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Abstract 

Osteoarthritis (OA) is the most common degenerative joint disease, presented as wearing down of articular cartilage and resulting 

in pain and limited mobility for 1 in 10 adults in the UK. 1 There is an unmet need for patient friendly paradigms for clinical 

assessment that do not require ionising radiation (CT), exogenous contrast enhancing dyes (MRI), biopsy, and/or  instrumentation 

approaches (arthroscopy or endoscopy). Hence, techniques that use non-destructive, near- and shortwave infrared light (NIR, 

SWIR) may be ideal providing for non-invasive, label-free and deep tissue interrogation. This study demonstrates multimodal 

“spectromics”, low-level abstraction data fusion of non-destructive NIR Raman scattering spectroscopy and NIR-SWIR absorption 

spectroscopy, providing an enhanced, interpretable “fingerprint” for diagnosis of OA in human cartilage. Samples were excised 

from femoral heads post hip arthroplasty  from OA patients (n=13) and age-matched control (osteoporosis) patients (n=14). Under 

multivariate statistical analysis and supervised machine learning, tissue was classified to high precision: 100% segregation of 

tissue classes, and a classification accuracy of  95% (control) and 80% (OA), using the combined vibrational data. There was a 

marked performance improvement (5 to 6-fold for multivariate analysis) using the spectromics fingerprint compared to results 

obtained from solely Raman or NIR-SWIR data. Furthermore, discriminatory spectral features in the enhanced fingerprint 

elucidated clinically relevant tissue components (OA biomarkers). In summary, spectromics  provides comprehensive information 

for early OA detection and disease stratification, imperative for effective intervention in treating the degenerative onset disease 

for an aging demographic.

Introduction 

Osteoarthritis (OA) presents a major public health challenge recognised as a serious burden for the individuals 

affected, healthcare systems, and resulting in significant national and global socioeconomic costs.1,2 Current 

modes of assessment of articular cartilage in the clinic are typically invasive (endoscopy, arthroscopy), destructive 

(biopsy, histochemistry), incorporating ionising radiation and/or exogenous contrast (CT, X-ray, MRI).3,4 Each 

modality provides different levels of qualitative morphological information of the tissue to assess the health of the 

patient but typically necessitate clinical evaluation and treatment prognosis. Critically, none of these indicated 

techniques provide a definitive diagnosis for OA, which needs to be confirmed by secondary methods.  

Current gold standard approaches for diagnosing OA rely on the detection of pain, morphological changes (joint 

space narrowing, osteophytes formation), or accumulation of synovial fluids.5,6 OA presents degradation and loss 

of articular cartilage, the lubricating and shock absorbing inter-joint layer, developed over many years, and which 

can pre-date symptoms over decades.7 Hence, early diagnosis is crucial for effective and timely intervention to 

reduce pain, improve mobility, and patient quality of life. To date, there is no cure for OA, rather  treatments are 

focused on alleviating inflammatory symptoms or interventional surgery including arthroplasty and prosthetic joint 

implant.8–10  Detection of pre-pathomorphological and biochemical changes will inform new and earlier forms of 

pharmacological and lifestyle interventions to alter the course and progression of the disease.11,12 

Near- and Shortwave Infrared (NIR, SWIR) absorption and spontaneous Raman scattering are highly sensitive to 

structural and biochemical changes offering an innovative approach for early detection associated with the onset 

of OA, using spectral biomarkers. This can be ideal as both Raman and NIR-SWIR absorption spectroscopy can 

be carried out with minimal sample preparation, conducive to native in situ tissue assessment. Moreover, both NIR-

SWIR absorption and Raman spectroscopies can utilise the biological ‘optical’ transparency windows. Such 

windows exist in various native human and animal tissue types and are quantified by the absorptive and scattering 

effect of common endogenous chromophores. In these regions, non-ionising optical light undergoes reduced 

scattering and absorption, facilitating deep penetration.13–15 Depth penetrations in AC tissue are recorded up to 5 

mm, indicating high suitability for optical assessment.16,17 Since the normal thickness of human cartilage is 1 – 3 
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mm, optical interrogation in the spectral range of 1.4 – 2.5 µm  is considered optimal for AC tissue assessment.17,18 

Thus, spectroscopic techniques such as NIR-SWIR absorption and Raman spectroscopy (if carried out with NIR 

or SWIR excitation) offer valuable chemometric and structural information at depth for non-destructive, non-

invasive in vivo clinical assessment.  

NIR-SWIR absorption spectroscopy has been shown to be sensitive to structural and compositional changes 

resulting from loss or alteration of the tissue extracellular matrix (ECM).19 The spectral response provides 

information relevant to structural and functional characteristics, important in the  assessment of degeneration of 

cartilage.20–23 Specifically, absorbance bands in the NIR and SWIR are overtones and combinations of the 

fundamental vibrations of O-H, C-H, N-H, and S-H bonds which form the molecular framework of the tissue. 16,19,24 

As such, NIR-SWIR absorption spectroscopy can offer a non-destructive method to determine thickness, 

biomechanical properties, and composition of articular cartilage especially water fractions for evaluation, prediction, 

and monitoring of OA progression. 17,18,21,22,25,26 

Spontaneous Raman scattering spectroscopy, is insensitive to water, and the spectral region between 1800 - 800 

cm-1 is particularly sensitive to structural and skeletal vibration modes, thus ideal for biological tissue 

characterisation.27 Raman spectroscopy using NIR excitation has been employed by a number of groups in the  

diagnosis of osteoarthritis, with  biochemical and biomechanical change in human and preclinical models 

correlating with gold standard assays. 18,25,28 Spectral features including those associated with collagen, GAG, and 

PG (major proteins of the ECM), water fraction, lipid and amides have proved efficacious as  preclinical and 

prepathomorphological biomarkers.29–31  Specific biochemical distributions have been mapped up to depths of 0.5 

mm with NIR excitations 27,32–34 and OA relevant signals (depth and GAG) collected at depths >10 mm under 

spatially offset Raman spectroscopy (SORS) geometries.35  

NIR-SWIR absorption and NIR-excited Raman spectroscopy have been used to interrogate cartilage and shown 

potential for OA diagnosis, especially through evaluation of  depth-dependent features.36 Since these techniques 

are mediated by different optical phenomena, namely changes in dipole moment (overtones of vibrational modes) 

and changes in polarization, respectively, they offer complementary information. As such, these modalities can be 

combined to yield a more holistic chemical ‘fingerprint’ of the sample of interest. This study presents the first 

demonstration of an elegant combination of vibrational spectroscopy techniques operating in the transparency 

windows to augment their diagnostic assessment potential of human articular cartilage. Raman scattering and NIR-

SWIR absorption signatures are concatenated through low-level abstraction data fusion, into a new “spectromic” 

fingerprint. 37–39 The fused data was subjected to statistical and machine learning analysis, namely supervised 

Principal Component Analysis – Linear Discriminant Analysis (PCA-LDA) and supervised support vector machine 

(SVM).37 The new fingerprint facilitated improved classification accuracy and delineation between control and 

osteoarthritic AC tissue compared to spectra from each technique individually.  The low-level abstracted data is 

directly interpretable since significant spectral features used to classify the tissue can highlight clinically relevant 

biomarkers, and is compatible with various statistical and machine learning assessments.  The current studies 

demonstrate the efficacy and power of a spectromics approach in its ability to provide a holistic assessment of 

human cartilage tissue for OA diagnosis, with therapeutic implications for an increasing aging population. 

Experimental 

Cartilage Samples and Preparation 

Articular cartilage samples, obtained with full ethical approval and patient consent (REC reference 18/NW/0231), 

were excised from human femoral heads manually using a scalpel blade. Cartilage tissue slices were taken parallel 

to the femoral head surface, as deep as the subchondral bone. Cartilage slices were fixed in 4% paraformaldehyde 

(PFA) for 72 hrs and stored, refrigerated, in phosphate buffered saline.  

Tissue storage conditions were found to be compatible with vibrational spectroscopy characterisation, with 

consistent Raman spectral responses reproduced despite storage periods approaching 6 months.  

For spectroscopic and imaging analysis, AC samples were cut into square slices, side lengths of the order of 10’s 

of mm, thickness of ~1 mm. For each sample, the “superficial surface” describes the outermost layer of cartilage 

on the femoral head (in contact with the acetabular cup) and “deep side” the layer proximal to the subchondral 

bone. This terminology reflects the zonal stratified structure reported for cartilage wherein the superficial- , middle-

, and deep zones (SZ, MZ, DZ) and calcified zones contain varying collagen fibre orientation and 

composition.4,10,29,33  
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Samples obtained from osteoarthritic (OA) femoral heads serve as the diseased AC model, while samples from 

osteoporotic (OP) femoral heads served as the control model. Both classes of tissue were obtained as 

consequence of interventional arthroplasty surgery. Analysis of human samples enabled paradigm development to 

inform and model clinical application. Patient information included only patient age and gender, and classification 

between OA and OP. Classification was confirmed by the consultant orthopaedic surgeon with OA samples typically 

Grade 3 & 4 (late stage) OA progression. Lack of access to healthy mature human cartilage necessitated the use 

of AC from OP femoral heads as the “healthy” control model tissue. OA pathology results in severe thinning of AC 

around the femoral head such that the subchondral bone is typically exposed in large regions. OA samples were 

taken from areas where AC remained present.  

Samples were selected in order to match and be equally distributed across anthropometric parameters. Spectra 

were collected from AC of n=13 OA patients and n=14 OP patients for this proof-of-concept study. 

Raman Scattering Microspectroscopy 

Raman spectroscopy of the cartilage samples was carried out via modification of a previously reported protocol. 
36,41 Samples of AC were placed on a quartz slide, “superficial” side up, and their spectra centred at 1200 cm-1 

(614 – 1722 cm-1) captured in reflectance geometry. Measurements were carried out on a Renishaw InVia 

microscope system with samples excited using a 785 nm laser focused through a Leica 50x (0.75 NA) short 

working distance (~200 µm) objective. Renishaw WiRE 4.1 software was used to collect data and set measuring 

parameters. The system was calibrated to the 520 cm-1 peak of a silicon standard before each experiment and 

cosmic rays removed after acquisition. Background-subtraction was carried out by subtraction of the spectrum of 

a blank quartz slide, taken with the same acquisition parameters as experimental samples. Spectral resolution 

was recorded as Δλ ~1.1 cm-1. 

Spectral mapping of each sample was achieved by movements of the sample stage in random steps of the order 

of 100’s µm to measure across the tissue surface. For each position, a mean average spectrum of 3 acquisitions 

with exposure time of 5 seconds was recorded. A modal average of 3 samples were investigated for each patient 

with 10 spectra measured for each sample.  

NIR-SWIR Absorption Spectroscopy 

NIR-SWIR spectroscopy of the cartilage samples was carried out on a homemade benchtop system. Samples of 

AC were placed on a gold-coated mirror slide, “superficial” side up, and spectra between 11,127 – 3993 cm-1 (899 

– 2504 nm) captured in transreflectance geometry. Incident excitation light was provided by a broadband halogen 

lamp (HL-2000-FHSA-LL, Ocean Insight) emitting as a blackbody across the NIR-SWIR range, and signal collected 

via an OceanOptics NIR Quest 2.5+ spectrometer. Both were coupled to a ferrule fibre optic reflectance probe with 

a profile of 6 annular fibres for excitation and 1 central fibre for collection. 22 Two planoconvex uncoated lenses 

collimated and focused light onto sample, allowing for contact-less measurements. Spectral resolution of the 

spectrometer was quoted by the manufacturer at Δλ ~6.3 nm. 

Spectral mapping of each sample was achieved by manual sample scanning in random steps of the order of 100’s 

um across the surface of the tissue. For each position, a mean average spectrum of 100 acquisitions with exposure 

time of 10 milliseconds was recorded. A modal average of 3 random samples were investigated for each pat ient 

and 10 spectra measured for each sample. 

Spectral Pre-processing  

Spectra were labelled with the patient’s age, sex, and OA/OP classification. The modal average was 30 spectra 

per patient (10 spectra per sample, 3 samples per patient). Spectral data underwent pre-processing 

transformations prior to classification via multivariate analysis, carried out in iRootLab (0.15.07.09-v) toolbox within 

MATLAB R2020a software (MathWorks).42 

Raman scattering spectra were treated with 5th-order polynomial baseline correction, to eliminate slow varying 

offset attributed to interference of fluorescence and Mie scattering.41,43,44 Wavelet de-noising via 6 level Haar 

wavelet thresholding minimised random spectral noise without affecting signal quality.42,45 Rubber-banding 

baseline correction anchored the primary and terminal ends of each spectra to the horizontal axis, before vector 

normalisation. 41,46 47 

NIR-SWIR absorbance spectra were first treated with a 1st-derivative transformation to elucidate subtle features, 

as well as eliminate baseline offset, linear trends, and interference from light scattering.16,44 To mitigate 

subsequently increased noise (reduced SNR), a 2nd order Savitsky-Golay smoothing filter was applied (suitable for 
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vibrational spectroscopy data) with 9 filter coefficients (reducing noise whilst preserving information). 16,44,47 A 

rubber-banding baseline correction was also applied, suitable for later concatenation since the terminal value of 

the Raman region could marry with the starting value of NIR-SWIR. Finally, a further application of a 6 level, Haar 

wavelet de-noising transformation before vector normalisation served to make Raman and NIR-SWIR spectral 

peaks a compatible magnitude.  

Concatenation 

The spectromics spectral fingerprint was built by concatenation of data from the mean average pre-processed 

Raman spectra to the mean average pre-processed NIR-SWIR data from a given patient. The mean spectra 

recorded from each of the techniques was analysed given the spatial locations were not correlated between Raman 

and NIR-SWIR spectroscopy measurements. This also ensured that the spectra were truly representative of the 

whole sample for each patient. Concatenation is thus an abstraction of the data wherein the overall spectral shape 

is preserved (Raman scattering and NIR-SWIR absorbance) and the independent variable becomes a reference 

point in the spectromics fingerprint. Previously we have reported on the low level fusion between two Raman 

spectra excited at different wavelengths for accurate, label-free characterisation of bacterial pathogens.45,48 This 

concatenation process resulted in data fusion with Raman spectra accounting for the first 1011 independent 

variables (data points) and NIR-SWIR the last 512 points. 37–39  

Multivariate Analysis 

PCA-LDA 

Each of the pre-processed Raman, NIR-SWIR, and spectromics data set was mean centred before Principal 

Component Analysis (PCA).16 PCA scores represented variance in the sample direction and highlighted clustering 

patterns related to chemical similarities/dissimilarities between samples. Loadings describe the signal variance 

across the independent variable for identifying spectral regions with high degree of significance to the PCA scores 

distribution.44 PCA could not systematically classify samples alone and instead required further classification 

techniques.49 Herein the first 10 and first 20 PC’s (responsible for the majority of variance in the dataset) were 

selected for supervised classification via Linear Discriminant Analysis (LDA). PCA-LDA assigns the cartilage 

samples to their predicted groups, “Control” and “OA” cartilage.50 This algorithm calculated the Mahalanobis 

distance between samples for each class as a measure of tissue class segregation. 44 Classification for diagnosis 

here was supervised, labelled a priori via gold standard assessment from the orthopaedic surgeon. Though LDA 

is a parametric method and assumes samples hold a normal distribution, it was considered robust enough for 

spectroscopic data, and by applying to the foremost PCA scores maintains that the number of spectral variables 

was larger than the number of samples.44 

SVM 

Support Vector Machine (SVM), a supervised binary linear machine-learning classifier, was applied to each the 

Raman, NIR-SWIR, and spectromic fingerprints to quantify classification accuracy. A k-fold cross validation method 

was used to train the Gaussian classifier to model “Control vs OA Cartilage”, with the optimal values for the 

parameters for 𝑐 and 𝛾 determined via a grid search function. 42,50  This, was carried out for k=3 and leave-one-out 

cross validation to determine training and test sub-datasets. Confusion  matrices of each SVM model, built on the 

Raman, NIR-SWIR and spectromics fingerprints, describe the rate of correct group assignation when applying the 

trained model to the test dataset.  

Quality Parameters 

Quality parameters were calculated using the accumulative hits of the classification model, describing number of 

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). This quantified the 

classification accuracy of the respective models (Raman, NIR-SWIR, spectromics) on a test dataset (no a priori 

indication). 44 The comparator metrics, equations, and relevance to the technique are summarised in Table 1. 
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Table 1: Quality parameters used to evaluate model classification performance. Here TP means True Positive, FP false positives, 

TN true negatives, and FN false negatives. Adapted from Medeiros-De-morais et al.44 

 

Quality Parameter Equation Meaning 

Accuracy / % TP + TN

TP + FP + TN + FN
× 100 

No. of samples correctly classified considering true & false 

negatives. Optimal = 100% 

Sensitivity (SENS) / % TP

TP + FP
× 100 

Proportion of positive samples (e.g. OA) correctly classified. 

Optimal = 100% 

Specificity (SPEC) / % TN

TN+ FP
× 100 Proportion of negative samples (e.g. control) correctly 

classified. Optimal = 100% 

F-Score  2 ×
SENS × SPEC

SENS + SPEC
 

Model performance considering imbalanced classes.  

Optimal = 100% 

Feature Extraction: Spectral Biomarkers 

Feature extraction was performed on the spectromics data set to ascertain potential spectral biomarkers that 

account for the biggest differences between the OA and control tissue groups. The key biomarkers were identified 

by observing agreement between the highest weighted results of several independent statistical tests. Each 

process was carried out within IRootLab. 42  

PCA-LDA Loadings allowed feature extraction by first identifying the 3 highest absolute loading coefficients of the 

first LD component corresponding to the highest contributing PC’s. The loadings of the top 3 discriminant PC’s 

were in turn plotted to identifying the highest absolute peaks in the wavenumber direction. Cluster Vector Analysis 

following PCA-LDA highlighted PC’s that represent the best samples’ clustering and their loading vectors were 

combined.42,44 Both approaches highlighted the most pertinent spectral regions for tissue classification in the PCA-

LDA model, and the top 20 wavenumbers were recorded for each. 

Differences Between Mean Spectra (DBMS) identified biochemical alterations between the mean spectra of the 

control AC tissue (reference) and of the OA tissue (investigated sample). The top 20 most distinguishing features 

were recorded.   

The Student’s T-Test and Mann-Whitney U-Test were each applied to the spectromics fingerprint to test the 

probability of correct classification. The former assumed a normal (Gaussian) distribution and the latter non-

parametric (arguably with less bias), both carried out for completeness.42,44 The -log10 of the P-value for the T- 

and U-Test for each wavenumber was plotted. Feature extraction was carried out by identifying the 20 largest 

peaks above a threshold of p=0.01 (99% confidence interval).44 

Finally, Feature Forward Selection was carried out via standard protocol in the iRootLab toolbox. Here a binary 

classification was iterated to find the optimal features for class segregation, trained using a random 90% portion of 

the data, tested on the remaining 10%. Feature histograms counted how many times particular wavelength were 

selected, and displayed the most important features for distinguishing between the condition (OA) and reference 

class (control).51,42 The 7 most segregating peaks were recorded from the FFS histogram.  

Candidate biomarker spectral features from the concatenated fingerprint were mathematically translated to the 

corresponding Raman and NIR-SWIR spectra for assignment.44 NIR-SWIR features were corroborated through 

comparison to the nearest 1st derivative and corresponding 2nd derivative transformed spectral peaks. This allowed 

correct attribution to the zero-order NIR-SWIR spectra. 

Results and discussion 

Deeply penetrating vibrational spectroscopy of articular cartilage 

Representative spectra obtained with back-scattered Raman scattering and transreflected SWIR absorption 

spectroscopy of articular cartilage are shown in Fig 1. The class means for control and OA tissue from Raman 

spectra and the corresponding 1st order derivative NIR-SWIR spectra for the same patient, used to form the 

spectromics concatenated fingerprint are shown. For NIR-SWIR absorption spectra it was found that 

transreflectance geometry measurements (non-contact, highly reflective substrate) produced the same spectral 

response as for transmission geometry measurements (illumination and collection from either side of the sample), 

recorded in-house, and for backscattered fibre probe measurements (in contact, diffuse reflectance), recorded in 

literature.16,22 21,22 However, transreflectance measurements necessitate the use of a highly reflective substrate. 
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Native in vivo tissue classification will require diffuse reflectance measurements (subchondral bone as natural 

substrate), nevertheless, NIR-SWIR results presented here enable us to provide proof-of-concept. 

Multivariate Analysis Modelling: Improved Tissue Classification using Spectromics 

Raman scattering spectra, NIR-SWIR absorption spectra, and Concatenated spectra were assessed under 

multivariate statistical analysis to determine tissue classification accuracy. The data represented a mean average 

spectra characteristic for each of n=13 osteoarthritis and n=14 control model patients.  

Classification via PCA clustering alone proved inconclusive for each spectral modality since significant overlap 

existed between groupings of control and OA spectra. This could be due to the relatively small number of patient 

samples, exacerbated by the lack of spatially correlated Raman and NIR-SWIR data. LDA based on the first 10 

PCs and the first on 20 PCs showed inter-group differences, measured in Mahanobolis distance between control 

(negative class) and OA cartilage (positive), displayed in Fig. 2. Quality parameters were calculated from the 

corresponding proportion of TP, FN, TN, and FP segregation of samples, summarised in Table 2. 44 
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Table 2: PCA-LDA Quality Parameters to quantify classification performance of PCA-LDA models built upon the foremost 10 and 20 

principal components of the Raman, NIR-SWIR and Concatenated fingerprints. Ideal result is 100% for each. 

 

 Accuracy Sensitivity  Specificity F-Score 

10 Principal Components 

Raman  77.8 76.9 78.6 77.7 

NIR-SWIR 59.3 46.2 71.4 56.1 

Concatenated  100.0 100.0 100.0 100.0 

20 Principal Components 

Raman  100.0 100.0 100.0 100.0 

NIR-SWIR  100.0 100.0 100.0 100.0 

Concatenated  100.0 100.0 100.0 100.0 

 

Results showed a marked performance enhancement in modelling accuracy for the concatenated fingerprint over 

Raman and NIR-SWIR fingerprints alone. For models built on 10 PC’s accuracy increased from 77.8 % and 59.3 

% for Raman and NIR-SWIR, respectively, to 100.0 % segregation of the concatenated fingerprint spectra. Models 

built on 20 PC’s showed classes completely segregated for all spectral modes. The difference in mean and median 

Mahanolobis distance were quantified as a measure of tissue classification performance. The greater the 

difference, the greater the discrimination between tissue classes. A marked improvement for the concatenated 

fingerprint over Raman and NIR-SWIR fingerprints alone was observed (summarised in Table 3). 
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Table 3: Difference between mean and median Mahalobian distance to quantify tissue classification achieved via PCA-LDA modelling of 

articular cartilage built upon the 20 foremost principal components of the Raman, NIR-SWIR and Concatenated fingerprints. Ideal result is 

a larger distance between clusters. 

 Raman  NIR-SWIR Concatenated  

20 PC’s PCA-LDA Difference in Mahalobian distance (x10-2) 

Median 1.58 1.37 8.98 

(570/ 654% increase) 

Mean  1.54 0.07 8.81 

(572/ 1220% increase) 

An approximately 5- to 6-fold improvement in classification was demonstrated with the concatenated fingerprint 

over Raman and NIR-SWIR alone. These results indicate the augmented information content from both Raman 

and SWIR active vibrations may be responsible for improvement in tissue classification.  

In the analysis using PCA and PCA-LDA, the 10 and 20 most informative components were selected from each 

spectral mode.45  A higher number of principal components described the data with greater fidelity though there 

was an increase in the dimensionality of the data set; a lower number may aid efficiency and speed of classification 

analysis.  

Machine Learning Modelling: Improved Tissue Classification under Spectromics 

Spectral fingerprints formed from Raman scattering spectra, NIR-SWIR absorption spectra, and concatenated 

spectra were used to build a support vector machine for model “Control vs OA Cartilage” to determine tissue 

classification accuracy. These represented one spectrum for each of 13 osteoarthritis and 14 control model 

patients. Classification accuracies of SVM with 3-fold cross validation with leave-one-out cross validation shown in 

Fig. 3 and summarised in Table 4.  
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Table 4: Percentage Classification Accuracies rating performance of SVM models “Control vs OA Cartilage” based on data of 

the Raman, NIR-SWIR and Concatenated fingerprints. Ideal result is 100% for Control/Control and OA/OA classes, and 0% for 

mismatched classes. 

 

 Control/ Control Control/ OA OA/ Control OA/OA 

3-fold Cross Validator 

Raman  85.7 14.3 18.9 81.1 

NIR-SWIR  73.3 26.7 15.0 85.0 

Concatenated  95.2 4.8 20.0 80.0 

Leave-One-Out Cross Validator 

Raman  92.9 7.1 23.1 76.9 

NIR-SWIR  85.7 14.3 23.1 76.9 

Concatenated  100.00 0.00 23.1 76.9 
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The results clearly describe  the improved classification under the  spectromics fingerprint over modelling with 

Raman or NIR-SWIR alone. Specifically, recall for the control class (specificity) showed improvement from 85.7% 

and 73.3% for Raman and NIR-SWIR, respectively, up to 95.2% for the spectromics fingerprint under 3-fold cross 

validation SVM.  

Under leave-one-out cross validation, where each spectrum in turn is treated as the test data and the remaining 

used to train the model. This approach  showed an improvement again from 92.9% and 85.7%, for Raman and 

NIR-SWIR, respectively, to 100% accuracy for spectromics. However, recall for the positive OA class (sensitivity) 

showed mixed results with slightly lower rates for 3-fold SVM (Raman at 81.1%, NIR-SWIR at 85.0%, down to 

80.0% for spectromics) and no difference under leave-one-out SVM observed. 

Since the above evaluations were taken for each class in isolation, quality parameters were calculated from the 

accumulated hits to assess the classification model as a whole. Here the number of TP, TN, FP, and FN classified 

spectra was determined from the accumulated hits (summarised in Table 5). 

Table 5: Quality Parameters based on accumulated hits of Support Vector Machine model “Control vs OA” to assess modelling 

performance. Ideal results are 100% for each. 

 

 Accuracy Sensitivity  Specificity F-Score 

3-fold Cross Validator 

Raman 77.8 76.9 78.6 77.7 

NIR-SWIR  77.8 84.6 71.4 77.5 

Concatenated 85.2 76.9 92.9 84.1 

Leave-One-Out Cross Validator 

Raman  85.2 76.9 92.9 84.1 

NIR-SWIR  81.5 76.9 85.7 81.1 

Concatenated  88.9 76.9 100.0 87.0 

 

Accuracy and F-Score of the whole model show marked improvement, considering the imbalanced classes, namely 

n=14 control and n=13 OA.44 Under 3-fold cross validated training, accuracy improved from 77.8% for both Raman 

and NIR-SWIR, to 85.2% for spectromics; F-Score from 77.7% for Raman and 77.5% for NIR-SWIR, to 84.1% for 

spectromics. Similar improvements were seen under leave-one-out training, with accuracy improvement from 

85.2% for Raman, 81.5% for NIR-SWIR, to 88.89% for spectromics; F-score from 84.1% for Raman, 81.1% for 

NIR-SWIR, to 87.0% for spectromics. 

Although the reported  improvements were relatively modest (~10% in specificity) this nonetheless highlights the 

rich chemometric information afforded by vibrational spectroscopy and the added benefit of employing the 

enhanced fingerprint, with specificity as high as 100%. This latter result suggests the control cartilage spectra 

contained greater inter-sample consistency, drawing attention perhaps to the disordering influence OA has on the 

tissue, resulting in relatively low sensitivity. Indeed, damage to the ECM, loss of vital PG and water, as the complex 

effects of the disease, would likely produce heterogeneity between patients.  

Although the current data set clearly provide sufficient proof-of-concept, the work will require further validation, 

primarily through correlated spectromics data and an increase of number of patient samples. An increase in number 

of spectra will  improve the training and subsequently the accuracy of both the PCA-LDA and SVM models. Thus, 

considering the low number of samples in each class, for which only one representative spectra (mean average) 

was used, the proof-of-concept demonstrates high classification performance.  

Identifying spectral regions most pertinent to OA diagnosis  

To determine which regions of the fingerprint were the most significant contributors to discerning inter-class 

variation, a series of independent statistical tests were performed on the concatenated spectra. The results from 

each test (Fig. 4) were corroborated by identifying agreement between the highest scoring features (Supplementary 

Fig. 1). These corresponded to spectral regions most pertinent to tissue classification and in turn candidates for 

spectral biomarkers to distinguish control vs. OA AC tissue. These were then assigned to the chemical vibration/AC 

tissue constituent (Supplementary Table 1).  
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Relevant Raman spectral features included peaks at 1343-1334 cm-1 (CH wagging) indicative of presence of 

glycosaminoglycan (GAG) proteins, and the typically quoted amide III band around here at 1255-1246 cm-1 (C-N 

stretching), both shown to correlate with progression of OA. 18,25,27–29,52 The amide II band has been employed as 

a prominent spectral delineator between human healthy and OA knee AC, and the red shift as an indicator of 

mechanical impact compression in porcine AC. 25,31  

The peak at 1617-1616 cm-1 is representative of the amide I band (1612-1696 cm-1), with magnitude shown to 

decrease consistently with increasing grade of OA in human knee chondrocytes. 53 Spectral markers identified at 

1064-1063 cm-1 agree strongly with the symmetric SO3
- stretching of sulphated-GAG (sGAG) protein, the 

quantification of which can  determine the degeneration state of ex vivo human AC.18,27,29  

Relevant NIR-SWIR spectral features included bands at 6543-6472 cm-1, attributed to the N-H stretch (-CONH, 1st 

overtone) related to proteoglycan (PG) protein absorptions. This is regarded indicative of the ECM, and found to 

be the best spectral region for prediction of OA severity via Mankin scoring (6411-6496 cm-1). 22 The 4402-4366 

cm-1 band can be attributed to the 2nd overtone of the C-H bend, indicative of ECM protein content, pertinent since 

Partial Least Squares (PLS) modelling of the region of 4000-6000 cm-1 has predicted relative content of collagen 

and PG proteins in AC with error as low as 6%. 25   
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The features at 7159/7094 cm-1 and 8767/8744 cm-1 describe O-H stretching (1st overtone) and C-H stretching (2nd 

overtone), respectively.18,22 These have been attributed to water and collagen and PG proteins, their ratio forming 

a useful metric of relative water content (increasing during OA onset), Mankin score, and mechanical stiffness. The 

band centred about 5200 cm-1 has been used to accurately predict bound and free water through PLS regression 

modelling, represented by the spectromics biomarker found at 5357-5333 cm-1. 18,19  

Interestingly, the fundamental vibrational modes of O-H and C-H stretching have been explicitly identified as Raman 

AC disease markers and shown to correlate with the increase in total cartilage hydration and loss of tissue 

constituents, respectively, as indicators of lesions. 27 This highlights the benefit of the complimentary and 

encompassing nature of the spectromics approach.  

Also highlighted are potential “spectromics-specific” biomarkers, namely at the discontinuous transition from 

Raman to NIR-SWIR data and at around 4402-4367 cm-1 in NIR-SWIR absorbance. Though these cannot be 

attributed to pre-existing spectral markers of cartilage, these still offer a systematic feature unique to each spectra, 

and potentially a discriminatory metric to aid tissue classification. Further implementation of the approach could 

elucidate such features.  

Conclusions 

This proof-of-concept study examined Raman scattering and NIR-SWIR absorption spectroscopy for chemometric 

assessment of articular cartilage tissue in an elegant low-level abstraction data fusion approach termed 

spectromics. The improved classification potential of the enhanced spectromic fingerprint has been demonstrated 

and the potential for  diagnosis of OA. 

Binary classification models based on PCA-LDA and SVM have been assessed, which exhibited notable 

performance improvement when built upon the holistic spectromics fingerprint over Raman or NIR-SWIR 

fingerprints alone. PCA-LDA segregation employing 10 PC’s improved from 77.8% and 59.3%, for Raman and 

NIR-SWIR, respectively, to 100% for spectromics; employing 20 PC’s showed a 5-6 fold improvement. SVM 

modelling similarly showed performance improvement ~10% for class prediction using spectromics over Raman 

and NIR-SWIR alone. Spectral features most contributing to binary classification elucidated clinically relevant tissue 

components, proposed as potential label-free, non-invasive OA biomarkers. 

Future work will seek to improve performance of the approach by adopting a spatially correlated spectromic 

fingerprinting strategy and increasing the number of patient samples. In summary, the current proof-of-concept 

study demonstrates the potential of the spectromics approach for OA diagnosis with significant therapeutic 

diagnostic implications for an aging demographic.      
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Supplementary Information 

Supplementary Figure 1: Feature selection to identify spectral biomarkers for articular cartilage diagnostics. Results were 

corroborated between each independent statistical analysis to highlight wavenumbers most contributing to tissue classification. (a.) 

Cluster Vector Analysis for class clustering, (b.) Difference Between Mean Control and OA Spectra, (c.) PCA-LDA loadings scores, (d.) 

Feature Forward Selection, (e.) Mann-Whitney U-Test, (f.) Student’s T-Test 
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Supplementary Table 1: Spectral Biomarkers identified by corroboration of independent statistical tests to identify osteoarthritis vs control 

class discriminating peaks. Features in agreement under 3 and 4 tests (no. of hits) are displayed alongside the corresponding spectral 

position and attributed chemical vibration. 18,19 18,28 53 

 

Hits Spectromics 
Data Point 

Wavenumber 
(cm-1) 

Modality 1st Derivative 
Attributed 
Peak  

2nd Derivative 
Attributed 
Peak 

Assignment 

4* 
 

373 – 381 1342.64 – 
1334.18  

Raman - - CH, GAGs 

at 1342 cm-1 

4* 
 

733 – 738 946.56 – 
940.82 

Raman - - C–C deformation of aggrecan /  
C–O–C stretching of GAGs  

at 937 – 941 cm-1  

4*  
 

806 – 808 862.16 – 
859.83 

Raman - - C–C Stretching, Proline, 
Collagen 

at 856 – 859 cm-1 

4* 1011 / 1015 617.056 / 
10819.9  

Raman / 
NIR-
SWIR 

- - Spectromics Artefact: 

Raman to NIR-SWIR transition 

4* 1164, 1168 7158.55, 
7094.38 

NIR-
SWIR 

7174.78 7062.73 O-H Stretching (1st Overtone)  

at 7280 - 6040, 7460 - 6780 cm-1 

4* 1207 – 1211 6524.79 – 
6471.57 

NIR-
SWIR 

- 6254.84 N-H stretch (-CONH, 1st 
overtone)  

at 6352 cm-1 

4* 
 

1313 – 1316 5356.95 – 
5333.09  

NIR-
SWIR  

5342.02 5280.17 Bound & Free water  

at 5200 cm-1 

4* 
 

1443 – 1449 4402.48 – 
4366.62 

NIR-
SWIR 

4408.17, 
4420.64 

4372.55, 
4384.47 

C–H bend (protein, 2nd 
overtone),  

at 4350 cm-1 

4*  
 

1500 – 1503 4084.29 – 
4068.83 

NIR-
SWIR 

4073.97, 
4058.60 

4068.83, 
4073.97 

No precedent 

3* 
 

106, 107 1616.69, 
1615.69 

Raman - - Amide I  

at 1612–1696 cm−1  

3*  245 – 247 1475.99 –
1473.94 

Raman - - CH2 deformation/scissoring; 
protein & lipids 

at 1441 – 1460 cm-1 

3* 
 

264 – 269 1456.43 – 
1451.27 

Raman - - CH2/CH3 scissoring; collagen & 
other protein 

at 1451 cm-1 

3* 
 

455 – 463 1255.22 – 
1246.61 

Raman - - C-N stretching (Amide III)  

at 1230 – 1280 cm-1 

3* 
 

575 – 577 1124.38 – 
1122.17 

Raman - - Pyranose ring  
at 1127 – 1163 cm-1 

3* 
 

629, 630 1064.33, 
1063.21 

Raman - - SO3
– stretching in sulphated 

GAGs, PGs 

at 1060 – 1064 cm-1 

3* 
 

1083, 1084 8767.51, 
8744.18 

NIR-
SWIR 

8719.98 8577.59 C–H stretching (2nd overtone)  

at 8820 – 8060, 8695 - 8197 cm-1 
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