpaca[20], grant accessibility and 

transparency, as well as fine-tuning methods that are capable of making significant 

improvements[18]. A notable LLM instance in the medical QA context is PMC-LLama[20], 

exemplifying how fine-tuning an open-source LLM can lead to considerable improvements in its 

application, such as medical QA. However, this raises another significant challenge, which is the 

high cost associated with training and fine-tuning these models. The computational resources 

required for training LLMs with billions of parameters are substantial, making it impractical for 

individual researchers or small organizations to train these models from scratch[21]. In the 

healthcare and biomedical domain, the challenge is further compounded by the need for domain-

specific knowledge[22-24]. Furthermore, selecting a suitable LLM for a specific biomedical 

application is not straightforward[25]. The choice of a model often depends on various factors, 

including the nature of the medical queries, the required level of accuracy, and the availability of 

domain-specific training data[10, 23, 26-27]. 

Ensemble method is a meta-approach stemming from machine learning techniques. In machine 

learning, ensemble involves combining multiple models to improve the overall performance, 
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robustness, and reliability of predictions[28-29]. Techniques including voting[30-31], 

boosting[33], and bagging (bootstrap aggregating) [28-29, 32-33] are common ensembling 

approaches with better predictive performance by combining the predictions with multiple models 

or multiple past predictions. In the context of LLMs, model ensembles can potentially harness the 

diverse strengths of individual models to achieve superior results[31, 34-35]. These methods work 

effectively because they mitigate the weaknesses of single-model approaches. Each LLM, with its 

unique training data and architecture, may have specific strengths and biases[36-38]. Ensembling 

various models, each with distinct origins and structures, can equilibrate their inherent biases, 

mitigate overfitting, and enhance the generalization capacity for new data[39]. Importantly, this 

ensembling approach does not necessitate the models to be exclusively open-source or closed-

source, nor does it demand extensive computational resources for its execution. Moreover, 

ensembling enables leveraging both domain-specific and general-purpose models. For instance, a 

general-purpose LLM might excel in understanding the context and semantics of a question, while 

a domain-specific LLM might provide more accurate technical information[20, 27, 40]. 

Combining these models can yield comprehensive and contextually relevant responses, crucial in 

medical scenarios.  

Certain challenges lie in how to effectively ensemble LLMs, especially within the medical domain. 

This integration must consider factors such as the compatibility of different models, the method of 

aggregating their outputs and maintaining the interpretability of the responses. These 

considerations are crucial for ensuring that the ensemble not only performs well but also aligns 

with the stringent requirements of medical applications. There have been only a few studies diving 

into Ensembling LLMs to achieve a better prediction, like LLM-Blender[34], which implements 

PairRanker and Genfuser as an ensemble framework to generate consistently better responses for 

a given input. Similarly, the majority voting method proposed by Pitis, Silviu et al.[35] 

demonstrates potential. However, these studies primarily focus on open-ended tasks and do not 

delve into the specifics of medical QA, nor do they include domain-specific LLMs like 
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PMCLlama2[21] or Medalpaca[28]. Furthermore, their applicability to structured QA with single-

choice or multiple-choice questions in the medical domain remains unexplored, presenting unique 

challenges related to specificity, privacy, and data scarcity in medical contexts. This gap indicates 

the need for further research on the effective ensembling of LLMs tailored to the specific 

requirements of medical QA. 

To address these limitations, we introduce LLM-Synergy, a novel ensembling framework tailored 

for medical QA, with two well-designed meta-learning ensembling methods, providing two 

innovative approaches combining the strengths of various LLMs, named Boosting-based 

Weighted Majority Vote Ensemble[35, 41-42] and Cluster-based Dynamic Model selection[43]. 

To validate the efficacy of LLM-Synergy and its ensemble methods, we conducted a case study 

using three medical QA datasets: MedMCQA[44], PubMedQA[45], and MedQA-USMLE[46].  

Our contributions to this study include the following: 

1) The development of innovative LLM ensemble methods, specifically the Boosting-based 

Weighted Majority Vote Ensemble and Cluster-based Dynamic Model Selection, offers 

new approaches, with zero-shot cases, in the medical QA field. 

2) We implemented the ensembling methods for LLM methods and improved the 

performance by 5.98%, 1.09%, and 0.87% compared to the best-performing LLM on three 

medical QA datasets,  the effectiveness of our ensemble methods. In each case, a tailored 

ensemble framework was created and adapted to the format of the QA dataset (single-

choice or multiple-choice formats). 

3) We conducted an error analysis to provide insights and directions for potential future 

enhancements in the field of medical QA, laying the groundwork for further improvements 

in this domain.  
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METHODS 

Overview 

The first step of our methods is investigating results with LLM-Synergy involves benchmarking 

leading LLMs including GPT-3.5-turbo, GPT-4, Llama2-13B, Vicuna-13B, Medalpaca-13B, 

PMC-Llama-13B, and a random guessing result as a reference. Within the benchmark, we conduct 

a sampled test, randomly drawing 200 QA pairs from the three medical QA datasets to assess the 

current capabilities of these LLMs in a medical context as a starting point. This benchmarking 

serves as a foundational analysis to understand the individual strengths and limitations of each 

LLM in handling medical QA tasks. Illustrated by Figure 1 overviewing of the whole pipeline of 

LLM-Synergy, following the benchmark assessment, the next phase focuses on the training 

process of our two proposed ensembling methods within LLM-Synergy: the Boosting-based 

Weighted Majority Vote Ensemble and the Cluster-based Dynamic Model Selection. The two 

approaches are designed to combine the unique capabilities of the selected LLMs, aiming to 

enhance the overall performance of medical QA systems. Moreover, the second method could be 

re-graded as an extensive version of the first one. By implementing these methods, we seek to 

address the shortcomings of relying on single models and reduce the need for extensive individual 

model training, thereby creating a more robust and efficient solution for medical QA. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.23300380doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300380
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Overview of our LLM-Synergy Framework 

Dataset 

We used three medical QA datasets for our model training and test: MedMCQA[44], 

PubMedQA[45], and MedQA-USMLE[46]. 

MedMCQA, released in March 2022 by Pal, Umapathi et al.[41], is a comprehensive multiple-

choice question dataset derived from mock and past examinations of AIIMS and NEET-PG (Pal, 

Umapthi, et al. 2022), two prominent Indian medical entrance exams. It encompasses a training 

set with 182,822 questions and a test set comprising 4,183 questions, covering over 2,400 topics. 

Each question in this dataset presents four answer choices, labeled from A to D. 

PubMedQA, introduced in September 2019 by Jin, Dhingra et al.[42], is a QA dataset curated from 

PubMed abstracts. It includes 1,000 questions reviewed by experts and 272,500 algorithmically 

generated QA pairs. The dataset's primary task is to classify research questions into yes, no, or 

maybe answers, akin to multiple-choice questions. It is divided into three segments: PQA-L with 

1k manually labeled pairs, PQA-U with 61.2k unlabeled pairs, and PQA-A featuring 211.3k 

artificially generated pairs. Here, we only implement a QA process without reasoning, which does 
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not require a corresponding explanation of how the final answer is generated, which may lead to a 

relatively high accuracy score. 

MedQA-USMLE, launched in September 2020 by Jin, Pan et al.[43], is an innovative dataset of 

multiple-choice questions tailored to the United States Medical Licensing Exams. This dataset 

encompasses questions in three languages: English, Simplified Chinese, and Traditional Chinese, 

with a total of 12,724, 34,251, and 14,123 questions in each respective language. Each question 

offers five choices, ranging from option A to E, sourced from professional medical board 

examinations. Here, we only experimented with the English QA parts. 

The detailed LLM prompt can be found in the Appendix. 

LLM Benchmark on the three medical QA datasets 

Ahead of implementing our ensembling framework, as a benchmark study, we evaluate the 

performance of various LLMs on 200 questions from each of the three QA datasets, respectively: 

PubMedQA, MedQA-USMLE, and MedMCQA, adhering to their specific answer formats. We 

evaluate our model's performance against several robust baselines relying on the Language 

Model (LLM). Table 1 summarizes the six LLMs and one random guess predictor, along with 

the model characteristics including how many parameters within each LLM and a comprehensive 

description.  

Table 1: The summarization of 7 LLMs running QA models 
QA Predictors Model parameters Description 

GPT-4 1.76 trillion  
GPT-4 is a substantial multimodal model designed 
to respond to questions by providing instructions 

fed to the GPT-4. 

GPT-3.5-turbo 20 billion Same designed as GPT-4, however, GPT-3.5-turbo  
has fewer parameters than GPT-4. 
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Llama2-13B 20 billion 

Llama 2-13B is part of the Llama 2 series, 
representing a pretrained generative model. Tuned 
versions of Llama 2 utilize supervised fine-tuning 

(SFT) and reinforcement learning with human 
feedback (RLHF) to help generate the answers to 

given questions. 

Vicuna-13B 13 billion 
Vicuna-13, similar in size to Llama2-13b, Vicuna is 

noted for its robustness and adaptability across 
different types of language processing tasks. 

Medalpaca-13B 13 billion 

Medalpaca-13B is a substantial language model 
finely tuned for tasks in the medical domain. It 

stems from Llama (Large Language Model Meta 
AI) and boasts a significant parameter count of 13 

billion. 

MedLLama-13B 13 billion 

MedLLama-13B is initialized from LLaMA-13B 
and undergoes additional pretraining using a 

constructed medical corpus derived from 4.8M 
PubmedCentral papers and Medical Books. 

PMC-LLama-
13B 13 billion 

PMC-LLama-13B is the further tuned version of 
MedLLama-13B, with the pretrain and instruction-

tuning methods. 

Random Guess 1 

A random guess predictor simply generates a 
random answer by the equal probability of each 

option, serving as a reference to compare the LLM-
cased predictor.  

 

Figure 2 visualizes the performance of the selected predictor answering the three medical QA 

datasets. The benchmark graph illustrates that each predictor exhibits performance levels that 

exceed random guessing across various medical QA tasks, signaling the inherent capability of the 

LLMs to understand and process medical queries. Notably, different LLMs demonstrate particular 

strengths depending on the dataset; for instance, GPT-4 shows a marked proficiency in the 

MedMCQA tasks, while PMC-Llama-13B stands out in the PubMedQA context. These variations 

in model performance across tasks provide a solid foundation for the potential enhancement of 
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accuracy through our subsequent ensemble work, suggesting that strategic combinations of these 

models could capitalize on their respective strengths and mitigate their individual weaknesses. 

 

Figure 2. QA shows the accuracy of how each LLM performs on the three medical QA datasets 

Part one: Majority Weighted Vote training based on the boosting method 

 

Figure 3. Training Process of Boosting-based Weighted Majority Vote Ensemble 
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Figure 3 shows the training process of Boosting-based Weighted Majority Vote Ensemble. 

Step 1: Dataset Preparation 

For a given medical QA dataset, we split the dataset into a training set and a validation set, with a 

proportion of 80% and 20%. Each QA-pair instance in the dataset consists of a question and single-

choice options. 

Step 2: Weight Initialization and Initial Model Training 

We assigned initial weights to all LLMs with weights (𝑤!, 𝑤", . . . ) and initialized the starting status 

of ensembled LLMs with these weights. There may be different strategies for initialization, and 

we chose equally weighted initialization, which is the most common way of initialization[47]. 

Step 3: Prediction and Weight Adjustment 

We chose a baseline LLM, denote as 𝐿𝐿𝑀!	here, and focus on its wrong prediction: Use  𝐿𝐿𝑀! to 

predict answers for the training set and adjust the weights based on the prediction of instance: If 

the prediction, 𝑦!#*  for instance 𝑖, is incorrect, minus the weight of its corresponding LLM, 𝐿𝐿𝑀!, 

by an adjustment parameter 𝛼, i.e. 𝑤$ ← 𝑤$ + 𝛼, where 𝛼 is a factor that increases the weight, 

indicating that the instance needs more attention in the next round of training. 

Step 4: Iterative Training with Additional Models 

For each subsequent LLM (𝐿𝐿𝑀", 𝐿𝐿𝑀%, . ..), repeat the prediction process. If a model correctly 

predicts the answer, we maintain the current weights. If the prediction 𝑦&#*   is incorrect, the weights 

were adjusted again. 

Step 5: Finalize Weights of the Model Ensemble 

After training and weight adjustments across all LLMs are completed, the final ensemble model is 

formed, which combines the individual LLMs with the final set of adjusted weights. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.23300380doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300380
http://creativecommons.org/licenses/by-nc-nd/4.0/


Part two: Dynamic Model Selection 

 

Figure 4. Training Process of Cluster-based Dynamic Model Selection Ensemble 

Figure 4 shows the training process of our second approach: Cluster-based Dynamic Model 

Selection, which serves as an extensive approach to the first one. 

Step 1: Dataset Preparation 

Same as Part 1, for a given medical Question-Answering (QA) dataset, split it into a training set 

and a validation set with a ratio of 80:20. Each QA-pair instance in the dataset should consist of a 

question paired with single-choice options. 

Step 2: Question Context Tokenization 

Extract the context of each question from the QA pairs, and use the tokenizer, from Clinical-BERT 

in our case,  to convert each question context into a series of tokens. 

Step 3: Encoding and Pooling 

Employ an encoder (same model as step 2, Clinical-BERT in our case) along with a mean-pooling 

method to encode each question's tokens into a 768x1 embedding vector. Through this encoder 

part, we obtained a constructed embedding matrix for the entire set of questions, where each row 

represents the embedded vector of a question. 
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Step 4: Clustering 

Apply a clustering model, KMeans in our experiment specifically, to the embedding matrix. This 

step assigns each question a cluster label, effectively reducing the dimensionality from 768 of an 

individual question vector to a single cluster group label being 1,2,3, … K. It serves as an 

unsupervised learning step that categorizes questions into different clusters based on their 

embeddings achieved after Step 3. 

Step 5: Training Within Clusters 

For each cluster group identified in the previous step, implement the Majority Weighted Vote 

trainer in Part 1, then determine the best combination of weights for the ensemble of LLMs within 

each group. These weights are adjusted to maximize the prediction accuracy of the ensemble 

within the specific context of each cluster. 

Step 6: Validation and Tuning 

Iteratively apply steps 2 to 5 to the validation set as well, and adjust and tune the hyperparameters 

of the clustering algorithm(K in KMeans in our case) to achieve the best overall accuracy on the 

validation set. This step is crucial for optimizing the model's performance and ensuring that the 

clustering effectively captures the nuances of different question contexts. 

Evaluation 

In the evaluation phase of our study, same as others[21, 36, 44, 46], accuracy was employed as the 

primary metric for assessment, given its congruence with the Micro F1 score in our specific 

experimental context of single-choice or multiple-choice QA tasks. Given the nature of multiple-

choice QA datasets, metrics such as Recall and Precision are deemed inappropriate as they are 

sensitive to changes in the option numbering. For instance, adjusting the order of option labels 

may result in altering these metric values, when the number of options exceeds two. Based on 
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these considerations, accuracy emerges as a more suitable evaluation metric in our case, providing 

a robust measure of overall correctness without being affected by variations in option numbering, 

which ensures a consistent and meaningful assessment of model performance in the specific 

context of our study. 

The test set is distinguished from the training set used for model development and the validation 

set for hyperparameter optimization that we used within the ensemble training process. This 

distinct separation ensures an unbiased evaluation of the model's true predictive capabilities. The 

test sets are derived from the subsets of the MedMCQA, PubMedQA, and MedQA-USMLE 

datasets, respectively. The MedMCQA test dataset consists of 4,183 QA pairs. The PubMedQA 

test dataset is even more extensive with 11,269 QA pairs. Whereas, the MedQA-USMLE dataset 

contains 1,272 QA pairs. 

 

RESULTS 

In the presented study, the performance of various Large Language Models (LLMs) was evaluated 

against ensemble methods across three distinct medical QA datasets, MedMCQA, PubmedQA, 

and MedQA-USMLE. The performance metric, assumed to be an accuracy score, highlights the 

differential capabilities of each LLM and our two established predictors of ensemble methods. The 

detailed result can be seen in Table 2. 

Table 2. Test set performance of each individual LLM and our ensemble approach 

LLMs MedMCQA PubmedQA MedQA-USMLE 

Llama2-13B 32.03 93.09 24.61 

Medllama-13B 31.03 86.11 23.58 

Medalpaca-13B 27.97 95.27 37.26 
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Vicuna-13B 26.13 93.15 24.14 

Majority Weighted Vote 35.84 96.21 37.26 

Dynamic Model Selection  38.01 96.36 38.13 

 

For individual models, Llama2-13B demonstrated substantial proficiency in the PubmedQA 

dataset with an accuracy of 93.09%, indicating a strong alignment with the dataset's characteristics. 

Conversely, its performance on the MedQA-USMLE dataset was considerably lower at 24.61%, 

suggesting a potential misalignment with this dataset's attributes or a limitation in handling its 

complexity. Medllama-13B showed a similar trend, albeit with marginally lower accuracy figures 

across the board, peaking at 86.11% for the PubmedQA dataset. 

Medalpaca-13B yielded a divergent performance profile, exhibiting a relatively lower accuracy of 

27.97% on PubmedQA, while achieving the highest accuracy among individual LLMs on the 

MedQA-USMLE dataset at 37.26%. This suggests that Medalpaca-13B may possess particular 

strengths in processing the content typified within the MedQA-USMLE exam questions. Vicuna-

13B, on the other hand, had the lowest accuracy scores for all datasets, which could indicate a 

general difficulty with the medical QA task as presented in these datasets. 

The ensemble approaches, notably the Majority Weighted Vote ensemble and the Dynamic 

Selection ensemble, were developed to leverage the collective strengths of the individual LLMs. 

The Majority Weighted Vote Ensemble surpassed the individual model performances on the 

MedMCQA and MedQA-USMLE datasets and achieved a notable accuracy of 96.21% on 

PubmedQA. This enhancement suggests that a static weighted combination of model outputs can 

capitalize on the diverse expertise of each LLM to improve overall performance. Whereas, the 

Dynamic Selection Ensemble, which introduces a context-aware model selection strategy, further 
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improved upon the Majority Weighted Vote ensemble's performance, achieving the highest 

accuracy across all datasets: 38.01% on MedMCQA, 96.36% on PubmedQA, and 38.13% on 

MedQA-USMLE. The specific range of improvement varies from the variation of each LLM.  

 

DISCUSSION 

The results underscore the variability in model performance across different medical QA contexts 

and the potential of ensemble methods to enhance prediction accuracy. The Dynamic Selection 

Ensemble, in particular, illustrates the advantages of a flexible approach that tailors model 

selection to the specific context of each question, aligning with the increasing demand for precision 

in medical informatics applications. 

The LLM-Synergy ensemble framework is marked by its robust architecture, offering a suite of 

advantages that enhance its utility in the field of machine learning. Central to its design is the 

principle of scalability, which allows the framework to integrate an expanding roster of Large 

Language Models (LLMs) or extend to accommodate larger datasets with minimal structural 

adjustments. Flexibility is another cornerstone of the LLM-Synergy framework, demonstrated by 

its support for both zero-shot and multiple-shot applications, and its agnostic approach to model 

sourcing, accepting LLMs irrespective of their open-source or closed-source status. This versatility 

ensures that the framework is not limited by the availability or proprietary nature of models, thus 

broadening its applicability. Beyond its flexibility, LLM-Synergy is characterized by domain 

adaptability, with an underlying methodology that transcends the medical question-answering 

domain for which it was initially designed. Its principles are equally relevant to question-

answering tasks in various other fields, indicating its potential for extensive adoption beyond the 

confines of healthcare. In terms of computational efficiency, LLM-Synergy stands out by 

harnessing the strengths of pre-existing, pre-trained models, thereby circumventing the necessity 

for extensive retraining. This attribute not only conserves computational resources but also 
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expedites the deployment process. Additionally, the framework's operational efficiency is 

exemplified by its modest demand for computing power, distinguishing it from many 

contemporary models that often require substantial computational investment. Another key 

advantage is the robustness of the ensemble approach, which integrates insights from multiple 

models to produce a more reliable and error-resistant output. By aggregating diverse perspectives, 

LLM-Synergy mitigates the influence of individual model biases or inaccuracies, resulting in a 

more dependable collective judgment.  

Collectively, these advantages position the LLM-Synergy framework as a scalable, flexible, and 

computationally prudent choice for diverse machine learning applications, promising significant 

advancements in the realm of AI-driven problem-solving. 

Error Analysis 

In the context of our LLM-Synergy framework, the efficacy of both ensemble methods is 

contingent upon the variance in performance among the incorporated LLMs. Within the 

MedMCQA dataset, the discrepancy in performance metrics among the LLMs was relatively 

narrow, with Llama2-13B achieving the apex at 32.03% and Vicuna-13B at the nadir at 26.13% 

in the individual case. Subsequent to integration into the ensemble framework, the LLMs 

demonstrated a capacity for reciprocal augmentation of their respective predictive strengths, 

culminating in an appreciable performance enhancement of 5.98%. In contrast, the PubMedQA 

dataset exhibited a more homogenized performance distribution, with even the least accurate LLM, 

Medllama-13B, attaining an accuracy rate of 86.11%. This scenario yielded an incremental, albeit 

less substantial, improvement post-ensemble due to the already elevated baseline accuracies. The 

MedQA-USMLE dataset, in other words, presents a distinctive case; Medalpaca-13B's 

performance markedly surpasses its counterparts. In such instances, a static Majority Weighted 

Vote approach inherently biases the ensemble towards this single model, potentially allocating 

100% of the weight to Medalpaca-13B and negating the contributions of other LLMs. Conversely, 
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the Dynamic Model Selection method—owing to its context-sensitive algorithm—offers a degree 

of rectification by adjusting the ensemble's reliance on the most apt LLM for a given question 

context. 

Limitation 

The two frameworks within LLM-Synergy, Weighted Majority Vote Ensemble, and Cluster-based 

Dynamic Model selection, while robust and versatile, are not without limitations. One notable 

constraint is the dependency on the quality and diversity of the LLMs incorporated into the 

ensemble. The performance of the ensemble is inherently tied to the individual capabilities of the 

included models. If these models share common blind spots or biases, or if they are not sufficiently 

diverse in their approaches to problem-solving, the ensemble may not significantly outperform its 

individual constituents. 

For the Weighted Majority Vote Ensemble, a key limitation lies in its static nature. The weights 

assigned to each model are fixed after training and do not adapt to the nuances of individual 

questions or contexts within the test set. This could lead to suboptimal performance in situations 

where the most appropriate model might change depending on specific question characteristics. 

The Dynamic Model Selection framework, while more adaptable, relies heavily on the clustering 

algorithm's ability to meaningfully categorize questions. If the clustering does not effectively 

capture the relevant features that dictate which LLM would perform best, the dynamic selection 

process may not yield the intended improvements. Additionally, this method's success is 

contingent upon the availability of a sufficiently large and representative validation set to fine-tune 

the model selection process. Moreover, both frameworks could still potentially be limited by 

computational constraints in practice, even if not computationally hungry as methods like fine-

tuning or pretraining. Despite being designed to be resource-efficient, the process of integrating 

multiple complex models, especially when scaling up to include additional LLMs or 

accommodating larger datasets, could still demand significant computational resources. 
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Lastly, the frameworks assume that the best-performing LLMs on the validation set will continue 

to be the best choices for the test set. This may not hold if there are substantial differences between 

the validation and test sets, leading to a discrepancy between expected and actual performance. 

Therefore, while the LLM-Synergy frameworks offer promising approaches to ensemble learning 

in NLP, they must be applied judiciously, with an awareness of these potential limitations. 

 

CONCLUSION 

The LLM-Synergy framework, with its boosting-based Weighted Majority Vote and cluster-based 

Dynamic Model Selection methods, represents a significant advancement in leveraging LLMs for 

medical QA tasks and provides an innovative way of efficiently utilizing the development with 

LLM Technologies, customing for both existing and potentially future challenge tasks in 

biomedical and health informatics research. Its ability to amalgamate the strengths of multiple 

models has demonstrated superior accuracy and robustness over individual LLMs. While the 

framework showcases scalability, flexibility, and adaptability across domains, it also presents 

opportunities for future enhancements, including increased model diversity, dynamic weighting, 

and broader domain applications. As such, LLM-Synergy not only addresses current challenges in 

natural language processing but also sets the stage for continued innovation in AI-driven problem-

solving.  

DATA AVAILABILITY 
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FIGURE LEGENDS 

Figure 1.  Overview of our LLM-Synergy Framework 

Figure 2. QA shows the accuracy of how each LLM performs on the three medical QA datasets. 

Figure 3. Training Process of Boosting-based Weighted Majority Vote Ensemble 

Figure 4. Training Process of Cluster-based Dynamic Model Selection Ensemble 

 

APPENDIX 

Prompt for MedMCQA dataset: 
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Prompt for PubMedQA dataset: 

 

Prompt for MedQA-USMLE dataset, English language: 
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