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ABSTRACT 

 

Purpose: The PAX6 gene encodes a highly-conserved transcription factor involved 

in eye development. Heterozygous loss-of-function variants in PAX6 can cause a 

range of ophthalmic disorders including aniridia. A key molecular diagnostic 

challenge is that many PAX6 missense changes are presently classified as variants 

of uncertain significance. While computational tools can be used to assess the effect 

of genetic alterations, the accuracy of their predictions varies. Here, we evaluated 

and optimised the performance of computational prediction tools in relation to PAX6 

missense variants. 

 

Methods: Through inspection of publicly available resources (including HGMD, 

ClinVar, LOVD and gnomAD), we identified 241 PAX6 missense variants that were 

used for model training and evaluation. The performance of ten commonly-used 

computational tools was assessed and a threshold optimization approach was 

utilized to determine optimal cut-off values. Validation studies were subsequently 

undertaken using PAX6 variants from a local database.  

 

Results: AlphaMissense, SIFT4G and REVEL emerged as the best-performing 

predictors; the optimized thresholds of these tools were 0.967, 0.025, and 0.772, 

respectively. Combining the prediction from these top-three tools resulted in lower 

performance compared to using AlphaMissense alone.  

 

Conclusion: Tailoring the use of computational tools by employing optimized 

thresholds specific to PAX6 can enhance algorithmic performance. Our findings have 

implications for PAX6 variant interpretation in clinical settings. 
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ABBREVIATIONS 

 

Acc, accuracy; ACMG/AMP, the American College of Medical Genetics and 

Genomics and the Association for Molecular Pathology; AUC, area under the ROC 

curve; dbNSFP, database of non-synonymous functional prediction; DM, disease-

causing mutation; DM?, likely disease-causing mutation with questionable 

pathogenicity; gnomAD, Genome Aggregation Database; GRCh38, genome 

reference consortium human build 38; HD, homeodomain; HGMD, Human Gene 

Mutation Database; HGNC, HUGO Gene Nomenclature Committee; LOVD, Leiden 

Open Variation Database; MCC, Matthews correlation coefficient; MCGM, 

Manchester Centre for Genomic Medicine; OMIM, Online Mendelian Inheritance in 

Man; PD, paired domain; PAX 6, paired box 6; PPV, positive predictive value; ROC, 

receiver operating characteristic; Sn, sensitivity; Sp, specificity; VUS, variant of 

uncertain significance 
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INTRODUCTION 

 

The PAX6 gene (Paired box 6, OMIM #607108, HGNC 8620) encodes a DNA-

binding protein that performs essential regulatory functions during eye development 

in many animal species including humans.1,2 Genetic variants in PAX6 underlie a 

number of ophthalmic disorders. By far the most common PAX6-related oculopathy 

is aniridia (OMIM #106210), a condition associated with  PAX6 haploinsufficiency 

due to heterozygous loss-of-function variants.3 Missense variants have been 

generally linked with milder phenotypes.4,5 However, in 2020, a study by Williamson 

et al. highlighted that certain heterozygous PAX6 missense variants can cause 

clinical manifestations that are more severe than aniridia (including microphthalmia 

and anophthalmia).6 Predicting the effect of the growing number of missense 

variants that are being identified remains challenging. Notably, when established 

criteria (such as those described by the American College of Medical Genetics and 

Association of Molecular Pathology (ACMG/AMP)) are used to classify these 

sequence alterations, a significant proportion are classified as variants of uncertain 

significance (VUS).7,8 

 

Computational (in silico) tools are commonly used to provide evidence to support or 

refute variant pathogenicity.8 Each tool employs a different algorithm; features 

commonly taken into account include evolutionary conservation and protein/domain 

structure (Supplementary Table 1). It is noted that some algorithms combine the 

output from other tools to achieve a single consensus prediction (meta-predictors).9  

 

A number of previous studies have evaluated the performance of commonly-used 

computational tools in different genes, noting significant variability in predictive 

performance.10–13 Aiming to increase the reliability of existing algorithms and to 
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optimise their predictions, some studies have proposed the introduction of gene-

specific thresholds.14,15 To date, computational tool evaluation and optimization have 

not been undertaken in the context of PAX6 and this study aims to address this gap. 

 

 

 

MATERIALS AND METHODS 

 

Dataset collection 

 

In our primary analysis, PAX6 missense variants from publicly available resources 

were collected from: the Genome Aggregation Database (gnomAD) version 2.1.1 

(v2) and version 3.1.1 (v3); the Leiden Open Variation Database (LOVD) version 2.0 

and version 3.0; the Human Genetic Mutation Database (HGMD) Public version; and 

ClinVar (the websites of these resources can be found in the 'Web Resources' 

section) (all accessed in February 2023). A biomedical literature search 

(MEDLINE/PubMed) using the term "PAX6" and focusing on articles between 2021 

and 2023 was also undertaken.16–20 We excluded duplicates and VUS (including 

“likely disease-causing mutation with questionable pathogenicity” (DM?) in HGMD), 

and then categorised the remaining variants into: “Primary Dataset Neutral” and 

“Primary Dataset Disease” (Figure 1). 

 

Primary Dataset Neutral included: (i) variants previously classified as benign or likely 

benign and (ii) variants present in gnomAD, a population-scale database that does 

not include individuals with severe paediatric disease.16 While it cannot be excluded 

that certain PAX6 missense variants reported in gnomAD are pathogenic (e.g. if 

linked with subclinical phenotypes or incomplete penetrance), we adopted a 

pragmatic approach and considered these changes as “presumed benign”. Although 
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filtering gnomAD variants based on their allele frequency would increase the 

likelihood of including only truly benign variants, this would reduce the dataset size. 

Hence, we did not apply such a filter. Primary Dataset Disease included missense 

variants labelled as pathogenic in ClinVar, LOVD or PubMed and variants labelled as 

DM in HGMD. 

 

For validation purposes, a secondary analysis was conducted involving PAX6 

missense variants from our local database at the Manchester Centre for Genomic 

Medicine (MCGM), part of the North West Genomic Laboratory Hub (accessed in 

May 2023). These variants correspond to changes that were evaluated in an 

accredited diagnostics laboratory with >15 years’ experience in assessing genetic 

alterations from individuals with ophthalmic disorders. All variants were classified 

according to the ACMG/AMP 2015 guidelines8 and changes assigned to the “likely 

pathogenic” and “pathogenic” categories formed the “Secondary Dataset Disease” 

(Figure 2). For this replication study, variants present in the BRAVO database 

(version TOPMed Freeze 8) were collected (accessed in May 2023) and formed 

“Secondary Dataset Neutral”. Duplicates were excluded, while the detected VUS 

were used for downstream analysis.21 

 

All variants were numbered based on Genome Reference Consortium Human Build 

38 (GRCh38). Variants from gnomAD v2 were lifted over to this reference, using the 

transcript ENST00000241001 (Ensembl ID), which encodes the canonical PAX6 

protein, comprising 422 amino acids (UniProt ID: P26367-1).22  
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Descriptive analysis  

 

The distribution of variants in Primary Dataset Disease, Primary Dataset Neutral, 

Secondary Dataset Disease and Secondary Dataset Neutral along the linear protein 

sequence (as retrieved from UniProt) was visualised using a lolliplot diagram. The 

cBioPortal (version 5.4.5) tool was used to generate the relevant figure (accessed in 

May 2023) (Figure 3).23 

 

Computational tools 

 

Ten commonly used computational prediction tools were assessed: AlphaMissense, 

BayesDel, CADD, ClinPred, Eigen, MutPred2, Polyphen-2, REVEL, SIFT4G and 

VEST4.24–33 These tools employ various algorithms to evaluate variant pathogenicity 

(more information on the utilized approaches can be found in Supplementary Table 

1). The dbNSFP (version 4.1) resource was used to obtain pathogenicity scores for 

each tested variant except for AlphaMissense. AlphaMissense prediction scores 

were extracted from the AlphaMissense_hg38.tsv.gz file provided in the relevant 

publication.24 

 

Depending on how the obtained scores compared to each algorithm’s pre-set 

threshold (determined by the respective tool’s developers), the studied variants were 

classified as “predicted pathogenic” or “predicted benign”.34 Default thresholds were 

set for CADD and Eigen based on previous studies (although the use of a single, 

arbitrary threshold is not recommended by the tools’ developers). For 

AlphaMissense, we assigned variants with scores ranging from 0.564 to 1.00 to the 

“predicted pathogenic” category; all other variants were assigned to a “predicted 

benign” group. Higher scores indicated a higher likelihood of a pathogenic prediction 
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for all tools except SIFT4G. In a few cases, a single tool generated multiple scores 

and we opted for the following: CADD-phred; BayesDel AddAF (incorporates allele 

frequency data); Eigen raw for coding variants; and the PolyPhen-2 HumVar-trained 

model, which is suitable for studying Mendelian diseases.26 The prediction outputs 

“deleterious”, “damaging”, “probably damaging”, or “possibly damaging” were 

considered “predicted pathogenic”, while the terms “tolerated” or “benign” were 

deemed “predicted benign”. 

 

Performance assessment 

 

Initially, performance parameters were calculated using the PAX6 missense variants 

included in the primary datasets. We estimated sensitivity, specificity, accuracy, 

precision (Positive Predictive Value; PPV), and the Matthews Correlation Coefficient 

(MCC).35 To determine the best-performing tool, we used MCC, which ranges from -

1 (constant false predictions) to 1 (perfect predictions) with 0 indicating random 

prediction.  

 

We hypothesized that using an optimized, gene-specific threshold can improve the 

performance of each tool. Receiver Operating Characteristic (ROC) curves were 

therefore utilized to identify the threshold that yielded the highest MCC score for 

each tool. The quality of the prediction obtained using the optimized threshold was 

then compared to that obtained using the default threshold. The IBM SPSS (Version 

25.0)36 software was used for these analyses. 

 

Subsequently, we explored if the analytical performance could be further improved 

by combining the three tools with the highest MCC scores into a custom meta-

predictor. We adopted the "majority rule" method (agreement of over 50% of the 
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employed tools), which involved classifying a variant as "predicted pathogenic" if it 

received a "predicted pathogenic" score in at least two out of the three selected 

tools. 

 

Validation and evaluation 

 

We validated our findings using a 5-fold cross-validation approach for the tool with 

the highest MCC score (as previously described by Tang et al.11). Briefly, this 

involved randomly dividing variants into five subsets of equal size, four of which 

(80%) formed the training set, while the remaining subset (20%) served as the test 

set. Within the training set, we determined the optimized threshold that maximized 

the MCC. The obtained threshold was then applied to assess performance on the 

testing set. This process was repeated five times until all subsets were utilized as the 

testing set. The resulting analytical pipeline was then evaluated on a secondary 

dataset and was used to evaluate a set of variants that were previously classified as 

VUS. 
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RESULTS 

 

PAX6 variant datasets 

 

In our primary analysis, we collected a total of 241 variants from publicly available 

databases. Using pre-determined criteria (see Methods) these were split into two 

groups: Primary Dataset Disease (n=167) and Primary Dataset Neutral (n=74) 

(Figure 1). For the secondary analysis, we collected 17 unique variants from our 

local database, consisting of seven that were classed as VUS and 10 classed as 

pathogenic (Secondary Dataset Disease). We supplemented this with 65 presumed 

benign variants from the BRAVO resource (Secondary Dataset Neutral) (Figure 2). 

All missense variants included in the primary and secondary analyses are shown in 

Supplementary Table 2.  

 

Descriptive analysis 

 

When the distribution of the studied variants was mapped, presumed pathogenic 

changes tended to cluster around the two DNA-binding protein domains of PAX6: the 

Paired Domain (PD) and the HomeoDomain (HD). Conversely, presumed benign 

variants were more likely to affect residues outside these domains. VUS did not 

show a clear clustering pattern (Figure 3).  

 

Performance of computational tools 

 

The predictive performance of ten tools was evaluated. When the performance 

metrics were calculated using the default threshold set by the tools’ developers, 

considerable variability was noted (Table 1a). Most tools exhibited high sensitivity 

(exceeding 88%) but had low specificity scores. SIFT4G and AlphaMissense 
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achieved specificity scores of 88% and 81%, respectively. In contrast, other tools 

showed specificities below 70%, with CADD, BayesDel and VEST4 scoring the 

lowest at 12%, 14% and 19%, respectively. The other metrics, such as accuracy and 

PPV, ranged from 72% to 88% and 71% to 94%, respectively. The MCC scores 

ranged from 0.22 to 0.74, with the top-three tools attaining the highest scores being 

SIFT4G at 0.74, followed by AlphaMissense at 0.72 and MutPred2 at 0.62.  

 

Improving performance through threshold optimization 

 

Aiming to obtain gene-specific thresholds tailored to PAX6, we performed ROC 

curve analysis and determined the value that achieved the maximum MCC score for 

each tool (see Supplementary Fig.1). The default thresholds were generally lower 

compared to the optimized thresholds (Table 2b), except for SIFT4G (which, unlike 

the other tools, assigns lower scores to variants with a higher likelihood of being 

predicted as pathogenic). Following threshold optimization, all the performance 

parameters of the tools showed improvement, with a notable increase in specificity 

scores. At the optimized threshold, AlphaMissense achieved the highest MCC score 

of 0.81, succeeded by SIFT4G and REVEL at 0.77 (Table 2b).  

 

Performance of combination of tools 

 

We assessed if the predictive performance could be further improved by combining 

multiple tools. A combination of the top-three tools (AlphaMissense, SIFT4G and 

REVEL) with optimized thresholds, demonstrated an MCC score of 0.78, with a 

sensitivity of 87% and accuracy of 90%. These results outperformed those obtained 

by combining the predictions of SIFT4G and AlphaMissense or REVEL and 
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AlphaMissense but the MCC score was lower than the combination of SIFT4G and 

REVEL (Supplementary Table 3). Interestingly, the MCC score of AlphaMissense 

alone (following threshold optimization) was higher (0.81) than the MCC score of all 

combined approaches.  

 

Validation and further evaluation 

 

To assess the reliability of the results of our primary analysis (concerning 

AlphaMissense), we conducted further studies using a five-fold cross-validation 

approach. The findings confirmed the robustness of AlphaMissense (with the 

threshold optimization) in predicting the effect of PAX6 variants (Table 2).  

 

Further evaluation using a different set of variants (secondary dataset) confirmed (i) 

that AlphaMissense and SIFT4G are among the higher-ranking tools; and (ii) that 

gene-specific thresholds lead to enhanced predictive performance (Table 3). It is 

worth noting that, except for sensitivity, the values in the secondary analysis were 

lower than those obtained in the primary analysis. This difference is likely to be 

influenced by the varying proportion of presumed benign and presumed pathogenic 

variants between the corresponding primary and secondary datasets. 

 

Lastly, a set of seven VUS from our local database were analysed. Among these 

variants, six were consistently classified as pathogenic by all the ten tools 

investigated. However, one variant, PAX6 c.926T>G, p.(Phe309Cys), showed 

discordant predictions (see Supplementary Table 2b). AlphaMissense and SIFT4G 

labelled this variant as predicted benign (with scores of 0.1654 and 0.16, 

respectively), while the other six variants were classified as predicted pathogenic. 

Notably, PAX6 c.926T>G, p.(Phe309Cys), affects a residue in the C-terminal region, 
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whereas the other six variants alter residues in one of the PAX6 DNA-binding 

domains (PD or HD).   
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DISCUSSION 

 

We assessed the performance of ten commonly used variant prediction tools in the 

context of missense variants in a highly-conserved gene, PAX6. Using default 

settings, most tools were able to make reliable predictions in relation to pathogenic 

variants. However, their ability to correctly predict benign variants was limited (i.e., 

there was high sensitivity but low specificity). These results are consistent with those 

from previous studies conducted on a genome-wide or an individual gene 

level.13,37,38 By generating optimized, gene-specific thresholds for each tool, it was 

possible to achieve improved performance compared to conventional approaches.  

 

When default thresholds were used, SIFT4G, AlphaMissense and MutPred2 were 

found to be the top-ranking algorithms (i.e., had the highest MCC scores). Following 

threshold optimization, AlphaMissense emerged as the best performing tool with the 

highest MCC score, followed by SIFT4G and REVEL, while MutPred2 shifted to the 

fourth position. AlphaMissense uses a deep learning model that builds on the protein 

structure prediction tool AlphaFold2.24  SIFT4G evaluates the impact of amino acid 

substitutions based on evolutionary conservation and sequence homology, aligning 

well with the highly-conserved nature of the PAX6 gene.25,39 MutPred2 also 

incorporates a conservation-based approach along with other features. It is noted 

that MutPred2 was previously found to have good performance in prediction tasks 

involving variants in PITX2, a paired-like homeodomain transcription factor that is 

also expressed in the developing eye.40 REVEL emerged as the best meta-predictor 

in the context of PAX6; this was unsurprising as its superior performance over other 

ensemble tools has previously been demonstrated.38,41,42,43  
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Our findings support the use of gene-specific thresholds, as opposed to relying on 

default settings.44 Even REVEL, one of the highest performing tools, had a specificity 

of 47% (misclassifying 39 out of 74 presumed benign missense variants) with the 

default threshold. This issue arises due to the training process of the tools, where 

variants from multiple genes are used. This default approach allows for the 

possibility of underfitting, where crucial details necessary to capture the 

characteristics of an individual gene are overlooked. It is noted that, upon applying 

optimized thresholds, all tools demonstrated substantial improvement, particularly in 

specificity (Table 2). This observation is consistent with the findings of other studies 

looking at different genes.11,13  

 

We attempted to combine the predictions of the top-three performing tools (following 

threshold optimization) using the majority-rule method. The results demonstrated 

good performance, with most of the parameters surpassing 84% and the MCC 

ranging from 0.76 to 0.79 (Supplementary Table 3). However, the use of 

AlphaMissense alone outperformed this approach (Table 1b). The high performance 

of this tool was confirmed through a 5-fold cross-validation experiment and in the 

secondary dataset (Table 3). To a degree, our findings contradict the observations of 

similar studies. For instance, Leong et al. found that the best performance for 

predicting KCNQ1 variant pathogenicity was achieved by considering three out of the 

five tools that were examined.12 Likewise, Tang et al. reported achieving optimal 

performance in the context of SCN1A variants when combining the three best-

performing tools.11 Conversely, our findings align with those of a study by Gunning et 

al. which supported the adoption of a single tool instead of using a consensus-based 

approach.41  
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Using AlphaMissense to evaluate seven PAX6 missense variants that have been 

previously classified as VUS resolved some of the discordance for one change, 

c.926T>G, p.(Phe309Cys), by suggesting that it does not have an effect on 

molecular function. This variant, unlike most PAX6 pathogenic missense changes, 

affects a residue outside the DNA-binding domains.45 This result could potentially be 

attributed to AlphaMissense’s ability to pinpoint functionally crucial sites (instead of 

simply evaluating the overall evolutionary conservation of a protein).24 It is noted that 

a few recent studies have shown that AlphaMissense can reliably classify subsets of 

variants that are known to affect molecular function.46–48  

 

The present study has several limitations, including the availability of a relatively 

small number of presumed pathogenic variants due to the rarity of PAX6-related 

disease. Additionally, we were unable to exclude the possibility that some of the 

studied genetic variants may have been utilized for training some of the evaluated 

tools. Future studies could explore the performance of a wider range of 

computational approaches, including tools considering the 3D-structure of the protein 

and algorithms using advanced artificial neural network approaches.  

 

It is highlighted that variant pathogenicity predictors constitute one of the many 

pieces of evidence that can be used to evaluate the effect of genetic alterations, and 

that it is crucial to consider other factors (including segregation analysis, population 

frequency and the outcomes of functional assays).49 Additionally, refinement of the 

ACMG/AMP sequence variant guidelines (and utilization of Bayesian approaches) is 

expected to provide an enhanced framework that would help generate robust 

estimates by improving how different lines of evidence are combined.  
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CONCLUSION 

 

In summary, this study offers insights into how computational prediction tools can be 

optimally used for the task of PAX6 missense variant evaluation. The best-

performing approach, which involves using a PAX6-specific threshold for 

AlphaMissense, can be utilized in different contexts and has the potential to enhance 

variant interpretation, ultimately leading to more precise and timely diagnoses for 

individuals with PAX6-related disorders.  
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FIGURE LEGENDS 

 

Figure 1. Overview of the datasets used in the primary analysis. The utilized 

resources, selection criteria and filtering steps are outlined. Orange boxes: number 

of compiled variants; grey boxes: exclusion criteria and number of excluded variants; 

blue boxes: number of filtered variants based on their pathogenicity; yellow box: 

number of variants in the two sub-datasets. gnomAD, Genome Aggregation 

Database; LOVD, Leiden Open Variation Database; HGMD, Human Gene Mutation 

Database; DM, “disease-causing mutation” (as assigned in HGMD); DM?, “likely 

disease-causing mutation with questionable pathogenicity” (as assigned in HGMD); 

VUS, variants of uncertain significance. All five resources were accessed in February 

2023. 

 

Figure 2. Overview of the datasets used in the secondary analysis. The utilized 

resources, selection criteria and filtering steps are outlined. Orange box, number of 

compiled variants; grey box, exclusion criteria and number of excluded variants; blue 

box, number of filtered and compiled variants based on their pathogenicity; yellow 

box, number of variants grouped into two sub-datasets and the number of VUS 

collected. MCGM, Manchester Centre for Genomic Medicine; VUS, Variant of 

Uncertain Significance. Both resources were accessed in May 2023. 

 

Figure 3. Distribution of the PAX6 missense variants included in this study. Variant 

distribution according to their pathogenicity is shown. The X-axis represents the 

PAX6 canonical protein sequence (422 amino acids), while the Y-axis denotes the 

number of variants impacting the same residue. Blue bar, paired domain; purple bar, 

homeodomain. DM?, “likely disease-causing mutation with questionable 
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pathogenicity” (as assigned in the Human Gene Mutation Database [HGMD]); VUS, 

variants of uncertain significance. 
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f. Secondary analysis variants labelled as VUS (n=7)
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Table 1. Performance of the computational tools assessed in this study (in tasks involving PAX6 missense variant evaluation) 
 a   b      

Tool Default 
threshold 

Sp (%) Sn (%) Acc (%) PPV (%) MCC  Optimized 
threshold 

Sp (%) Sn (%) Acc (%) PPV (%) MCC 

AlphaMissense > 0.56 81 91 88 91 0.72  >0.9667 96 89 91 98 0.81 

BayesDel >0.0692655 14 99 73 72 0.29  > 0.38 87 89 88 94 0.73 

CADD > 20 12 98 72 71 0.22  > 25.25 87 85 86 93 0.68 

ClinPred > 0.5 35 99 80 78 0.51  > 0.90 77 94 89 90 0.73 

Eigen > 0 22 98 74 74 0.32  > 0.34 60 92 82 84 0.55 

MutPred2 > 0.5 61 95 85 84 0.62  > 0.61 80 95 90 91 0.76 

PolyPhen2 > 0.447 69 88 82 87 0.58  > 0.90 87 80 82 93 0.63 

REVEL > 0.5 47 98 83 81 0.59  > 0.77 91 89 90 96 0.77 

SIFT4G ≤ 0.05 88 88 88 94 0.74  ≤ 0.03 92 89 90 96 0.77 

VEST4 > 0.5 19 96 73 73 0.25  > 0.85 85 73 76 92 0.53 
 

Performance using (a) default and (b) optimized thresholds. Bold text and blue highlighted cells show the best-performing tools in the primary analysis.  
Sp, specificity; Sn, sensitivity; Acc, accuracy; PPV, positive predictive value; MCC, Matthews correlation coefficient. All percentages were rounded to zero decimal points. 
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Table 2. Five-fold cross validation results showing the performance of the 
AlphaMissense tool (in tasks involving PAX6 missense variant evaluation) 
 

Test Sp (%) Sn (%) Acc (%) PPV (%) MCC 

  1 93 94 93 97 0.85 

  2 86 97 93 94 0.84 

  3 93 84 87 96 0.74 

  4 93 82 85 96 0.70 

  5 100 91 94 100 0.87 

  Average 93.1 ± 5.1 89.5  ± 6.3 90.6 ± 4.0 96.7 ± 2.2 0.80 ± 0.1 
 

Sp, specificity; Sn, sensitivity; Acc, Accuracy; PPV, positive predictive value; MCC, Matthews 
correlation coefficient.  All percentages were rounded to zero decimal points. 
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Table 3. Performance of the computational tools assessed in this study (in tasks 
involving PAX6 missense variant evaluation): secondary analysis 

Tool Threshold Sp (%) Sn (%) Acc (%) PPV (%) MCC 

AlphaMissense 

Default 

thresholds 

65 100 69 30 0.44 

BayesDel 6 100 19 14 0.09 

CADD 3 100 16 14 0.06 

ClinPred 12 100 24 15 0.14 

Eigen 15 100 26 14 0.14 

MutPred2 34 100 43 19 0.25 

PolyPhen2 65 100 69 30 0.44 

REVEL 37 100 45 20 0.27 

SIFT4G 79 90 80 39 0.50 

VEST4 20 100 31 16 0.18 

AlphaMissense 

Optimized 

thresholds 

88 90 88 53 0.63 

REVEL 82 100 84 46 0.61 

SIFT4G 83 90 84 45 0.56 

Combination 
(AlphaMissense 
+ SIFT4G  
+ REVEL) 

85 90 85 47 0.58 

 

Bold text and blue highlighted cell shows the best-performing tool in the secondary analysis.  
Sp, specificity; Sn, sensitivity; Acc, accuracy; PPV, positive predictive value; MCC, Matthews correlation 
coefficient. All percentages were rounded to zero decimal points. 
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