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Abstract

We assessed the relationship of gamma oscillations with tau deposition in Alzheimer’s disease (AD) 

and other cognitive diseases, as both are altered during the disease course and relate to 

neurodegeneration. We retrospectively analyzed data from 7 AD, tau positive patients and 9 tau 

negative patients, that underwent amyloid PET, and cerebral tau PET and EEG within 12 months. 

Relative gamma power was higher in tau positive (AD) patients than in tau negative patients (p<.05) 

and tau burden was associated with a linear increase in gamma power (p<.001), while no association 

was present with amyloid-β burden. Thus, increase in the gamma power might represent a novel 

biomarker for tau driven neurodegeneration. 

Keywords: Alzheimer’s disease; tau; PET; gamma oscillations; EEG.

Abbreviations: AD, Alzheimer’s disease; PET, positron emission tomography; SUVr, standard uptake

value ratio; EEG, electroencephalography; Aβ42, amyloid-beta 42.

1. Introduction

Alzheimer’s Disease (AD) is the most prevalent cause of dementia worldwide (Anon 2021) and its 

prevalence is expected to increase during the next years. The hallmarks of AD are progressive 

amyloid-β (Aβ) plaques and neurofibrillary tangles (tau) deposition, and the latter correlates with 

clinical symptoms, disease severity and speed of progression (Digma et al. 2019; Pontecorvo et al. 

2017). Currently, the only way to assess in-vivo tau deposition is through either lumbar puncture or tau

PET. In AD, gamma oscillations (>30Hz) show early alterations in the disease course (Verret et al. 

2013; Wang et al. 2017). Here, we explored the alterations in the gamma band as proxies of cortical 

tau deposition in a memory clinic population. 

2. Methods

2.1 Patients: We analyzed data of 7 AD patients with significant amyloid and tau deposition and 9 

patients with either a subjective cognitive decline or objective cognitive deficits without tau deposition 

from the Geneva Memory Center. We included patients who underwent cerebral tau PET and a low-
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density resting-state EEG within 12 months. This study was approved by the local ethic committee and

has been conducted in accordance with the principles of the Declaration of Helsinki (PB_2016-01382 

(15-206)).

2.3 EEG acquisition and analysis: We selected 5 minutes of the clinical low-density resting state 

EEG (eyes-opened, 25-channel, sampling rate = 256 Hz). The signal was band-pass filtered ([1-100 

Hz]) and notch-filtered at 50 and 100 Hz. Sensors with poor signal-to-noise ratio were removed and 

interpolated. Independent component analysis and further visual inspection was performed to remove 

eye blinks and muscle artifacts, after which data were re-referenced to the average. The remaining 

signal was cropped into epochs of 1 second without overlap (Table 1). The power spectral density was

calculated using a single Hanning taper and, for each EEG channel, the relative power in gamma 

band was defined as the percentage of the power between 30-98 Hz with respect to the total power. 

For statistical analyses, we used both the relative gamma power calculated for each channel and also 

averaged over the 25 sensors. EEG analyses were carried out in Matlab.

2.4 PET images acquisition and analysis: PET images were realized using a Siemens Biograph 

mCT or Vision PET scanner. Cerebral tau-PET images were acquired using 18F-Flortaucipir and 

amyloid-PET images were acquired using 18F-Flutemetamol (N=14) or 18F-Florbetapir (N=2). Global 

tau-PET SUVr was computed as previously described (Mishra et al. 2017), while tau and amyloid 

status (positive or negative) were assessed visually by an expert nuclear medicine physician (GV) 

following validated recommendations (Fleisher et al. 2020).

2.6 Statistical Analyses: Demographical and clinical data across tau-positive (tau-P) and tau-

negative (tau-N) patients were assessed using Mann-Whitney U and Chi-squared test for continuous 

and categorical variables, respectively. The relative gamma power (averaged over electrodes) was 

compared with a two-sided Mann-Whitney U-test, and the result was used to define the directionality 

of a one-sided cluster-based permutation test (Fieldtrip, 2000 permutations). The latter was used to 

identify clusters of electrodes that, across tau-P patients, showed a greater level of relative gamma 

power than the tau-N ones. We excluded P9 and P10 as their projections are not described in 
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Okamoto et al. and ran local correlations for the remaining 13 electrodes. For Fz, Cz and Pz, we used 

the average gamma power of each preponderant cortical area for each hemisphere (e.g. F3/F4 for 

Fz). We repeated these analyses also for the delta [1-3 Hz], theta [4-7 Hz], alpha [8-12 Hz] and beta 

[13-29 Hz] bands. Values of relative gamma power were then used for correlation analyses, using a 

Spearman or a Pearson Correlation Coefficient. For each group (tau-P: N=7; tau-N: N=9) we did the 

following analyses. 1) We investigated the relationship of average relative gamma power with the 

global tau-PET SUVr and the amyloid-PET centiloid. 2) For electrodes belonging to the significant 

cluster, we correlated the local relative gamma power with the SUVr of the region of interest 

underlying the electrode placement, according to published guidelines (Okamoto et al. 2004). The 

reported p-values are Bonferroni corrected for the number of electrodes tested. 

3. Results

Of the 16 selected patients, 7 had a significant cortical tau deposition (i.e. tau-P), while 9 did not (i.e. 

tau-N). All tau-P patients also showed amyloid deposition on cerebral amyloid-PET, confirming the 

presence of AD pathology. Among tau-N patients, only one showed amyloid deposition on amyloid-

PET. Demographic data and patients’ characteristics are summarized in Table 1.

3.1 Gamma oscillations are increased in presence of cortical tau deposition, but not in the 

presence of amyloid. The average relative gamma power was higher in tau-P than in tau-N patients 

(p=.042, Fig 1A). Correlation analyses revealed a strong positive correlation between the average 

gamma power and tau PET SUVr in tau-P patients (rhoPearson=0.88, p=0.018, Fig 1B), but not in tau-N 

(rhoSpearman=0.7, p=0.087, not shown). No significant correlation was found between the average 

relative gamma power and the global amyloid burden in neither group (not shown).

3.2 Gamma oscillations are increased in frontal and parietal electrodes. Tau-P showed higher 

gamma power in than in tau-N patients in frontal and parietal electrodes (Fp2, Fz, F3, F4, F7, Cz, C3, 

C4, Pz, P3, P4, P7, P8, P9, P10, p=.009, Fig 1C). Moreover, in tau-P patients, a positive linear 

correlation between relative gamma power and local SUVr was found at the parietal electrodes 
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(rhoPearson=0.93, p=0.03 and for P3 and rhoPearson=0.95, p=0.016 for P4 respectively). No difference is 

found for the other frequency bands between the tau-positive and tau-negative patients.

4. Discussion

EEG alterations have been observed in a large cohort of preclinical AD patients (Gaubert et al. 2019), 

advancing the hypothesis of complex compensatory mechanisms. Here, we found that gamma 

oscillations are increased in tau positive patients. We also find a positive linear correlation between 

relative gamma power and tau (rho=.79, p=.0005), while no correlation was found in other frequency 

bands nor for amyloid, suggesting a certain specificity of gamma oscillations with tau-related 

neurodegeneration. Interestingly, gamma oscillations also locally correlate with tau in parietal 

electrodes. These overlie the parietal and the precuneus cortices, which are known to show early tau-

driven neurodegeneration in the course of AD (Frontzkowski et al. 2022). Tau protein accumulation is 

known to promote network hyperexcitability and in an AD murine model its reduction resulted in a 

decreased hyperexcitability, independently from the presence of Aβ42 (Tok, Ahnaou, and Drinkenburg

2022). Moreover, a recent study in AD patients found a positive linear correlation between the 

amplitude of the TMS-evoked potential (TEP) at the level of the posterior parietal cortex and the levels

of tau and p-tau in CSF(Casula et al. 2022). Hence, we hypothesize that the presence of tau protein 

and neurodegeneration could locally disrupt of the physiological rhythms, forcing the remaining 

neurons to increase their activity, to maintain the excitatory/inhibitory balance. Among the main 

limitations of this study, except the small sample size due to its retrospective and exploratory nature, 

we acknowledge the imbalance in sex between tau-P and tau-N, which might have biased some of the

analyses, even though to our knowledge gamma oscillations are not known to be influenced by sex. 

The lower cognitive scores of tau-P patients on Mini Mental State Examination are in line with 

increased rate of neurodegeneration expected for these patients. In this view, further longitudinal 

studies in larger, balanced and age-matched cohorts employing high-density EEG will be crucial to 

determine the value of gamma oscillations to assess cortical tau deposition.
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Tables and Figures

Tau negative (N=9) Tau positive (N=7) p-value

Age, years 73 [70-76] 71 [69-72.5] 0.339

Gender (female), n (%) 1(11%) 7(100%) 0.002

Education, years 14 [11-16] 12 [11.5-16.5] 0.957
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Clinical dementia rating scale 0.5 [0-1] 1 [0.75-1] 0.094

Mini mental state examination 27 [26-29] 23 [20-24] 0.014

Amyloid positivity, n (%) 1 (11%) 7 (100%) 0.002

2-sec EEG epochs retained 281 [260 - 292] 265 [230 - 295] 0.758

 Table 1: Patients’ characteristics and summary.  Summary of patient demographic and clinical 

data. Significant values are highlighted in bold. Summary results are reported as median values [inter-

quartile range].

Figure 1: Gamma power in tau-positive and tau-negative patients. A) Boxplot of the average 

relative gamma power (30-98 Hz) in tau-positive and tau-negative patients. The asterisk indicates 

statistical significance (p<.05). B) Scatterplot of Pearson correlation between the global tau-PET SUVr

and the average gamma power in tau-P patients. C.1) and C.2)) Maps of EEG electrodes (dots) 

plotted in axial (1) and right lateral sagittal (2) views of the scalp and brain. Yellow dots indicate 

electrodes that belong to the significant cluster (p<.01). Blue dots indicate the electrodes where local 

gamma power linearly correlated with local SUVr. Pink areas in are cortical regions belonging to the 

default mode network (DMN) as previously described (Raichle 2015) adapted to the scale 2 Lausanne

parcellation scheme (Cammoun et al. 2012; Hagmann et al. 2008). 
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