

 -28 28

- Kidane et al.
 ABSTRACT

Background: Chronic rhinosinusitis (CRS) is characterized by persistent nasal and paranasal

sinus mucosa inflammation. It comprises two phenotypes, namely CRS with nasal polyps
- $\begin{array}{c} \n\frac{1}{2} \quad \text{and} \quad \frac{1}{2} \quad \text{and} \quad \frac{$
- **ABSTRACT**

20 Background: 0

21 sinus mucosa

22 (CRSwNP) an

23 hypersensitivi
- 30 Background: Chronic rhinosinusitis (CRS) is characterized by persistent nasal and paranasal
31 sinus mucosa inflammation. It comprises two phenotypes, namely CRS with nasal polyps
32 (CRSwNP) and without (CRSsNP). CRSwN
- 31 sinus mucosa inflammation. It comprises two phenotypes, namely CRS with nasal polyps
32 (CRSwNP) and without (CRSsNP). CRSwNP can be associated with asthma and
33 hypersensitivity to non-steroidal anti-inflammatory drug (CRSwNP) and without (CRSsNP). CRSwNP can be associated with asthma and
33 hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs) in a syndrom
34 NSAID-exacerbated respiratory disease (N-ERD). Furthermore, CRS 33 hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs) in a syndrome known as
34 NSAID-exacerbated respiratory disease (N-ERD). Furthermore, CRS frequently intertwines
35 with respiratory allergies.
36 Objec NSAID-exacerbated respiratory disease (N-ERD). Furthermore, CRS frequently intertwines
with respiratory allergies.
Objective: This study investigated the phenotypic characteristics of peripheral blood
mononuclear cells (PB
-
- 35 with respiratory allergies.
36 Objective: This study inverse mononuclear cells (PBMC
38 influence of comorbid resp
- 36 Objective: This study investigated the phenotypic characteristics of peripheral blood
37 mononuclear cells (PBMCs) within cohorts of CRS patients, additionally examining
38 influence of comorbid respiratory allergies o
-
-
- 37 mononuclear cells (PBMCs) within cohorts of CRS patients, additionally examining the
38 influence of comorbid respiratory allergies on these parameters.
39 Methods: 24 participants were grouped into controls, CRSsNP, C 38 influence of comorbid respiratory allergies on these parameters.
39 Methods: 24 participants were grouped into controls, CRSsNP, $(n=6/\text{group})$, with half of the patients in each group having respictively cytokines were qu
-

39 Methods: 24 participants were grouped into controls, CRSsNP, CRSwNP, and N-ERD $(n=6/\text{group})$, with half of the patients in each group having respiratory allergies. Levels cytokines were quantified in nasal secretions and (*n*=6/group), with half of the patients in each group having respiratory allergies. Levels of
cytokines were quantified in nasal secretions and sera. The abundance and phenotypic
features of immune cells in PBMCs were eva cytokines were quantified in nasal secretions and sera. The abundance and phenotypic

42 features of immune cells in PBMCs were evaluated through mass cytometry and cluste

44 Results: N-ERD patients showed heightened type 42 features of immune cells in PBMCs were evaluated through mass cytometry and clustering
43 methods.
44 Results: N-ERD patients showed heightened type 2 nasal cytokine levels. Mass cytometry
45 analysis revealed increased

-
- 43 methods.
44 Results: N
45 analysis resting na
47 subtypes 1
-
- analysis revealed increased activated naive B cell levels in CRSwNP and N-ERD, while
the resting naive B cells were higher in CRSsNP. Th2a cell levels did not differ between CR
subtypes but were significantly elevated in a
-
- Results: N-ERD patients showed heightened type 2 nasal cytokine levels. Mass cytometry
analysis revealed increased activated naive B cell levels in CRSwNP and N-ERD, while
resting naive B cells were higher in CRSsNP. Th2a resting naive B cells were higher in CRSsNP. Th2a cell levels did not differ between CRS
subtypes but were significantly elevated in allergic subjects. In CRSwNP and N-ERD
patients, naive B cells had a lower CXCR5 and high subtypes but were significantly elevated in allergic subjects. In CRSwNP and N-ERD
patients, naive B cells had a lower CXCR5 and higher CD45RA expression, while NK cells
displayed reduced CD56 levels.
Conclusions: There ar
-
- displayed reduced CD56 levels.
50 Conclusions: There are distinct i
51 allergy, characterized by elevate
52 B cells in CRSwNP and N-ERD.
- patients, naive B cells had a lower CXCR5 and higher CD45RA expression, while NK cells
displayed reduced CD56 levels.
Conclusions: There are distinct immunological features in PBMCs of CRS phenotypes and
allergy, character 50 Conclusions: There are distinct immunological features in PBMCs of CRS phenotypes and
51 allergy, characterized by elevated resting naive B cells in CRSsNP, increased activated naiv
52 B cells in CRSwNP and N-ERD, and h
-
-
- 51 allergy, characterized by elevated resting naive B cells in CRSsNP, increased activated naive
52 B cells in CRSwNP and N-ERD, and higher Th2a cell levels in allergic subjects.
53 Capsule summary: This study examines imm 52 B cells in CRSwNP and N-ERD, and higher Th2a cell levels in allergic subjects.
53 Capsule summary: This study examines immunological profiles in different phenotypes of
54 CRS with and without comorbid allergy patients,
-
- 53 Capsule summary: This study examines immunological profiles in different phenotypes of
54 CRS with and without comorbid allergy patients, highlighting immune cell intricacies in C
55 subtypes and immune differences in C CRS with and without comorbid allergy patients, highlighting immune cell intricacies in CRS
subtypes and immune differences in CRS and respiratory allergy.
Keywords: Chronic rhinosinusitis, allergy, mass cytometry, nasal c 55 subtypes and immune differences in CRS and respiratory allergy.
56 Keywords: Chronic rhinosinusitis, allergy, mass cytometry, nasal
57 mononuclear cells, nasal polyps
58 56 Keywords: Chronic rhinosinusitis, allergy, mass cytometry, nasal cytokines, peripheral blood
57 mononuclear cells, nasal polyps
58

57 mononuclear cells, nasal polyps
58

- $\frac{1}{\sqrt{2}}$
- Kidane et al.
ABBREVIATIONS
CCL: Chemokine (C-C Motif) Ligand
CD: Cluster of differentiation 59 ABBREVIATIONS
60 CCL: Chemokine (C
61 CD: Cluster of differ
62 CRS: Chronic rhinos
-
-
- 60 CCL: Chemokine (C-C Motif) Ligand
61 CD: Cluster of differentiation
62 CRS: Chronic rhinosinusitis
63 CRSsNP: Chronic rhinosinusitis witho
- 61 CD: Cluster of differentiation
62 CRS: Chronic rhinosinusitis
63 CRSsNP: Chronic rhinosinusi
64 CRSwNP: Chronic rhinosinus 62 CRS: Chronic rhinosinusitis
63 CRSsNP: Chronic rhinosinus
64 CRSwNP: Chronic rhinosinu
65 CyTOF: Cytometry by Time 63 CRSsNP: Chronic rhinosinusitis without nasal polyps
64 CRSwNP: Chronic rhinosinusitis with nasal polyps
65 CyTOF: Cytometry by Time-Of-Flight
66 G-CSF: granulocyte-colony stimulating factor
-
- 65 CyTOF: Cytometry by Time-Of-Flight
66 G-CSF: granulocyte-colony stimulating
67 GM-CSF: Granulocyte-macrophage col
68 Ig: Immunoglobulin
- 64 CRSwNP: Chronic rhinosinusitis with nasal polyps
65 CyTOF: Cytometry by Time-Of-Flight
66 G-CSF: granulocyte-colony stimulating factor
67 GM-CSF: Granulocyte-macrophage colony-stimula 66 G-CSF: granulocyte-colony stimulating factor
67 GM-CSF: Granulocyte-macrophage colony-stimulating factor
68 Ig: Immunoglobulin
69 IL: Interleukin 67 GM-CSF: Granulocyte-macrophage colony-stimulating factor
68 Ig: Immunoglobulin
69 IL: Interleukin
70 IFN: Interferon
-
-
-
- 68 Ig: Immunoglobulin
69 IL: Interleukin
70 IFN: Interferon
71 MMI: Median metal 69 IL: Interleukin
70 IFN: Interferon
71 MMI: Median 1
72 NSAIDs: Non-70 IFN: Interferon
71 MMI: Median n
72 NSAIDs: Non-s
73 N-ERD: NSAIL
-
-
- 71 MMI: Median metal intensity
72 NSAIDs: Non-steroidal anti-ir
73 N-ERD: NSAIDs-exacerbated
74 opt-SNE: Optimized t-distribu 72 NSAIDs: Non-steroidal anti-inflammatory drugs
73 N-ERD: NSAIDs-exacerbated respiratory disease
74 opt-SNE: Optimized t-distributed stochastic neigh
75 PBMC: Peripheral blood mononuclear cells 74 opt-SNE: Optimized t-distributed stochastic neighbour embedding
75 PBMC: Peripheral blood mononuclear cells
76 SNOT-20: 20-item sinonasal outcome test opt-SNE: Optimized t-distributed stochastic neighbour embedding
75 PBMC: Peripheral blood mononuclear cells
76 SNOT-20: 20-item sinonasal outcome test
77 TNF: Tumour necrosis factor
-
- 75 PBMC: Peripheral blood mononuclear cells
76 SNOT-20: 20-item sinonasal outcome test
77 TNF: Tumour necrosis factor
78 TSLP: Thymic stromal lymphopoietin
-
- 77 TNF: Tumour necrosis factor
78 TSLP: Thymic stromal lymph
79 VEGF: Vascular endothelial g
80
- 516 SNOT-20: 20-item sinonasal outcome test
77 TNF: Tumour necrosis factor
78 TSLP: Thymic stromal lymphopoietin
79 VEGF: Vascular endothelial growth factor 78 TSLP: Thymic stromal lymphopoietin
79 VEGF: Vascular endothelial growth fa
80 79 VEGF: Vascular endothelial growth factor

 81
 82
 82 82
83 82

 83 83

1. I
Chronic rhin
of nasal and $\frac{1}{2}$ 84 1. INTRODUCTION
85 Chronic rhinosinusitis (CRS) is
86 of nasal and paranasal sinus m
87 classified as CRS with nasal po
88 to 15% of CRSwNP patients al 85 Chronic rhinosinusitis (CRS) is a complex disease characterized by persistent inflammation
86 of nasal and paranasal sinus mucosa affecting 8-12% of the population¹. Clinically, CRS is
87 classified as CRS with nasal of nasal and paranasal sinus mucosa affecting 8-12% of the population $¹$ </sup> of nasal and paranasal sinus mucosa affecting 8-12% of the population¹. Clinically, CRS is

87 classified as CRS with nasal polyps (CRSwNP) or without nasal polyps (CRSsNP), with up

88 to 15% of CRSwNP patients also dem classified as CRS with nasal polyps (CRSwNP) or without nasal polyps (CRSsNP), with up

to 15% of CRSwNP patients also demonstrating comorbid hypersensitivity to aspirin and

other nonsteroidal anti-inflammatory drugs (NSA to 15% of CRSwNP patients also demonstrating comorbid hypersensitivity to aspirin and
other nonsteroidal anti-inflammatory drugs (NSAIDs) as well as asthma in a syndrome ca
NSAIDs-exacerbated respiratory disease (N-ERD)² 89 other nonsteroidal anti-inflammatory drugs (NSAIDs) as well as asthma in a syndrome called
80 NSAIDs-exacerbated respiratory disease (N-ERD)². CRS is further classified into different
81 endotypes based on inflammato NSAIDs-exacerbated respiratory disease $(N\text{-}\text{ERD})^2$ 90 NSAIDs-exacerbated respiratory disease (N-ERD)². CRS is further classified into different
91 endotypes based on inflammatory cell infiltrations and cytokine secretions in nasal tissues ³
92 Of these endotypes, the endotypes based on inflammatory cell infiltrations and cytokine secretions in nasal tissues³.
Of these endotypes, the type 2 endotype is predominantly observed in CRSwNP and N-ERD
conditions in the Western world ^{2,4-6} 92 Of these endotypes, the type 2 endotype is predominantly observed in CRSwNP and N-ERD conditions in the Western world ^{2,4-6}. Respiratory allergy, another hallmark type 2 disease, affects up to 30% of the population conditions in the Western world $2,4-6$ 93 conditions in the Western world ^{2,4-6}. Respiratory allergy, another hallmark type 2 disease,
94 affects up to 30% of the population ⁷.CRS and respiratory allergy involve inflammation in
95 respiratory system and el affects up to 30% of the population $⁷$ </sup> 194 affects up to 30% of the population⁷.CRS and respiratory allergy involve inflammation in the respiratory system and elevated IgE production, but the link between these two conditions is not yet clear⁸.

97 Numerou respiratory system and elevated IgE production, but the link between these two conditions is
not yet clear ⁸.
Numerous previous studies aiming to characterize various immune cell types in CRS and
allergy ⁹⁻¹⁸ employed not yet clear ⁸. 96 not yet clear⁸.
97 Numerous prev
98 allergy ⁹⁻¹⁸ emp
99 limitations on t

97 Numerous previous studies aiming to characterize various immune cell types in CRS and
98 allergy ⁹⁻¹⁸ employed flow cytometry or immunohistochemistry-based techniques, albeit v
99 limitations on the number of paramete

allergy ⁹⁻¹⁸ employed flow cytometry or immunohistochemistry-based techniques, albeit with

199 limitations on the number of parameters that could be studied simultaneously. Although

100 advancements in single-cell para 99 limitations on the number of parameters that could be studied simultaneously. Although advancements in single-cell parametrization, driven by novel fluorophores and laser systems, have expanded our understanding of imm 101 have expanded our understanding of immune cell sub-classes and functional states, spectral
102 overlap in fluorescence-based cytometry often renders comprehensive immune state analysis
103 difficult ¹⁹.
104 Mass cyto

difficult 19 .

104 Mass cytometry, or cytometry by Time-Of-Flight (CyTOF®), offers a potential solution by
105 using heavy-metal isotopes instead of fluorophores, enabling precise quantification of target

105 using heavy-metal isotopes instead of fluorophores, enabling precise quantification of target
106 expression with minimal signal overlap and providing a detailed snapshot of the immune 103 difficult 19 .

104 Mass cyton

105 using heavy

106 expression

107 state 19 Thu Mass cytometry, or cytometry by Time-Of-Flight (CyTOF®), offers a potential solution by
105 using heavy-metal isotopes instead of fluorophores, enabling precise quantification of target
106 expression with minimal signal o

using heavy-metal isotopes instead of fluorophores, enabling precise quantification of target

106 expression with minimal signal overlap and providing a detailed snapshot of the immune

107 state ¹⁹. Thus, we used this state 19

expression with minimal signal overlap and providing a detailed snapshot of the immune

107 state ¹⁹. Thus, we used this technique to stain 38 immune cell surface markers simultaneo

108 for in-depth immune profiling of

tate ¹⁹. Thus, we used this technique to stain 38 immune cell surface markers simultaneously
108 for in-depth immune profiling of peripheral blood mononuclear cells (PBMCs) in CRS
109 patients. This study's primary objec 108 for in-depth immune profiling of peripheral blood mononuclear cells (PBMCs) in CRS
109 patients. This study's primary objective was to analyse alterations in abundance and
110 phenotypic characteristics of PBMCs in coh patients. This study's primary objective was to analyse alterations in abundance and
110 phenotypic characteristics of PBMCs in cohorts of CRS patients and disease controls.
111 Importantly, each group contained an equal r 110 phenotypic characteristics of PBMCs in cohorts of CRS patients and disease controls.

111 Importantly, each group contained an equal representation of patients with respiratory

112 allergies, allowing us to distinguis 111 Importantly, each group contained an equal representation of patients with respiratory

112 allergies, allowing us to distinguish whether the changes were exclusively linked to CI

113 could be influenced by the allerg

112 allergies, allowing us to distinguish whether the changes were exclusively linked to CRS or
113 could be influenced by the allergic predisposition.
114

113 could be influenced by the allergic predisposition.
114

Kidane et al.

2. MATERIAL AND METHODS

2.1.Study subjects and sample collection

Samples (Serum, nasal secretions, PBMCs) used in this study were taken from the CRS $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 2. MATERIAL AND METHODS
116 2.1.Study subjects and sample co
117 Samples (Serum, nasal secretions, PBMCs)
118 biobanks of the Department of Otorhinolary
119 approval of the Ethical Committee of the M 2.1.Study subjects and sample collection
117 Samples (Serum, nasal secretions, PBMCs) used in
118 biobanks of the Department of Otorhinolaryngology
119 approval of the Ethical Committee of the Medical U
120 The biobanks al 117 Samples (Serum, nasal secretions, PBMCs) used in this study were taken from the CRS
118 biobanks of the Department of Otorhinolaryngology, Medical University of Vienna, with the
119 approval of the Ethical Committee of biobanks of the Department of Otorhinolaryngology, Medical University of Vienna, with the

119 approval of the Ethical Committee of the Medical University of Vienna (EK Nr. 1492/2023).

120 The biobanks also contained deta 119 approval of the Ethical Committee of the Medical University of Vienna (EK Nr. 1492/2023).

120 The biobanks also contained detailed clinical characteristics of the patients as shown in Table

121 I and Supplementary Ta 120 The biobanks also contained detailed clinical characteristics of the patients as shown in Table
121 I and Supplementary Table E1.
122 2.2.Sample preparation
123 Sera, nasal secretions, and PBMCs were prepared following 121 I and Supplementary Table E1.

122 2.2.Sample preparations.

123 Sera, nasal secretions, and PBM

124 outlined in detail in the online re

2.2.Sample preparation
123 Sera, nasal secretions, and PBMCs
124 outlined in detail in the online repo
125 2.3.IgE measurement 123 Sera, nasal secretions, and PBMCs were prepared following established procedures and are

124 outlined in detail in the online repository.

125 2.3.1gE measurement

126 Allergen-specific IgE levels were measured in ser

-
-

outlined in detail in the online repository.

125 2.3.1gE measurement

126 Allergen-specific IgE levels were measur

127 assay (Allergy Explorer version 2, Macro 2.3.IgE measurement

126 Allergen-specific IgE levels wer

127 assay (Allergy Explorer version

128 over 280 allergen extracts and m

129 instructions which is briefly sur

126 Allergen-specific IgE levels were measured in serum using the ALEX® Allergy Explorer
127 assay (Allergy Explorer version 2, MacroArray Diagnostics, Vienna, Austria), encompassing
128 over 280 allergen extracts and mole

127 assay (Allergy Explorer version 2, MacroArray Diagnostics, Vienna, Austria), encompassing
128 over 280 allergen extracts and molecular allergens according to the manufacturer's
129 instructions, which is briefly summar 128 over 280 allergen extracts and molecular allergens according to the manufacturer's

129 instructions, which is briefly summarized in the online repository. A description of

130 respiratory allergens used to determine

130 respiratory allergens used to determine a patient's allergic status in Fig. 1 of this manuscript
131 is also provided in Supplementary Table E2.
2.4. Cytokine measurements
133 Thirty-three cytokines were analysed in na

-
-

130 respiratory allergens used to determine a patient's allergic status in Fig. 1 of this manuscript
131 is also provided in Supplementary Table E2.
132 2.4. Cytokine measurements
133 Thirty-three cytokines were analysed i 131 is also provided in Supplementary Table E2.

132 2.4. Cytokine measurements

133 Thirty-three cytokines were analysed in nasal

134 Discovery (MSD) multiplex U-Plex platform 2.4.Cytokine measurements

133 Thirty-three cytokines were analysed i

134 Discovery (MSD) multiplex U-Plex pl

135 before ²⁰, and as outlined in the online

- before 20
- 133 Thirty-three cytokines were analysed in nasal secretions and sera for using the Meso Scale

134 Discovery (MSD) multiplex U-Plex platform (MSD, Rockville, MA, USA) as described

135 before ²⁰, and as outlined in the 134 Discovery (MSD) multiplex U-Plex platform (MSD, Rockville, MA, USA) as described
135 before ²⁰, and as outlined in the online repository.
136 2.5.*Mass Cytometry: Staining and acquisition of PBMCs using MaxPAR®*
137 135 before ²⁰, and as outlined in the online repository.
136 2.5. Mass Cytometry: Staining and acqu
137 Immunoprofiling Assay and CyToF
138 Before immunostaining PBMCs, the frozen cells u 2.5. Mass Cytometry: Staining and acquisition of PBMCs using MaxPAR®
137 *Immunoprofiling Assay and CyToF*
138 Before immunostaining PBMCs, the frozen cells underwent a careful thawing process
139 described in the online r

137 *Immunoprofiling Assay and CyToF*
138 Before immunostaining PBMCs, the frozen cells u
139 described in the online repository. For immunosta
140 MaxPAR Direct Immunoprofiling Assay (Standar
141 ISA) supplemented with co

-
-

138 Before immunostaining PBMCs, the frozen cells underwent a careful thawing process, as

139 described in the online repository. For immunostaining, the PBMCs were subjected to the

140 MaxPAR Direct Immunoprofiling Assa described in the online repository. For immunostaining, the PBMCs were subjected to the
140 MaxPAR Direct Immunoprofiling Assay (Standard BioTools, South San Francisco, CA,
141 USA) supplemented with commercial and in-hous 140 MaxPAR Direct Immunoprofiling Assay (Standard BioTools, South San Francisco, CA,
141 USA) supplemented with commercial and in-house labeled antibodies given in
142 Supplementary Table E3 following the manufacturer's in 141 USA) supplemented with commercial and in-house labeled antibodies given in

142 Supplementary Table E3 following the manufacturer's instructions. A brief desc

143 staining and acquisition procedure can be found in th

142 Supplementary Table E3 following the manufacturer's instructions. A brief description of the
143 staining and acquisition procedure can be found in the online repository. A detailed protocol
144 has been described els taining and acquisition procedure can be found in the online repository. A detailed protocol
has been described elsewhere 21 .
 $\frac{1}{4}$
has been described elsewhere 21 .

has been described elsewhere 21 . 144 has been described elsewhere 21 .

2.
A step-wise $\frac{1}{2}$

2.6.Processing of Mass Cytometry Data Using Dimensionality Reduction and
146 FlowSOM
147 A step-wise approach was followed for analysis: normalized raw data files were importe
148 into Cytobank (Beckman Coulter, Brea, CA, FlowSOM
147 A step-wise approach wa
148 into Cytobank (Beckman
149 remove undesired events
150 ion clouds) by manually 147 A step-wise approach was followed for analysis: normalized raw data files were imported
148 into Cytobank (Beckman Coulter, Brea, CA, USA), and then quality control was employed to
149 remove undesired events (dead cel into Cytobank (Beckman Coulter, Brea, CA, USA), and then quality control was employed to
149 remove undesired events (dead cells, debris, normalization beads, aggregates, and coincident
150 ion clouds) by manually gating o 149 remove undesired events (dead cells, debris, normalization beads, aggregates, and coincident
150 ion clouds) by manually gating out beads and according to residual, center, offset, width,
151 event length, and DNA inte

150 ion clouds) by manually gating out beads and according to residual, center, offset, width,
151 event length, and DNA intercalator signals in biaxial plots vs Time parameter using Gaus
152 discrimination, leaving viable event length, and DNA intercalator signals in biaxial plots vs Time parameter using Gaussian
152 discrimination, leaving viable cell events for downstream analysis.
153 After data clean-up, dimensionality reduction was per

152 discrimination, leaving viable cell events for downstream analysis.

153 After data clean-up, dimensionality reduction was performed using

154 gated live cells using 38 channels (refer to Supplementary Table E3

155 s

153 After data clean-up, dimensionality reduction was performed using opt-SNE in Cytobank on
154 gated live cells using 38 channels (refer to Supplementary Table E3) with the advanced
155 settings left on the software's de gated live cells using 38 channels (refer to Supplementary Table E3) with the advanced
155 settings left on the software's default.
156 The opt-SNE was then visually inspected to identify distinctive clusters. Then, FlowSO 155 settings left on the software's default.
156 The opt-SNE was then visually inspected
157 clustering was performed on Cytobani
158 data as input. All the channels used for
159 analysis Subsequently clusters were

The opt-SNE was then visually inspected to identify distinctive clusters. Then, FlowSOM
157 clustering was performed on Cytobank (Beckman Coulter) utilizing the opt-SNE-reduced
158 data as input. All the channels used for 157 clustering was performed on Cytobank (Beckman Coulter) utilizing the opt-SNE-reduced
158 data as input. All the channels used for opt-SNE were also implemented in the FlowSOM
159 analysis. Subsequently, clusters were f

data as input. All the channels used for opt-SNE were also implemented in the FlowSOM

analysis. Subsequently, clusters were further annotated based on characteristic marker

expression patterns. Cell population/cluster pe

2159 analysis. Subsequently, clusters were further annotated based on characteristic marker
160 expression patterns. Cell population/cluster percentage data across different groups and
161 markers' median metal intensity (expression patterns. Cell population/cluster percentage data across different groups and
161 markers' median metal intensity (MMI) were exported to GraphPad prism (GraphPad
162 Software, Boston, MA, USA) for a statistical 161 markers' median metal intensity (MMI) were exported to GraphPad prism (GraphPad
162 Software, Boston, MA, USA) for a statistical analysis and graph output. Further inform
163 on opt-SNE and FlowSOM algorithm settings c 162 Software, Boston, MA, USA) for a statistical analysis and graph output. Further information
163 on opt-SNE and FlowSOM algorithm settings can be found on Cytobank's platform
164 (cytobank.org).
2.7.Statistical Analysis 163 on opt-SNE and FlowSOM algorithm settings can be found on Cytobank's platform
164 (cytobank.org).
2.7.*Statistical Analysis*
165 2.7.*Statistical Analysis*
166 All statistical analyses were conducted using GraphPad Pri

164 (cytobank.org).
165 2.7.*St*
166 All statistical an
167 Cytokine values 2.7.*Statistical Analysis*

166 All statistical analyses were condi

167 Cytokine values underwent a log

168 cytokines and immune cell popular

169 Rank Correlation as a distance me 166 All statistical analyses were conducted using GraphPad Prism 9.5.1(GraphPad Software).
167 Cytokine values underwent a log transformation. Hierarchical clustering analysis of levels
168 cytokines and immune cell popula

Cytokine values underwent a log transformation. Hierarchical clustering analysis of levels of
168 cytokines and immune cell populations was performed using a heat-mapper with Spearman
169 Rank Correlation as a distance mea

Rank Correlation as a distance measurement method 22

cytokines and immune cell populations was performed using a heat-mapper with Spearman
169 Rank Correlation as a distance measurement method²². Furthermore, data on the percentage
170 of cell populations and marker expres Rank Correlation as a distance measurement method ²². Furthermore, data on the percentage of cell populations and marker expression were retrieved from Cytobank and subsequently imported into GraphPad Prism for comprehen

171 imported into GraphPad Prism for comprehensive analysis.
172 Given the nature of the data distribution, non-parametric tes
173 comparisons. Specifically, the Mann-Whitney U test was ut
174 between allergic and non-alle

170 of cell populations and marker expression were retrieved from Cytobank and subsequently

171 imported into GraphPad Prism for comprehensive analysis.

172 Given the nature of the data distribution, non-parametric tests 172 Given the nature of the data distribution, non-parametric tests were employed for group
173 comparisons. Specifically, the Mann-Whitney U test was utilized to evaluate differences
174 between allergic and non-allergic

174 between allergic and non-allergic individuals. To assess distinctions among the CRSsNP,
175 CRSwNP, and N-ERD groups, the Kruskal-Wallis test was applied along with Dunn's tes

174 between allergic and non-allergic individuals. To assess distinctions among the CRSsNP,
175 CRSwNP, and N-ERD groups, the Kruskal-Wallis test was applied along with Dunn's test
175 175 CRSwNP, and N-ERD groups, the Kruskal-Wallis test was applied along with Dunn's test for

- multiple cor
threshold fo $\frac{1}{t}$ 176 multiple comparisons. For all analyses, a significance level of $p < 0.05$ was established as the threshold for statistical significance.
178
- 177 threshold for statistical significance.
178

Kidane et al.
2. RESULTS
3.1.Subject characteristics

patients between groups (Fig. 2D).

- $\begin{array}{c}\n3.4.1 \\
\hline\nr \\
f\n\end{array}$ \overline{a} 210 *3.4.High-resolution immune profiling by mass cytometry reveals significantly higher

211 numbers of Th2a cells in the blood of allergic subjects but not of patients sufferin*

212 *from CRS*

213 To get an insight i
-

*numbers of Th2a cells in the blood of allergic subjects but not of patients suffering

212 from CRS*

213 To get an insight into the immune cell subsets associated with CRS as well as allergic

214 diseases, high-resolu *from CRS*
213 To get an insight into
214 diseases, high-resolut
215 (*n*=22) by mass cyton
216 the analysis due to ins 213 To get an insight into the immune cell subsets associated with CRS as well as allergic
214 diseases, high-resolution immune profiling was conducted in PBMCs of the participants
 $(n=22)$ by mass cytometry. Two patients 218 clustering analyses by FlowSOM, was conducted and showed clear separation of cell $(n=22)$ by mass cytometry. Two patients in the CRSwNP allergic group were excluded from

216 the analysis due to insufficient cell numbers for in-depth analysis. Mass cytometry data,

217 coupled with dimensionality reduc the analysis due to insufficient cell numbers for in-depth analysis. Mass cytometry data,

217 coupled with dimensionality reduction techniques (Fig. 3A) and unbiased automated

218 clustering analyses by FlowSOM, was cond coupled with dimensionality reduction techniques (Fig. 3A) and unbiased automated
218 clustering analyses by FlowSOM, was conducted and showed clear separation of cell
219 populations based on canonical markers as exemplif 218 clustering analyses by FlowSOM, was conducted and showed clear separation of cell
219 populations based on canonical markers as exemplified in Fig. 3A. As shown in Fig. 3
220 Fig. 3C clusters of immune cells, encompas 219 populations based on canonical markers as exemplified in Fig. 3A. As shown in Fig. 3B and
220 Fig. 3C clusters of immune cells, encompassing natural killer (NK), natural killer T (NKT),
221 mucosal-associated invarian Fig. 3C clusters of immune cells, encompassing natural killer (NK), natural killer T (NKT),
221 mucosal-associated invariant T (MAIT), CD4+ T (CD4 T), Regulatory T (T-reg), CD8+ T
222 (CD8 T), Gamma-Delta T (γδ T), Memory 221 mucosal-associated invariant T (MAIT), CD4+ T (CD4 T), Regulatory T (T-reg), CD8+ T
222 (CD8 T), Gamma-Delta T ($\gamma \delta$ T), Memory B (Memory B), Naive B (Naive B), Plasmablas
223 (Plasmas), Monocytes, myeloid Dendritic 222 (CD8 T), Gamma-Delta T (γδ T), Memory B (Memory B), Naive B (Naive B), Plasmablasts
223 (Plasmas), Monocytes, myeloid Dendritic cells (mDCs), and plasmacytoid Dendritic cells
224 (pDCs) in the different disease entit 223 (Plasmas), Monocytes, myeloid Dendritic cells (mDCs), and plasmacytoid Dendritic cells
224 (pDCs) in the different disease entities. Differential abundance analysis to quantify immun
225 cell subpopulations revealed on (pDCs) in the different disease entities. Differential abundance analysis to quantify immune

225 cell subpopulations revealed only a slight trend towards increased levels of T-reg and Th2

226 cells in the PBMCs of CRSsNP cell subpopulations revealed only a slight trend towards increased levels of T-reg and Th2
226 cells in the PBMCs of CRSsNP and N-ERD patients (Supplementary Fig. E1). No significa
227 alterations in the other cell types w cells in the PBMCs of CRSsNP and N-ERD patients (Supplementary Fig. E1). No significant
alterations in the other cell types were identified between the disease groups (Fig. 3D).
As Th2a cells have previously been described 227 alterations in the other cell types were identified between the disease groups (Fig. 3D).

228 As Th2a cells have previously been described to be elevated in the blood of allergic

229 subjects²³, we next investigat 228 As Th2a cells have previously been described to be elevated in the blood of allergic
229 subjects²³, we next investigated if they were also elevated in CRS subtypes with stro
230 profile. To that aim, we manually ga subjects 23 229 subjects²³, we next investigated if they were also elevated in CRS subtypes with strong type 2
230 profile. To that aim, we manually gated the subpopulation of Th2a cells based on established
231 surface marker expr 230 profile. To that aim, we manually gated the subpopulation of Th2a cells based on established
231 surface marker expression (CD27 CD45RB CD161⁺ CRTH2/CD294⁺CD49d⁺²⁴) within
232 PBMCs (Fig. 3E). Despite being a re surface marker expression (CD27 CD45RB CD161⁺ CRTH2/CD294⁺CD49d⁺²⁴ 233 Th2a immune cell subset exhibited a notable increase in allergic individuals $(p=0.0133)$.
234 Intriguingly, when comparing these cells within the CRS groups, no significant changes were
235 observed $(p=0.7650)$ (Fig. 232 PBMCs (Fig. 3E). Despite being a relatively small fraction of the total PBMC population, the

233 The Th2a immune cell subset exhibited a notable increase in allergic individuals ($p=0.0133$).

234 Intriguingly, when 233 Th2a immune cell subset exhibited a notable increase in allergic individuals ($p=0.0133$).
234 Intriguingly, when comparing these cells within the CRS groups, no significant changes
235 observed ($p=0.7650$) (Fig. 3E) 234 Intriguingly, when comparing these cells within the CRS groups, no significant changes were
235 observed ($p=0.7650$) (Fig. 3E). As shown in Supplementary Fig. E2, no differences were
236 seen when CRS and allergy sta 235 observed (*p*=0.7650) (Fig. 3E). As shown in Supplementary Fig. E2, no differences were
236 seen when CRS and allergy status stratified the data.
237 3.5. Comprehensive profiling of B cell subpopulations using FlowSOM 236 seen when CRS and allergy status stratified the data.
237 3.5. Comprehensive profiling of B cell subpop.
238 Given the pivotal role of B cells in the pathophysiolo
239 we conducted an extensive analysis of B cell popul

237 3.5.Comprehensive profiling of B cell subpopulations using FlowSOM analysis
238 Given the pivotal role of B cells in the pathophysiology of both CRS and allergic conditions,
239 we conducted an extensive analysis of B 238 Given the pivotal role of B cells in the pathophysiology of both CRS and allergic conditions,
239 we conducted an extensive analysis of B cell populations (Fig. 4) within PBMCs. This
240 analysis was performed using an

- we conducted an extensive analysis of B cell populations (Fig. 4) within PBMCs. This
240 analysis was performed using an automated assessment of marker expression profiles v
241 FlowSOM leading to identification of ten dis
- 240 analysis was performed using an automated assessment of marker expression profiles via
241 FlowSOM leading to identification of ten distinct B-cell metaclusters (B1-B10) (Fig. 4A). 241 FlowSOM leading to identification of ten distinct B-cell metaclusters (B1-B10) (Fig. 4A).

-]
|
|
- Kidane et al.
Notably, several markers, including CD45RB, CCR6, CD11c, CD27, CXCR5, CD38,
CD49d, HLA-DR, CD11b, and CD20 exhibited differential expression within the B cell
population, giving rise to these uniquely defined Notably, several markers, including CD45RB, CCR6, CD11c, CD27, CXCR5, CD38,

243 CD49d, HLA-DR, CD11b, and CD20 exhibited differential expression within the B ce

244 population, giving rise to these uniquely defined metac 243 CD49d, HLA-DR, CD11b, and CD20 exhibited differential expression within the B cell
244 population, giving rise to these uniquely defined metaclusters (Fig. 4B).
245 Broadly, the metaclusters consisted of naive B cells,
- population, giving rise to these uniquely defined metaclusters (Fig. 4B).

245 Broadly, the metaclusters consisted of naive B cells, characterized by CI

246 (specifically B1, B2, B3, B7 & B10), and memory B cells, charact
- Broadly, the metaclusters consisted of naive B cells, characterized by CD27 (Fig. 4B)
- (specifically B1, B2, B3, B7 & B10), and memory B cells, characterized by $CD27^+$
- 245 Broadly, the metaclusters consisted of naive B cells, characterized by CD27⁻ (Fig. 4B)
246 (specifically B1, B2, B3, B7 & B10), and memory B cells, characterized by CD27⁺
247 (including B4, B5, B6, B8 & B9), among (including B4, B5, B6, B8 & B9), among which B4 and B9 displayed high $CD38⁺$ expression
-
- 247
248
249
250
-
- (including B4, B5, B6, B8 & B9), among which B4 and B9 displayed high CD38⁺ expression
248 and thus are putative plasmablasts. As illustrated in Fig. 4C-F, the metaclusters were
249 differently sized, with B1, a naïve B 248 and thus are putative plasmablasts. As illustrated in Fig. 4C-F, the metaclusters were
249 differently sized, with B1, a naïve B cell metacluster, constituting approximately 60% of the
250 total B cell population in co differently sized, with B1, a naïve B cell metacluster, constituting approximately 60% of the

250 total B cell population in control subjects. In contrast, B7, another type of naïve B cell

251 distinguished by CD11b surf total B cell population in control subjects. In contrast, B7, another type of naïve B cell

251 distinguished by CD11b surface marker, accounted for just 0.4% of the B cell population

252 control subjects.

253 To investi distinguished by CD11b surface marker, accounted for just 0.4% of the B cell population in

252 control subjects.

253 To investigate potential differences, we conducted an abundance analysis of the identified B

254 cell
-

252 control subjects.
253 To investigate po
254 cell metaclusters
255 allergic and non-
256 naïve B cells mai

- 253 To investigate potential differences, we conducted an abundance analysis of the identified B
254 cell metaclusters across various groups: Control, CRSsNP, CRSwNP, and N-ERD, as well as
255 allergic and non-allergic sub cell metaclusters across various groups: Control, CRSsNP, CRSwNP, and N-ERD, as well as
255 allergic and non-allergic subjects (Fig. 4C-F). Notably, metaclusters B1 and B2 (representing
256 naïve B cells marked by higher e allergic and non-allergic subjects (Fig. 4C-F). Notably, metaclusters B1 and B2 (representing

256 naïve B cells marked by higher expression of CCR6 and CXCR5) showed a trend towards

257 increased levels in CRSsNP patient 256 naïve B cells marked by higher expression of CCR6 and CXCR5) showed a trend towards
257 increased levels in CRSsNP patients, which reached statistical significance for B1 cells as
258 compared to N-ERD patients ($p=0.$
-
- 257 increased levels in CRSsNP patients, which reached statistical significance for B1 cells as

258 compared to N-ERD patients ($p=0.0231$). Conversely, N-ERD and CRSwNP groups show

259 a significantly increased frequen 258 compared to N-ERD patients ($p=0.0231$). Conversely, N-ERD and CRSwNP groups showed

259 a significantly increased frequency of B3 (naïve B cell with low expression of CCR6)

260 compared to CRSsNP (N-ERD-CRSsNP: $p=0$
- 259 a significantly increased frequency of B3 (naïve B cell with low expression of CCR6)
260 compared to CRSsNP (N-ERD-CRSsNP: $p=0.0141$, CRSwNP-CRSsNP: $p=0.0266$) (Fig.
261 4C).
262 A more in-depth analysis of the abun

261 4C).
262 A mo
263 Supp
264 that t
265 unde

260 compared to CRSsNP (N-ERD-CRSsNP: *p*=0.0141, CRSwNP-CRSsNP: *p*=0.0266) (Fig.
261 4C).
262 A more in-depth analysis of the abundance in the context of allergy (Fig. 4D-F;
263 Supplementary Fig. E3) revealed that B3 wa 262 A more in-depth analysis of the abundance in the context of allergy (Fig. 4D-F;
263 Supplementary Fig. E3) revealed that B3 was not increased in allergic subjects,
264 that the observed increase in the naïve B1, B2, a

-
- 263 Supplementary Fig. E3) revealed that B3 was not increased in allergic subjects, indicating
264 that the observed increase in the naïve B1, B2, and B3 frequency was solely due to the
265 underlying CRS disease. Allergi 264 that the observed increase in the naïve B1, B2, and B3 frequency was solely due to the
265 underlying CRS disease. Allergic subjects, however, had a decreased frequency of men
266 B-cell metaclusters B4 ($p=0.0169$),
-

- 265 underlying CRS disease. Allergic subjects, however, had a decreased frequency of memory

266 B-cell metaclusters B4 ($p=0.0169$), B6 ($p=0.0206$), B9 ($p=0.0426$), and naïve B cell

267 metacluster B10 ($p=0.0249$), a 266 B-cell metaclusters B4 (*p*=0.0169), B6 (*p*=0.0206), B9 (*p*=0.0426), and naïve B cell

267 metacluster B10 (*p*=0.0249), as compared to non-allergic subjects.

268 3.6.*Immunophenotypic distinctions in B cell subtype* metacluster B10 (*p*=0.0249), as compared to non-allergic subjects.

268 3.6.*Immunophenotypic distinctions in B cell subtypes illumi*

269 *ERD derived B cells*

270 We further analysed surface marker expression levels in 3.6.*Immunophenotypic distinctions in B cell subtypes illuminate unique features of N-*

269 ERD derived B cells

270 We further analysed surface marker expression levels in B cell metaclusters of the three CRS

271 diseas
- 269 *ERD derived B cells*
270 We further analysed surface man
271 disease groups. N-ERD and CR
272 intensity (MMI) levels of the different
273 which reached a significant different
- 270 We further analysed surface marker expression levels in B cell metaclusters of the three CRS disease groups. N-ERD and CRSsNP patients showed a trend towards elevated median metal intensity (MMI) levels of the differe
- 271 disease groups. N-ERD and CRSsNP patients showed a trend towards elevated median metal
272 intensity (MMI) levels of the differentiation marker CD45RA across all B cell metaclusters,
273 which reached a significant di
- 272 intensity (MMI) levels of the differentiation marker CD45RA across all B cell metaclusters,
273 which reached a significant difference in B10 of CRSsNP compared to Control ($p=0.0082$). 273 which reached a significant difference in B10 of CRSsNP compared to Control $(p=0.0082)$.

301
302

Kidane et al.

4. DISCUSSION

Here, we conducted a detailed analysis of immune cell profiles in PBMCs of patients

 $\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$

303 4. DISCUSSION
304 Here, we conducted a c
305 suffering from various
306 distinction in patients

304 Here, we conducted a detailed analysis of immune cell profiles in PBMCs of patients
305 suffering from various forms of CRS: CRSsNP, CRSwNP, and N-ERD, with a further
306 distinction in patients with and without respir

305 suffering from various forms of CRS: CRSsNP, CRSwNP, and N-ERD, with a further
306 distinction in patients with and without respiratory allergies.
307 Using a panel comprising 33 different cytokines, we found elevated 306 distinction in patients with and without respiratory allergies.
307 Using a panel comprising 33 different cytokines, we found el
308 associated cytokines, including CCL17, Eotaxin, Eotaxin-3, l
309 secretions of CRSwNP

307 Using a panel comprising 33 different cytokines, we found elevated concentrations of type 2-
308 associated cytokines, including CCL17, Eotaxin, Eotaxin-3, IL-5, and IL-9, in nasal
309 secretions of CRSwNP patients wit 310 agrees with earlier reports of CRSwNP and especially N-ERD being dominated by type 2-
311 driven inflammatory conditions in the Western world ^{2,4-6}. CRSsNP patients showed a more
312 mixed pattern of type 1 and type driven inflammatory conditions in the Western world ^{2,4-6}

associated cytokines, including CCL17, Eotaxin, Eotaxin-3, IL-5, and IL-9, in nasal
309 secretions of CRSwNP patients with the highest levels observed in N-ERD patients.
310 agrees with earlier reports of CRSwNP and especi 309 secretions of CRSwNP patients with the highest levels observed in N-ERD patients. This
310 agrees with earlier reports of CRSwNP and especially N-ERD being dominated by type 2
311 driven inflammatory conditions in the 311 driven inflammatory conditions in the Western world $^{2,4-6}$. CRSsNP patients showed a more
312 mixed pattern of type 1 and type 3 endotypes and strong inter-individual differences in
313 accordance with previous rep

accordance with previous reports $2,4-6$.

312 mixed pattern of type 1 and type 3 endotypes and strong inter-individual differences in
313 accordance with previous reports $2.4-6$.
314 Our main objective in this study was to investigate differences in levels and c 313 accordance with previous reports $2.4-6$.
314 Our main objective in this study was to
315 various immune cell types within CRS
316 subpopulations, we detected no signifi
317 cytometry has recently revealed differe

314 Our main objective in this study was to investigate differences in levels and characteristics of various immune cell types within CRS using mass cytometry. With regards to T cell subpopulations, we detected no signific

316 subpopulations, we detected no significant differences in peripheral blood. Though mass
317 cytometry has recently revealed differences in nasal polyp-derived T cell subsets with a
318 higher percentage of $CD161^{\text{hi}}$

315 various immune cell types within CRS using mass cytometry. With regards to T cell
316 subpopulations, we detected no significant differences in peripheral blood. Though n
317 cytometry has recently revealed difference 317 cytometry has recently revealed differences in nasal polyp-derived T cell subsets with a
318 higher percentage of CD161^{hi} CXCR3^{lo} expressing T helper cells in nasal polyps as
319 compared to control tissues ²⁶,

318 higher percentage of CD161^m CXCR3^{to} expressing T helper cells in nasal polyps as
319 compared to control tissues ²⁶, we only detected a trend towards elevated Th2 cell le
320 blood of CRSwNP patients and N-ERD p compared to control tissues ²⁶

319 compared to control tissues ²⁶, we only detected a trend towards elevated Th2 cell levels in
320 blood of CRSwNP patients and N-ERD patients, which did not reach significance. The lack
321 of difference in Th2 cell

using flow cytometry approaches 27 .

blood of CRSwNP patients and N-ERD patients, which did not reach significance. The lack
321 of difference in Th2 cell numbers between different patient groups has also been observed
322 using flow cytometry approaches ²⁷ 321 of difference in Th2 cell numbers between different patient groups has also been observed
322 using flow cytometry approaches ²⁷.
323 To the best of our knowledge, we are the first to identify Th2a cells based on the 322 using flow cytometry approaches 27 .
323 To the best of our knowledge, we are
324 of CRTH2, CD161, CD49d and CD2
325 Th2 subset was initially described by
326 23 and recently put forward as a cand

323 To the best of our knowledge, we are the first to identify Th2a cells based on the expression
324 of CRTH2, CD161, CD49d and CD27 in the blood of patients using mass cytometry. This
325 Th2 subset was initially descri 324 of CRTH2, CD161, CD49d and CD27 in the blood of patients using mass cytometry. This
325 Th2 subset was initially described by Wambre et al as associated with allergic disease statu
326 ²³ and recently put forward as 325 Th2 subset was initially described by Wambre et al as associated with allergic disease status
326 23 and recently put forward as a candidate for monitoring success during immunotherapy for
327 food 28 or respi 23

²³ and recently put forward as a candidate for monitoring success during immunotherapy for
327 food ²⁸ or respiratory allergens ²⁹. Interestingly, we found no differences in Th2a levels
328 between CRS entities but food ²⁸ or respiratory allergens²⁹

regardless of their CRS status. Our observation that allergic patients had significantly
330 elevated levels of Th2a cells despite being a heterogeneous group with various levels
331 specific IgE against different allergen

527 food ²⁸ or respiratory allergens ²⁹. Interestingly, we found no differences in Th2a levels
528 between CRS entities but significantly increased levels in allergic versus non-allergic p
539 regardless of their CRS s 328 between CRS entities but significantly increased levels in allergic versus non-allergic patients
329 regardless of their CRS status. Our observation that allergic patients had significantly
330 elevated levels of Th2a elevated levels of Th2a cells despite being a heterogeneous group with various levels of
331 specific IgE against different allergen sources, from tree to animal, implicates Th2a leve
332 a potentially universal biomarker

a potentially universal biomarker and therapeutic target for allergic disease 30

a potentially universal biomarker and therapeutic target for allergic disease 30 .
333 Eosinophils have long been regarded as main drivers of CRSwNP. However, v
334 introduction and success of anti-IgE and anti-IL4/IL-13

specific IgE against different allergen sources, from tree to animal, implicates Th2a levels as
a potentially universal biomarker and therapeutic target for allergic disease ³⁰.
Eosinophils have long been regarded as mai 333 Eosinophils have long been regarded as main drivers of CRSwNP. However, with the
334 introduction and success of anti-IgE and anti-ILA/IL-13 antibodies in treating severe d
334 334 introduction and success of anti-IgE and anti-IL4/IL-13 antibodies in treating severe disease
 1

³¹, B cells ha
has been sho
cell differen 3
|
|
| 31 , B cells have also been attributed to an important role in pathogenesis $32, 33$ 335 ³¹, B cells have also been attributed to an important role in pathogenesis ^{32, 33}. In this line, it
336 has been shown that chronic airway inflammation creates an environment well-suited for B
337 cell differentia 336 has been shown that chronic airway inflammation creates an environment well-suited for B cell differentiation 34 and that the nasal mucosa of CRS shows elevated levels of naïve B cells, memory B cells and plasma cel cell differentiation 34 and that the nasal mucosa of CRS shows elevated levels of naïve B 337 cell differentiation 34 and that the nasal mucosa of CRS shows elevated levels of naïve B
338 cells, memory B cells and plasma cells, with the highest number observed in CRSwNP
339 patients $35,36$. In the blood of cells, memory B cells and plasma cells, with the highest number observed in CRSwNP
patients ^{35,36}. In the blood of CRS patients, we did not observe differences in major B ce
subsets, which is in agreement with previous d patients 35,36 patients ^{35,36}. In the blood of CRS patients, we did not observe differences in major B cell
340 subsets, which is in agreement with previous data ³⁵. Thus, we performed a deeper
341 characterization employing an unsup subsets, which is in agreement with previous data 35 . Thus, we performed a deeper subsets, which is in agreement with previous data ³⁵. Thus, we performed a deeper

341 characterization employing an unsupervised high-resolution profiling approach usi

342 FlowSOM. This enabled us to distinguish ten di 341 characterization employing an unsupervised high-resolution profiling approach using
342 FlowSOM. This enabled us to distinguish ten distinct B cells subtypes based on the
343 expression of phenotypic markers, including 342 FlowSOM. This enabled us to distinguish ten distinct B cells subtypes based on the expression of phenotypic markers, including CD45RB, CD27, CXCR5, CD38, CD4 DR, CD19, and CD20. Though not significant, we observed in 343 expression of phenotypic markers, including CD45RB, CD27, CXCR5, CD38, CD49d, HLA

244 DR, CD19, and CD20. Though not significant, we observed in CRSsNP patients a trend

345 towards elevated levels of B1 and B2 metac 345 towards elevated levels of B1 and B2 metaclusters, which show characteristics of resting
346 naïve B cells (CD27 CD38⁺IgD⁺)³⁷. N-ERD patients, on the other hand, displayed a
347 significantly increased frequency 345 towards elevated levels of B1 and B2 metaclusters, which show characteristics of resting
346 naïve B cells (CD27 CD38⁺IgD⁺)³⁷. N-ERD patients, on the other hand, displayed a
347 significantly increased frequency naïve B cells (CD27⁻CD38⁺IgD⁺)³⁷ maïve B cells (CD27⁻CD38⁺IgD⁺)³⁷. N-ERD patients, on the other hand, displayed a significantly increased frequency of B3, another subset of naive B cells characterized absence of CD27 and CD38 expression but posit 347 significantly increased frequency of B3, another subset of naive B cells characterized by the
348 absence of CD27 and CD38 expression but positive for IgD. These cells can be identified as
349 putative "mature-naive" 348 absence of CD27 and CD38 expression but positive for IgD. These cells can be identified as
349 putative "mature-naive" ³⁸ or "activated naïve" ³⁷ B cells. Additionally, B-cells of CRS
350 patients showed a trend to putative "mature-naive" ³⁸ or "activated naïve" ³⁷ putative "mature-naive" ³⁸ or "activated naïve" ³⁷ B cells. Additionally, B-cells of CRS

patients showed a trend towards reduced levels of the chemokine receptor CXCR5 and

integrin CD49d in selected metaclusters, whi patients showed a trend towards reduced levels of the chemokine receptor CXCR5 and the
integrin CD49d in selected metaclusters, which are both involved in establishing and
maintaining optimal germinal center reactions ^{39,} 351 integrin CD49d in selected metaclusters, which are both involved in establishing and
352 maintaining optimal germinal center reactions $39,40$. These findings are interesting in 1
353 previous observations that IgE-se maintaining optimal germinal center reactions 39,40 352 maintaining optimal germinal center reactions $39,40$. These findings are interesting in light of previous observations that IgE-secreting cells from nasal polyps are mainly guided to extrafollicular pathways $34,41$. 353 previous observations that IgE-secreting cells from nasal polyps are mainly guided to
354 extrafollicular pathways ^{34,41}. In summary, it is compelling to speculate that blood-bor
355 activated naïve B cells, enriched extrafollicular pathways $34,41$ 354 extrafollicular pathways $34,41$. In summary, it is compelling to speculate that blood-borne
355 activated naïve B cells, enriched in N-ERD patients, may migrate to extrafollicular structures
356 within the nasal poly 355 activated naïve B cells, enriched in N-ERD patients, may migrate to extrafollicular structures
356 within the nasal polyp, where they may further differentiate into antibody-producing cells 33 .
357 NK cell dysfunc within the nasal polyp, where they may further differentiate into antibody-producing cells 33 . within the nasal polyp, where they may further differentiate into antibody-producing cells ³³.

NK cell dysfunction has also been observed in CRS patients with decreased effector function

being associated with increase 357 NK cell dysfunction has also been observed in CRS patients with decreased effector function
358 being associated with increased eosinophilic inflammation ⁴² and disease severeness ⁴³. In
359 this context, we obser being associated with increased eosinophilic inflammation 42 and disease severeness 43 being associated with increased eosinophilic inflammation 42 and disease severeness 43 . In
this context, we observed reduced expression of the phenotypic NK cell activation marker
CD56^{44,45} in CRSwNP patients. As CD

 $CD56^{44,45}$ in CRSwNP patients. As CD56-negative NK cell subsets are enriched in patients

this context, we observed reduced expression of the phenotypic NK cell activation marker
360 CD56^{44,45} in CRSwNP patients. As CD56-negative NK cell subsets are enriched in patient
361 with chronic virus infections ^{46,47} with chronic virus infections $46,47$, it is conceivable that the loss of CD56 observed in our

360 CD56^{44,45} in CRSwNP patients. As CD56-negative NK cell subsets are enriched in patients
361 with chronic virus infections $46,47$, it is conceivable that the loss of CD56 observed in our
362 study could be at least with chronic virus infections ^{46,47}, it is conceivable that the loss of CD56 observed in our
362 study could be at least partly driven by the repeated infections in the course of CRS.
363 In patients suffering from respi study could be at least partly driven by the repeated infections in the course of CRS.

363 In patients suffering from respiratory allergies, we observed significantly reduced level

364 late-stage NK cells expressing CD16 363 In patients suffering from respiratory allergies, we observed significantly reduced levels of
364 late-stage NK cells expressing CD16 regardless of their allergic status. However, there were
365 no differences in the C 364 late-stage NK cells expressing CD16 regardless of their allergic status. However, there were
365 no differences in the CD56⁺CD16 subsets as previously described in peanut-allergic subjects
⁴⁸ or subjects suffering no differences in the CD56⁺CD16⁻ 365 no differences in the CD56⁺CD16⁻ subsets as previously described in peanut-allergic subjects 48 or subjects suffering from atopic dermatitis 49 . Our differential results could be both due to 13 48 or subjects suffering from atopic dermatitis 49 . Our differential results could be both due to
13

- the different
our experim
Limitations t
] the different routes of allergen sensitization or due to the absence of allergen restimulation in
368 our experimental design as compared to Zhou et al.⁴⁸
369 Limitations of our study include the relatively small sample
- our experimental design as compared to Zhou et al.⁴⁸
-
- 369 Limitations of our study include the relatively small sample size with regard to different CRS subtypes and the absence of nasal mucosa samples. It could also be that the often discussed lower sensitivity of mass cyto
- 371
372 lower sensitivity of mass cytometry 50 as compared to flow cytometry may have had an
- 370 subtypes and the absence of nasal mucosa samples. It could also be that the often discussed
371 lower sensitivity of mass cytometry ⁵⁰ as compared to flow cytometry may have had an
372 impact on our results. However
- techniques with regard to T cell subsets 26 .
- 371 I lower sensitivity of mass cytometry ⁵⁰ as compared to flow cytometry may have had an
372 impact on our results. However, a recent report showed the comparability between the t
373 techniques with regard to T cell 372 impact on our results. However, a recent report showed the comparability between the two
373 techniques with regard to T cell subsets 26 .
374 In conclusion, this study provided a comprehensive analysis of blood-de techniques with regard to T cell subsets ²⁶.
374 In conclusion, this study provided a compre
375 profiles in various forms of CRS and allerg
376 Th2a cells, pivotal in allergic responses, was
-
-
- 374 In conclusion, this study provided a comprehensive analysis of blood-derived immune cell
375 profiles in various forms of CRS and allergic patients. Notably, an increased presence of
376 Th2a cells, pivotal in allergic profiles in various forms of CRS and allergic patients. Notably, an increased presence of
376 Th2a cells, pivotal in allergic responses, was observed in allergic cohorts. Further, our
377 analysis of B and NK cell populati Th2a cells, pivotal in allergic responses, was observed in allergic cohorts. Further, our
analysis of B and NK cell populations identified distinct subtypes with potential implic
for both type 2 diseases. These findings co
-
- analysis of B and NK cell populations identified distinct subtypes with potential implications
378 for both type 2 diseases. These findings contribute to a deeper understanding of the
379 immunological profiles in PBMCs of 378 for both type 2 diseases. These findings contribute to a deeper understanding of the
379 immunological profiles in PBMCs of patients with CRS or allergy, shedding light o
380 potential avenues for further research and 379 immunological profiles in PBMCs of patients with CRS or allergy, shedding light on
380 potential avenues for further research and therapeutic approaches.
381
382
- 380 potential avenues for further research and therapeutic approaches.
381
382
383
-
-
- 382
383 383
384
385
386
- ---
384
385
386
387
-
- 385
386
387
388 385
-
-
- 387
388
389
390
- 388
389
390
391 389
390
391 390
- 391

5. REF
1. Fokk
Bern
Phine $\frac{4}{1}$ 392 5. REFERENCES
393 1. Fokkens, W.J., Lui
394 Bernal-Sprekelser
395 Rhinosinusitis and
396 2. Kato, A., Peters, A
397 Endotypes of chro Bernal-Sprekelsen, M., Mullol, J., Alobid, I., et al. (2020). European Position Paper on

395 Rhinosinusitis and Nasal Polyps 2020.

2. Kato, A., Peters, A.T., Stevens, W.W., Schleimer, R.P., Tan, B.K., and Kern, R.C. (202 395 Bernard-preferences, M., Martin, M., Muller, M., Muller, Letter, Letter, Letter, Letter, P.P.
396 2. Kato, A., Peters, A.T., Stevens, W.W., Schleimer, R.P., Tan, B.K., and Kern, R.C. (2022).
397 Endotypes of chronic rh 396 2. Kato, A., Peters, A.T., Stevens, W.W., S
397 Endotypes of chronic rhinosinusitis: Reclared and Nasal Polyps 2020.
399 3. Liao, B., Liu, J.X., Li, Z.Y., Zhen, Z., Cao, Schleimer, R., and Liu, Z. (2018). Multi
401 the 397 Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenes
398 clinical findings, and treatment approaches. Allergy 77, 812-826. 10.1111/all.15074.
39 3. Liao, B., Liu, J.X., Li, Z.Y., Zhen, Z clinical findings, and treatment approaches. Allergy 77, 812-826. 10.1111/all.15074.

399 3. Liao, B., Liu, J.X., Li, Z.Y., Zhen, Z., Cao, P.P., Yao, Y., Long, X.B., Wang, H., Wang, Y.,

390 Schleimer, R., and Liu, Z. (201 399 3. Liao, B., Liu, J.X., Li, Z.Y., Zhen, Z., Cao, P.P., Yao, Y., Long, X.B., Wang, H., Wang, Y., Schleimer, R., and Liu, Z. (2018). Multidimensional endotypes of chronic rhinosinusition their association with treatment Schleimer, R., and Liu, Z. (2018). Multidimensional endotypes of chronic rhinosinus

1991 1992 14. Tomassen, P., Vandeplas, G., Van Zele, T., Cardell, L.-O., Arebro, J., Olze, H., Förster

1993 1992 1459 1459 1469. Inflamm their association with treatment outcomes. Allergy 73, 1459-1469. 10.1111/all.13411.

402 4. Tomassen, P., Vandeplas, G., Van Zele, T., Cardell, L.-O., Arebro, J., Olze, H., Förster-

403 Ruhrmann, U., Kowalski, M.L., Olsz 402 4. Tomassen, P., Vandeplas, G., Van Zele, T., Cardell, L.-O., Arebro, J., Olze, H., Förster-
403 101888-11., Nowalski, M.L., Olszewska-Ziąber, A., Holtappels, G., et al. (2016).
404 Inflammatory endotypes of chronic rh 408 10.1016/j.jaci.2016.05.041.
409 6. Tan, B.K., Klingler, A.I., Poposki, J.A., Stevens, W.W., Peters, A.T., Suh, L.A., Norton, J., Carter, 104

104 Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of bio

105 S. Wang, X., Zhang, N., Bo, M., Holtappels, G., Zheng, M., Lou, H., Wang, H., Zhang,

105 Bachert, C. (2016). Diversity of T(H 405 5. Wang, X., Zhang, N., Bo, M., Holtappels, G., Zheng, M., Lou, H., Wang, H., Zhang, L., and

406 Bachert, C. (2016). Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis

407 multicenter study i Bachert, C. (2016). Diversity of T(H) cytokine profiles in patients with chronic rhinosinusi

multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 138, 1344-1353.

10.1016/j.jaci.2016.05.041.

Tan, B.K., multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 138, 1344-1353.

10.1016/j.jaci.2016.05.041.

409 6. Tan, B.K., Klingler, A.I., Poposki, J.A., Stevens, W.W., Peters, A.T., Suh, L.A., Norton, J., Cart 408

10.1016/j.jaci.2016.05.041.

409 6. Tan, B.K., Klingler, A.I., Poposki, J.A., Stevens, W.W., Peters, A.T., Suh, L.A., Norton, J., Ca

410 R.G., Hulse, K.E., Harris, K.E., et al. (2017). Heterogeneous inflammatory patt 409 6. Tan, B.K., Klingler, A.I., Popo
410 R.G., Hulse, K.E., Harris, K.E.
411 rhinosinusitis without nasal
412 e697. 10.1016/j.jaci.2016.06
413 7. Valenta, R., Karaulov, A., Nie
414 Campana, R., Focke-Tejkl, M 410 6. Hulse, K.E., Harris, K.E., et al. (2017). Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J Allergy Clin Immunol 139, 699-703
412 697. 10.1016/j.jaci.2016.06. 411 rhinosinusitis without nasal polyps in Chicago, Illinois. J Allergy Clin Immunol 139, 699-703

412 e697. 10.1016/j.jaci.2016.06.063.

413 7. Valenta, R., Karaulov, A., Niederberger, V., Gattinger, P., van Hage, M., Fli 412 e697. 10.1016/j.jaci.2016.06.063.

413 7. Valenta, R., Karaulov, A., Niederberger, V., Gattinger, P., van Hage, M., Flicker, S., Linhart, E

414 Campana, R., Focke-Tejkl, M., Curin, M., et al. (2018). Molecular Aspects 413 7. Valenta, R., Karaulov, A., Niederbe
414 Campana, R., Focke-Tejkl, M., Curi
415 Allergy. Adv Immunol 138, 195-25
416 8. Marcus, S., DelGaudio, J.M., Rolan
417 Allergy Play a Role? Med Sci (Base
418 9. Agache, I., Roc Campana, R., Focke-Tejkl, M., Curin, M., et al. (2018). Molecular Aspects of Allergens and

415 Allergy. Adv Immunol 138, 195-256. 10.1016/bs.ai.2018.03.002.

416 8. Marcus, S., DelGaudio, J.M., Roland, L.T., and Wise, S.K Allergy. Adv Immunol 138, 195-256. 10.1016/bs.ai.2018.03.002.

416 8. Marcus, S., DelGaudio, J.M., Roland, L.T., and Wise, S.K. (2019). Chronic Rhinosinusitis: Do

417 Allergy Play a Role? Med Sci (Basel) 7. 10.3390/medsci 416 8. Marcus, S., DelGaudio, J.M., Roland, L.T., and Wise, S.K. (2019).
417 Allergy Play a Role? Med Sci (Basel) 7. 10.3390/medsci7020030.
418 9. Agache, I., Rocha, C., Beltran, J., Song, Y., Posso, M., Sola, I., Alon
419 417 Allergy Play a Role? Med Sci (Basel) 7. 10.3390/medsci7020030.
418 9. Agache, I., Rocha, C., Beltran, J., Song, Y., Posso, M., Sola, I., Alonso-Coello, P., Akdis, C.,
419 Akdis, M., Canonica, W., et al. (2020). Efficac 418 9. Agache, I., Rocha, C., Beltran, J., Song, Y., Posso, M., Sola, I., Alon
419 Akdis, M., Canonica, W., et al. (2020). Efficacy and safety of treat
420 (benralizumab, dupilumab and omalizumab) for severe allergic a
421 419 Martin, I., Canonica, W., et al. (2020). Efficacy and safety of treatment with biologicals

420 (benralizumab, dupilumab and omalizumab) for severe allergic asthma. Allergy.

421 10.1111/all.14235.

422 10. Eckl-Dorna, 420 (benralizumab, dupilumab and omalizumab) for severe allergic asthma. Allergy.
421 10.1111/all.14235.
422 10. Eckl-Dorna, J., Pree, I., Reisinger, J., Marth, K., Chen, K.W., Vrtala, S., Spitzauer, S., Vale
423 R., and N 421 (beta 10.1111/all.14235)

422 10. Eckl-Dorna, J., Pree, I., Reisinger, J., Marth, K., Chen, K.W., Vrtala, S., Spitzauer, S.

423 R., and Niederberger, V. (2012). The majority of allergen-specific IgE in the blood

424 422 10. Eckl-Dorna, J., Pree,

423 R., and Niederberge

424 patients does not o

425 1347-1355. 10.1111

426 11. Wachholz, P.A., Not

427 Durham, S.R. (2002

138 423

424 E. A., and Niederberger, V. (2012). The majority of allergen-specific IgE in the blood of allergic

424 patients does not originate from blood-derived B cells or plasma cells. Clin Exp Allergy 42,

425 1347-1355. patients does not originate from blood-derived B cells or plasma cells. Clin Exp Allergy 42,

1347-1355. 10.1111/j.1365-2222.2012.04030.x.

426 11. Wachholz, P.A., Nouri-Aria, K.T., Wilson, D.R., Walker, S.M., Verhoef, A., 425 1347-1355. 10.1111/j.1365-2222.2012.04030.x.

426 11. Wachholz, P.A., Nouri-Aria, K.T., Wilson, D.R., Walker, S.M., Verhoef, A., Till, S.J., and

427 Durham, S.R. (2002). Grass pollen immunotherapy for hayfever is asso 426 11. Wachholz, P.A., Nouri-Aria, K.T., Wilson, D.R., Wi
427 Durham, S.R. (2002). Grass pollen immunothera
428 in local nasal but not peripheral Th1:Th2 cytokin
429 12. Sharma, S., Watanabe, S., Sivam, A., Wang, J., Ne
4 947

12. Durham, S.R. (2002). Grass pollen immunotherapy for hayfever is associated with inc

12. Sharma, S., Watanabe, S., Sivam, A., Wang, J., Neuwirth, S.J., Perez, R.I., De Tineo, M.

130 Baroody, F.M., Naclerio, R.M., in local nasal but not peripheral Th1:Th2 cytokine ratios. Immunology 105, 56-62.

12. Sharma, S., Watanabe, S., Sivam, A., Wang, J., Neuwirth, S.J., Perez, R.I., De Tineo, M.,

130 Baroody, F.M., Naclerio, R.M., and Pinto 12. Sharma, S., Watanabe, S., Sivam, A., Wang, J., Neuwirth, S.J., Perez, R.I., De Tineo,

430 Baroody, F.M., Naclerio, R.M., and Pinto, J.M. (2012). Peripheral blood and tissue

1431 regulatory cells in chronic rhinosinus Baroody, F.M., Naclerio, R.M., and Pinto, J.M. (2012). Peripheral blood and tissue T

431 regulatory cells in chronic rhinosinusitis. Am J Rhinol Allergy 26, 371-379.

432 10.2500/ajra.2012.26.3800.

433 13. Tsuda, T., Suz 431 regulatory cells in chronic rhinosinusitis. Am J Rhinol Allergy 26, 371-379.
432 10.2500/ajra.2012.26.3800.
433 13. Tsuda, T., Suzuki, M., Kato, Y., Kidoguchi, M., Kumai, T., Fujieda, S., and Sakashita, M.
434 The curr 432 10.2500/ajra.2012.26.3800.

433 13. Tsuda, T., Suzuki, M., Kato, Y., Kidoguchi, M., Kumai, T., Fujieda, S., and Sa

434 The current findings in eosinophilic chronic rhinosinusitis. Auris Nasus Lan

435 10.1016/j.anl.20 433 13. Tsuda, T., Suzuki, M., Kato, Y
434 The current findings in eosin
435 10.1016/j.anl.2023.08.002.
436 14. Delemarre, T., and Bachert, 437 Curr Opin Allergy Clin Immur
438 15. Kato, A., Schleimer, R.P., and 434 The current findings in eosinophilic chronic rhinosinusitis. Auris Nasus Larynx.
435 10.1016/j.anl.2023.08.002.
436 14. Delemarre, T., and Bachert, C. (2023). Neutrophilic inflammation in chronic rhinosinusitis.
437 Cu 10.1016/j.anl.2023.08.002.

14. Delemarre, T., and Bachert, C. (2023). Neutrophilic inflammation in chronic rhi

14. Curr Opin Allergy Clin Immunol 23, 14-21. 10.1097/ACI.0000000000000868.

15. Kato, A., Schleimer, R.P., a 436 14. Delemarre, T., and Bachert,
437 Curr Opin Allergy Clin Immu
438 15. Kato, A., Schleimer, R.P., an
440 16. Shamji, M.H., Bellido, V., Sca
441 A., Gao, Z., Turka, L.A., Tcha 2437

Curr Opin Allergy Clin Immunol 23, 14-21. 10.1097/ACI.0000000000000868.

438 15. Kato, A., Schleimer, R.P., and Bleier, B.S. (2022). Mechanisms and pathogenesis of chronic

16. Shamji, M.H., Bellido, V., Scadding, G. 15. Kato, A., Schleimer, R.P., and Bleier, B.S. (2022). Mechanisms and pathogene

1439 Clin Immunol 149, 1491-1503. 10.1016/j.jaci.2022.02

16. Shamji, M.H., Bellido, V., Scadding, G.W., Layhadi, J.A., Cheung, D.K., Calder thinosinusitis. J Allergy Clin Immunol 149, 1491-1503. 10.1016/j.jaci.2022.02.016.
16. Shamji, M.H., Bellido, V., Scadding, G.W., Layhadi, J.A., Cheung, D.K., Calderon, M.A., Asare
141 A., Gao, Z., Turka, L.A., Tchao, N., 1440 16. Shamji, M.H., Bellido, V., Scadding, G.W., Layhadi, J.A., Cheung, D.K., Calderon, M.
A., Gao, Z., Turka, L.A., Tchao, N., et al. (2015). Effector cell signature in peripheral
441 Casa, C., Turka, L.A., Tchao, N., 441 *A., Gao, Z., Turka, L.A., Tchao, N., et al. (2015).* Effector cell signature in peripheral blood
A., Gao, Z., Turka, L.A., Tchao, N., et al. (2015). Effector cell signature in peripheral blood

 44.47 a., 44.4

492 753. 10.1042/CS20190281.

555

- 557 6. ACKNOWLEDGMENT
558 We would like to thank the techn
559 support during the study.
560 7. TABLES 558 We would like to thank the technical teams of Standard BioTools and Cytobank for their
559 support during the study.
560
561 7. TABLES
562 Table I: Patient characteristics of study cohorts
- 6. ACK
We would li
support duri $\frac{1}{2}$
-

560
561
562

*Chronic Rhinosinusitis (CRS) without nasal polyps (CRSsNP), CRS with nasal polyps (CRSwNP),
564 Nonsteroidal anti-inflammatory drugs (NSAIDs)-Exacerbated Respiratory Disease (N-ERD); **Tota
565 Score (TPS); *** 20-item Si 564 Nonsteroidal anti-inflammatory drugs (NSAIDs)-Exacerbated Respiratory Disease (N-ERD); **Total Polyp
565 Score (TPS); *** 20-item Sinonasal Out Come Test (SNOT-20); ⁺ datum from one participant was missing;
566 datum Score (TPS); *** 20-item Sinonasal Out Come Test (SNOT-20); $+\overline{1}$ datum from one participant was missing; $+\overline{1}$

565
566
567
568
569 datum from one participant was missing, $^{+++}$ data from two participants were missing; n.a, not applicable 566 datum from one participant was missing, ⁺⁺⁺ data from two participants were missing; n.a, not applicable
567
568
569

570
571

569
570
571
572

570
571
572
573 571
572
573
574 572
573
574 573
574

573

8. FIGU
**Figure 1: A
cohorts**. (A {
]
{

-
-
- 575 8. FIGURE LEGENDS
576 **Figure 1: Allergic sensitizat
577 cohorts**. (A) Heat map repres
578 sera of allergic (A, $n=12$) and
579 white to red represents increa
580 C) Log values of selected typ
- **Figure 1: Allergic sensitization, nasal and serum type 2 cytokine levels in patient cohorts.** (A) Heat map representing specific IgE levels to selected respiratory allergen sera of allergic (A, $n=12$) and non-allergic s 577 **cohorts**. (A) Heat map representing specific IgE levels to selected respiratory allergens in sera of allergic (A, $n=12$) and non-allergic subjects (NA, $n=12$). The color gradient from white to red represents increa 578 sera of allergic (A, $n=12$) and non-allergic subjects (NA, $n=12$). The color gradient from
579 white to red represents increasing quantities of allergen-specific IgE antibodies (kUA/L).
580 C) Log values of selected
-
-
-

579 white to red represents increasing quantities of allergen-specific IgE antibodies (kUA/L). (B,
580 C) Log values of selected type 2 cytokines (y-axis, pg/ml) in (B) nasal secretion and (C) sera
581 of allergic (black 581 of allergic (black rhombus, $n=12$) and non-allergic (white rhombus $n=12$) subjects showing
582 no significant differences using Mann-Whitney U test ($p>0.05$). Lines represent the median
583 with a 95% confidence in 582 no significant differences using Mann-Whitney U test $(p>0.05)$. Lines represent the median
583 with a 95% confidence interval and the standard error of the median.
Figure 2: Elevated levels of type 2 cytokines in nas no significant differences using Mann-Whitney U test (*p*>0.05). Lines represent the median
583 with a 95% confidence interval and the standard error of the median.
584 **Figure 2: Elevated levels of type 2 cytokines in nas** with a 95% confidence interval and the standard error of the median.
 Figure 2: Elevated levels of type 2 cytokines in nasal secretions by
 patients suffering from chronic rhinosinusitis (CRS) with nasal p
 nonsteroid Figure 2: Elevated levels of type 2 cytokines in nasal secretions but not serum of
 **patients suffering from chronic rhinosinusitis (CRS) with nasal polyps (wNP) an

nonsteroidal anti-inflammatory drugs (NSAIDs)-exacer**

585 patients suffering from chronic rhinosinusitis (CRS) with nasal polyps (wNP) and from nonsteroidal anti-inflammatory drugs (NSAIDs)-exacerbated respiratory disease (NERD). (A, B) Cytokine heat map and dendrogram of

- **nonsteroidal anti-inflammatory drugs (NSAIDs)-exacerbated respiratory disease (N-

ERD).** (A, B) Cytokine heat map and dendrogram of hierarchical clustering analysis of

expression levels of 33 cytokines in (A) nasal sec
-
- 588 expression levels of 33 cytokines in (A) nasal secretion and (B) serum of Controls $(n=6)$,

CRS without nasal polyps (CRSsNP, $n=6$), CRSwNP $(n=6)$ and N-ERD $(n=6)$. The color

gradient from blue to red represents an 588 expression levels of 33 cytokines in (A) nasal secretion and (B) serum of Controls $(n=6)$,
589 CRS without nasal polyps (CRSsNP, $n=6$), CRSwNP $(n=6)$ and N-ERD $(n=6)$. The color
590 gradient from blue to red represen
-
-
-
-
- 589 CRS without nasal polyps (CRSsNP, $n=6$), CRSwNP ($n=6$) and N-ERD ($n=6$). The color gradient from blue to red represents an increasing quantity of cytokines (pg/ml). (C, D) Levels (y-axis, log of pg/ml) of interleuk 590 gradient from blue to red represents an increasing quantity of cytokines (pg/ml). (C, D)
591 Levels (y-axis, log of pg/ml) of interleukin (IL)-4, IL-5, IL-9, IL-13, Chemokine (C-C N
592 Ligand (CCL)17, Eotaxin, Eotaxi 591 Levels (y-axis, log of pg/ml) of interleukin (IL)-4, IL-5, IL-9, IL-13, Chemokine (C-C Motif)
592 Ligand (CCL)17, Eotaxin, Eotaxin-3, IL-10, interferon (IFN)- γ and IL-17A in (C) nasal
593 secretions and (D) serum i 592 Ligand (CCL)17, Eotaxin, Eotaxin-3, IL-10, interferon (IFN)-γ and IL-17A in (C) nasal
593 secretions and (D) serum in Controls (blue circle, *n*=6), CRSsNP (grey square, *n*=6),
594 CRSwNP (green triangle, *n*=6) an
-
-
-

593 secretions and (D) serum in Controls (blue circle, *n*=6), CRSsNP (grey square, *n*=6),
594 CRSwNP (green triangle, *n*=6) and N-ERD (red triangle, *n*=6) are displayed. Lines re
595 the median with a 95% confidence i CRSwNP (green triangle, *n*=6) and N-ERD (red triangle, *n*=6) are displayed. Lines represent

the median with a 95% confidence interval and the standard error of the median; stars

represent statistically significant dif the median with a 95% confidence interval and the standard error of the median; stars

space represent statistically significant differences using the Kruskal-Wallis test followed by

Dunn's test (*: $p \le 0.05$, **: $p \le$ 596 represent statistically significant differences using the Kruskal-Wallis test followed by
597 Dunn's test (*: $p \le 0.05$, **: $p \le 0.01$).
598 **rigure 3: Mass cytometry analysis of peripheral blood mononuclear cells (** 597 Dunn's test (*: *p*≤0.05, **: *p*≤0.01).
598 **Figure 3: Mass cytometry analysis
599 control, chronic rhinosinusitis (CR
600 polyps (CRSwNP) and Nonsteroid
601 Respiratory Disease (N-ERD) patiented embedding (opt-SNE)** Figure 3: Mass cytometry analysis of peripheral blood mononuclear cells (PBMCs) in

control, chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP), CRS with nasal

polyps (CRSwNP) and Nonsteroidal anti-inflammatory dr **control, chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP), CRS with nasal polyps (CRSwNP) and Nonsteroidal anti-inflammatory drugs (NSAIDs)-Exacerbated Respiratory Disease (N-ERD) patients. (A) An optimized t-d 600 polyps (CRSwNP) and Nonsteroidal anti-inflammatory drugs (NSAIDs)-Exacerbated**
Respiratory Disease (N-ERD) patients. (A) An optimized t-distributed stochastic neighbo

enbedding (opt-SNE) map representing a conse **Example 10 Respiratory Disease (N-ERD) patients.** (A) An optimized t-distributed stochastic neighbour embedding (opt-SNE) map representing a consensus staining pattern and intensity levels of key markers employed in ma 602 embedding (opt-SNE) map representing a consensus staining pattern and intensity levels of
603 key markers employed in mass cytometry, specifically, the markers CD3, CD4, CD8, CD11
604 CD19, CD56, CD161, HLA-DR, and TC 603 key markers employed in mass cytometry, specifically, the markers CD3, CD4, CD8, CD11c,
604 CD19, CD56, CD161, HLA-DR, and TCR $\gamma\delta$ depicted in a concatenated file. The color
605 gradient from blue to red represents 604 CD19, CD56, CD161, HLA-DR, and TCRγδ depicted in a concatenated file. The color gradient from blue to red represents an increasing intensity of the metals tagged to the specific antibodies. (B) Heat map and dendrogra gradient from blue to red represents an increasing intensity of the metals tagged to the

specific antibodies. (B) Heat map and dendrogram of hierarchical clustering analysis

displaying the expression levels/metal intensi 606 specific antibodies. (B) Heat map and dendrogram of hierarchical clustering analysis
607 displaying the expression levels/metal intensities of selected markers across individual
608 immune cell types. (C) A consensus 607 displaying the expression levels/metal intensities of selected markers across individual
608 immune cell types. (C) A consensus overlay of FlowSOM metaclusters on an opt-SNE
610 of concatenated files and (D) bar chart 608 immune cell types. (C) A consensus overlay of FlowSOM metaclusters on an opt-SNE map
609 of concatenated files and (D) bar chart graph of individual patients displaying major cell
610 populations characterized after F 609 of concatenated files and (D) bar chart graph of individual patients displaying major cell
610 populations characterized after FlowSOM analysis. Major immune cell types namely Nat
611 Killer (NK) Cells, Natural Killer 610 populations characterized after FlowSOM analysis. Major immune cell types namely Natural
611 Killer (NK) Cells, Natural Killer T (NKT), Mucosal-associated invariant T (MAIT) Cells,
612 CD4+ T Cells (CD4 T), regulatory 611 Killer (NK) Cells, Natural Killer T (NKT), Mucosal-associated invariant T (MAIT) Cells,
612 CD4+ T Cells (CD4 T), regulatory T cells (T-reg), CD8+ T Cells (CD8 T), Gamma-Delta
613 Cells (γ δ T), Memory B Cells (612 CD4+ T Cells (CD4 T), regulatory T cells (T-reg), CD8+ T Cells (CD8 T), Gamma-Delta T
613 Cells (γ δ T), Memory B Cells (Memory B), Naive B cells (Naive B), Plasmablasts
614 (Plasmas), Monocytes, Myeloid Dendrit 613 Cells (γ δ T), Memory B Cells (Memory B), Naive B cells (Naive B), Plasmablasts (Plasmas), Monocytes, Myeloid Dendritic Cells (mDCs), Plasmacytoid Dendritic C (pDCs) were identified in all four patient groups: contro 614 (Plasmas), Monocytes, Myeloid Dendritic Cells (mDCs), Plasmacytoid Dendritic Cells (pDCs) were identified in all four patient groups: controls $(n=6)$, chronic rhinosinusitis (CRSwNP, $n=6$) and without (CRSsNP, $n=4$) 615 (pDCs) were identified in all four patient groups: controls $(n=6)$, chronic rhinosinusitis with
616 (CRSwNP, $n=6$) and without (CRSsNP, $n=4$) nasal polyps and non-steroidal anti-
617 inflammatory drugs (NSAIDs)-exac 616 (CRSwNP, $n=6$) and without (CRSsNP, $n=4$) nasal polyps and non-steroidal anti-
inflammatory drugs (NSAIDs)-exacerbated respiratory disease (N-ERD, $n=6$). (E
subset of the CD4+ T cells, manually gated (upper left pa

617 inflammatory drugs (NSAIDs)-exacerbated respiratory disease (N-ERD, $n=6$). (E) Th2a
618 subset of the CD4+ T cells, manually gated (upper left panel) using marker expression
618 618 subset of the CD4+ T cells, manually gated (upper left panel) using marker expression
subset of the CD4+ T cells, manually gated (upper left panel) using marker expression
subset of the CD4+ T cells, manually gated (up

- Kidane et al.
patterns shown on a heat map (upper right panel). Percentage Th2a cells (y-axis) of total
PBMCs in allergic (lower left panel, $n=10$) versus non-allergic (lower left panel, $n=12$) and in
disease groups (lo]
]
{
{ 619 patterns shown on a heat map (upper right panel). Percentage Th2a cells (y-axis) of total
620 PBMCs in allergic (lower left panel, $n=10$) versus non-allergic (lower left panel, $n=12$) a
621 disease groups (lower rig
-
- 620 PBMCs in allergic (lower left panel, *n*=10) versus non-allergic (lower left panel, *n*=12) and in
621 disease groups (lower right panel). Box plots show the range with medians as horizontal lines
622 and whiskers ind
-
-
-
-
- 621 disease groups (lower right panel). Box plots show the range with medians as horizontal lines
622 and whiskers indicating minimum and maximum values. Stars represent statistically
623 significant differences between a
- 622 and whiskers indicating minimum and maximum values. Stars represent statistically
623 significant differences between allergic and non-allergic groups using Mann-Whitne
624 (*: $p \le 0.05$) whereas the Kruskal-Wallis t 623 significant differences between allergic and non-allergic groups using Mann-Whitney U test
624 (*: $p \le 0.05$) whereas the Kruskal-Wallis test followed by Dunn's test in disease groups
625 showed no significant differ
-
- 624 (*: $p \le 0.05$) whereas the Kruskal-Wallis test followed by Dunn's test in disease groups
625 showed no significant difference $(p>0.05)$.
626 **Figure 4: In-detail B cell subset identification using FlowSOM**. (A) B cel 625 showed no significant difference (*p*>0.05).
626 **Figure 4: In-detail B cell subset identifice**
627 clusters (left panel, outlined in red lines) we
628 further sub-clustering using FlowSOM anal
629 labelled B1 to B10.
-
- **Figure 4: In-detail B cell subset identification using FlowSOM**. (A) B cell FlowSOM
clusters (left panel, outlined in red lines) were merged into one population and subjected
further sub-clustering using FlowSOM analysis 627 clusters (left panel, outlined in red lines) were merged into one population and subjected to
628 further sub-clustering using FlowSOM analysis (right panel) into ten subtypes of B cells,
630 labelled B1 to B10. (B) A 628 further sub-clustering using FlowSOM analysis (right panel) into ten subtypes of B cells,
629 labelled B1 to B10. (B) A consensus heatmap of the raw values of median metal intensity
630 (MMI) of selected markers in B1 629 labelled B1 to B10. (B) A consensus heatmap of the raw values of median metal intensity
630 (MMI) of selected markers in B1 to B10, the colour gradient from black to red represents
631 increasing expression/intensity 630 (MMI) of selected markers in B1 to B10, the colour gradient from black to red represents an increasing expression/intensity of the markers in the concatenated file. (C-F) Comparison of percentage (y-axis) of respectiv 631 increasing expression/intensity of the markers in the concatenated file. (C-F) Comparison of
632 percentage (y-axis) of respective B cell sub-clusters (B1-B10) of total B cells in (C, E)
633 Disease conditions (contro
-
- 632 percentage (y-axis) of respective B cell sub-clusters (B1-B10) of total B cells in (C, E)
633 Disease conditions (controls, blue, $n=6$; CRS without polyps (CRSsNP), grey, $n=6$; CR
634 nasal polyps (CRSwNP), green, 633 Disease conditions (controls, blue, $n=6$; CRS without polyps (CRSsNP), grey, $n=6$; CRS with
634 nasal polyps (CRSwNP), green, $n=6$) and Non-steroidal anti-inflammatory drug (NSAID)-
635 exacerbated respiratory dise
-
-
- 635 exacerbated respiratory disease (N-ERD, *n*=6, red)) and (D, F) allergic conditions (allergic, black-white pattern, *n*=10; non-allergic, white, *n*=12). Box plots show the range with median as horizontal lines and wh
-
- 634 nasal polyps (CRSwNP), green, *n*=6) and Non-steroidal anti-inflammatory drug (NSAID)-
635 exacerbated respiratory disease (N-ERD, *n*=6, red)) and (D, F) allergic conditions (allergic,
636 black-white pattern, *n*=10 637 as horizontal lines and whiskers indicating minimum and maximum values. Stars represent
638 statistically significant differences between groups using Kruskal-Wallis test (C, E) followe
639 by Dunn's test (*: $p \le 0.0$
-
-
- 437 as horizontal lines and whiskers indicating minimum and maximum values. Stars represent

638 statistically significant differences between groups using Kruskal-Wallis test (C, E) followe

639 by Dunn's test (*: $p \le 0$ 638 statistically significant differences between groups using Kruskal-Wallis test (C, E) followed
639 by Dunn's test (*: $p \le 0.05$) and (D, F) using the Mann Whitney U test (*: $p \le 0.05$).
640 **Figure 5: CD45RA, CXCR5** Figure 5: **CD45RA, CXCR5** and **CD49d expression levels in B cell subtypes.** (A-C)
641 Median metal intensity (MMI, y-axis) in B cell sub-clusters B1-B5 (left panels) and B6 to
642 B10 (right panels) of (A) CD45RA, (B) CXC **Figure 5: CD45RA, CXCR5 and CD49d expression levels in B cell subtypes.** (A-C)
641 Median metal intensity (MMI, y-axis) in B cell sub-clusters B1-B5 (left panels) and B6
642 B10 (right panels) of (A) CD45RA, (B) CXCR5 an
-
- 641 Median metal intensity (MMI, y-axis) in B cell sub-clusters B1-B5 (left panels) and B6 to B10 (right panels) of (A) CD45RA, (B) CXCR5 and (C) CD49d in controls (blue, *n*=6), chronic rhinosinusitis without (CRSsNP, gr 642 B10 (right panels) of (A) CD45RA, (B) CXCR5 and (C) CD49d in controls (blue, *n*=6),
643 chronic rhinosinusitis without (CRSsNP, grey, *n*=6) and with (CRSwNP, green, *n*=4) nas
644 polyps and in patients with non-ste
-
-
-
- 643 chronic rhinosinusitis without (CRSsNP, grey, *n*=6) and with (CRSwNP, green, *n*=4) nasal
644 polyps and in patients with non-steroidal anti-inflammatory drugs (NSAIDs)-exacerbated
645 respiratory disease (N-ERD, red
-
- 644 polyps and in patients with non-steroidal anti-inflammatory drugs (NSAIDs)-exacerbated
645 respiratory disease (N-ERD, red, *n*=6). Stars represent statistically significant differences
646 between groups using Kruska 645 respiratory disease (N-ERD, red, $n=6$). Stars represent statistically significant differences
646 between groups using Kruskal-Wallis test followed by Dunn's test (*: $p \le 0.05$).
Figure 6: Characterization of early 646 between groups using Kruskal-Wallis test followed by Dunn's test (*: $p \le 0.05$).
647 **Figure 6: Characterization of early-stage (ES) and late-stage (LS) Natural | (NKs).** (A) A consensus optimized t-distributed stoch
-
- 649 map showing ES and LS NK cells. (B) A consensus heatmap of the raw median metal
650 intensity (MMI) values of selected markers characterizing NK cell subsets. The color
651 gradient from black to bed represents an inc 650 intensity (MMI) values of selected markers characterizing NK cell subsets. The color gradient from black to bed represents an increasing expression/intensity of the marker D) Percentage of NK cell subsets of total cel
- **Figure 6: Characterization of early-stage (ES) and late-stage (LS) Natural killer cells (NKs).** (A) A consensus optimized t-distributed stochastic neighbour embedding (opt-SNE map showing ES and LS NK cells. (B) A consen **(NKs).** (A) A consensus optimized t-distributed stochastic neighbour embedding (opt-SNE) map showing ES and LS NK cells. (B) A consensus heatmap of the raw median metal intensity (MMI) values of selected markers characte 651 gradient from black to bed represents an increasing expression/intensity of the markers. (C,

652 D) Percentage of NK cell subsets of total cells (y-axis) in (C) disease groups (Controls, blue

653 $n=6$; chronic rhin
-
-
-
-
- 652 D) Percentage of NK cell subsets of total cells (y-axis) in (C) disease groups (Controls, blue, $n=6$; chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP), grey, n=6; CRS with nasal polyps (CRSwNP), green, $n=4$
- *n*=6; chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP), grey, n=6; CRS with nasal polyps (CRSwNP), green, *n*=4; non-steroidal anti-inflammatory drugs (NSAIDs)-exacerbated respiratory disease (N-ERD), red, *n*= 654 nasal polyps (CRSwNP), green, $n=4$; non-steroidal anti-inflammatory drugs (NSAIDs)-
exacerbated respiratory disease (N-ERD), red, $n=6$) and in (D) allergic (black-white pat
 $n=10$) and non-allergic (white, $n=12$) p 656 *n*=10) and non-allergic (white, *n*=12) patients. (E, F) Median metal intensity (MMI) of (E) CD45RA and (F) CD56 in NK cell subtypes in disease groups (as described in C). Box plo show the range with medians as horiz
-
- 455 exacerbated respiratory disease (N-ERD), red, $n=6$) and in (D) allergic (black-white pattern, $n=10$) and non-allergic (white, $n=12$) patients. (E, F) Median metal intensity (MMI) of (E) CD45RA and (F) CD56 in NK ce 657 CD45RA and (F) CD56 in NK cell subtypes in disease groups (as described in C). Box plots
658 show the range with medians as horizontal lines and whiskers indicating minimum and
659 maximum values. Stars represent stat 658 show the range with medians as horizontal lines and whiskers indicating minimum and maximum values. Stars represent statistically significant differences between groups using Kruskal-Wallis test (C, E) followed by Dun 659 maximum values. Stars represent statistically significant differences between groups using
660 Kruskal-Wallis test (C, E) followed by Dunn's test (*: $p \le 0.05$) and (D) using Mann-Whitne
661 U test (*: $p \le 0.05$). 660 Kruskal-Wallis test (C, E) followed by Dunn's test (*: $p \le 0.05$) and (D) using Mann-Whitney
661 U test (*: $p \le 0.05$). 661 U test (*: $p \le 0.05$).

Figure 1

Figure 2

opt-SNE_1

Figure 4

Figure 5

Figure 6