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Abstract
Medicine is undergoing a transformation with the integration of Artificial Intelligence (AI).
Traditional AI models, though clinically useful and often matching or surpassing expert
clinicians in specific tasks, face a scalability challenge due to the necessity of developing
individual models for each task. Therefore, there is a push towards foundation models that
are applicable to a wider set of tasks. Our study showcases how non-domain-specific,
publicly available vision-language models can be employed as general foundation models
for medical applications. We test our paradigm across four medical disciplines - pathology,
dermatology, ophthalmology, and radiology - focusing on two use-cases within each
discipline. We find that our approach beats existing pre-training methods and is competitive
to domain-specific foundation models that require vast amounts of domain-specific training
images. We also find that large vision-language models are data efficient and do not require
large annotated datasets to reach competitive performance. This allows for the development
of new or improved AI models in areas of medicine where data is scarce and will accelerate
medical progress towards true multimodal foundation models.
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Introduction
Medicine is in the process of being transformed by Artificial Intelligence (AI). There is now
ample evidence that specialized AI models have clinical use and can reach - or even
surpass - the performance of expert clinicians in narrow tasks1–7. However, there is an
inherent limitation for the development and application of such models: they need to be
trained for each task separately. With thousands of potential applications, this is
unsustainable, limiting the scalability and practicality of such specialized models.
This is why there is a shift in focus towards foundation models which are envisioned to be
applicable to a wide range of tasks8,9. Recently, first steps towards this goal have been
taken: Zhou et al. demonstrated the performance of a foundation model for generalizable
disease detection from retinal images10. This model has been trained on over a million retinal
images and can be applied to both fundoscopies and optical coherence tomography of the
retina to diagnose a range of ocular diseases. Similarly, Huang et al. trained a foundation
model for pathology image analysis by making use of the histopathological images that are
available on X (formerly Twitter) together with accompanying texts11,12. Both of these models
have two things in common: they are each applicable to a wider, but still limited domain and
they require a large dataset of training images from that particular domain. In that sense,
these models are more foundational than the specialized AI models, but they still fall short of
being true foundational models9,13.
We take the next step by demonstrating that it is not necessary to train such domain-specific
foundation models for downstream tasks. We instead employ a large publicly available
vision-language model that has been trained on non-domain-specific data from the internet
as a general foundation model. Large vision-language models can answer complex medical
questions almost on par with human experts14,15 (Figure 1). We test this model in four
medical fields heavily reliant on image classification: pathology, dermatology, ophthalmology,
and radiology. In particular, we select two use-cases for each of these disciplines and
examine how the large vision-language model internally represents these images and
whether this internal representation allows distinguishing between various medical
subclasses for downstream classification.
By demonstrating the competitive performance of this large vision-language model, we solve
a serious problem that has so far impeded medical research: there is no need for large
annotated datasets anymore if you aim to train a medical foundation model. Instead, you can
utilize existing vision-language models and fine-tune them to your downstream task with
limited labeled data.
We thus deliver proof that the era of general foundation models in medicine has already
begun and that these models can accelerate medical progress by democratizing access to
foundation models.
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Methods

Ethics Approval
This study was conducted in accordance with the tenets of the Declaration of Helsinki and
was approved by the local institutional review board (EK259/22).

Patient Cohorts and Imaging Data
In this study, we systematically examined medical imaging datasets across four key medical
disciplines: pathology, dermatology, ophthalmology, and radiology. We conducted two
specific image classification tasks within each discipline, resulting in a total of eight distinct
tasks (T), see Figure 2a and Table 1:

Tissue Classification in Histopathology Images (T1): Using the NCT-CRC-HE-100K
dataset, this task includes histological imaging data from 136 colorectal cancer patients.
Following the dataset partitioning proposed by Kather et al16, we formed a training set of
100,000 image patches from 86 patients and a test set of 7,180 patches from 50 patients.
Each patch, measuring 224×224 pixels, is classified into one of nine tissue categories:
adipose tissue, background, debris, lymphocytes, mucus, smooth muscle, normal colonic
mucosa, cancer-associated stroma, and colorectal adenocarcinoma epithelium16.

Nuclear Classification in Histopathology Images (T2): This task uses the PanNuke
dataset, which contains 7,558 pan-cancer images from 19 different organ types17. These
images, which were annotated by Gamper et al., include various nuclear categories such as
neoplastic, inflammatory, connective, epithelial, and dead tissue, including both apoptotic
and necrotic cells.

Lesion Detection in Dermatology (T3): For this task, we utilized the 2018 International
Skin Imaging Collaboration (ISIC) Challenge dataset, comprising 10,208 training and 1,512
testing images of various skin lesions. Classifications include melanoma, basal cell
carcinoma, and several other lesion types, as detailed in the work by Tschandl et al18,19.

Melanoma Classification in Dermatology (T4): Derived from the ISIC 2020 Challenge,
this task includes dermatology data with images labeled as benign or malignant20. The
dataset, which differs from the 2018 challenge, includes 26,045 images for training and
7,081 for testing, stratified by patient (1,644 patients for training, 412 for testing).

Diabetic Retinopathy Grading in Fundoscopic Images (T5):: We sourced data from the
2015 EyePACS Diabetic Retinopathy Detection Challenge21 and the APTOS-2019 Blindness
Detection Challenge22, totaling 88,700 fundoscopies from 44,350 patients. The combined
dataset was divided into 73,622 training images (only EyePACS) and 18,740 testing images
(from EyePACS (7,539 patients) and APTOS-2019).

Glaucoma Detection in Fundoscopic Images (T6): This task incorporates data from the
AIROGS23 and ODIR-201924 challenges, resulting in a large dataset of 101,442 fundoscopies
from 54,274 patients for training and 7,000 fundoscopies from 3,500 patients for testing.
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Lung Disease Detection in Chest Radiographs in Radiology (T7): Using the 'PadChest'
cohort, this task focuses on radiology data with 86,715 chest radiographs from 59,975
patients for training and 7,943 radiographs from 7,272 patients for testing25,26. The dataset
includes 174 radiographic findings and 19 radiological diagnoses26.

Osteoarthritis Grading in Knee Radiographs in Radiology (T8): Employing data from the
Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST), this task
involves grading osteoarthritis in knee radiographs27,28. Following the methodology of Han et
al.4, we constructed a dataset with 56,185 training images from 6,425 patients and 9,904
testing images from 1,095 patients.

Table 1: Details on eight image classification tasks.
Task Type Datasets Training Set Testing Set

Images Patients Images Patients
T1 Histopathology NCT-CRC-HE-100K16

CRC-VAL-HE-7K16
100,000 136 7,180 50

T2 Histopathology PanNuke17 4,971 N/A 1,263 N/A

T3 Dermatology HAM1000019

ISIC 201818
10,208 N/A 1,512 N/A

T4 Dermatology SIIM-ISIC 202020 26,045 1,644 7,081 412

T5 Ophthalmology EyePACS21 73,622 36,811 15,078 7,539
APTOS-201922 0 0 3,662 N/A

T6 Ophthalmology AIROGS23

ODIR-201924
101,442
0

54,274
0

0
7,000

0
3,500

T7 Radiology PadChest26 86,715 59,975 7,943 7,272

T8 Radiology OAI27,28

MOST27,28
39,921
16,264

3,831
2,594

7,108
2,796

677
418

NEJM Image Challenge Benchmarking
In this study, we collected 931 clinical cases from the New England Journal of Medicine
(NEJM) Image Challenge from October 2005 to August 2023. Each case presented a
medical image accompanied by a short text describing the clinical context, culminating in a
specific question such as "What is the diagnosis?" (see Figure S1 for an example). We
provided five possible answers for each case and tasked DeepMind's Flamingo model with
selecting the correct answer.29 The dataset covered a wide range of medical fields, including
pathology, dermatology, ophthalmology, and radiology, providing a comprehensive mix of
medical imaging data. Statistics on the number of correct answers provided by NEJM
readers were used to stratify the difficulty of the questions into five equal intervals according
to the percentage of correct answers provided by human readers.3

We used a few-shot, in-context learning approach to test Flamingo on the NEJM cases.30

This involved providing the first two cases from the dataset (dated October 13th and 20th,
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2005) to the model (Figure S2). The remaining 929 cases were then used as a test set to
assess the model's ability to interpret medical images across different disciplines.

Vision-Language Model
We used the open-source Flamingo architecture, 31 which was trained by Hugging Face M4
and is available in two sizes: Flamingo-80B with 80 billion parameters and Flamingo-9B with
9 billion parameters. Both models are vision-language models that accept text interleaved
with images and output free-form text. Flamingo combines a pre-trained large language
model (LLM, LLaMA-65B for Flamingo-80B and Llama-7B for Flamingo-9B32) and a
pre-trained Vision Transformer (ViT, 632M parameters33) via a transformer-based mapper
(Perceiver Sampler34). To fuse vision and text signals, Flamingo uses cross-attention layers
interleaved with LLM residual blocks (see Figure 2c). LLaMA-65B was pre-trained on 1.4
trillion tokens from publicly available data sources, including Wikipedia, arXiv, Github, Books,
StackExchange, C4, and CommonCrawl32. The ViT was pre-trained on 2.3 billion images
obtained from the web as part of the LAION-5B dataset35. The combined Flamingo model
was pre-trained for its perceiver samplers and cross-attention blocks on 141 million
interleaved image-text documents and 353 million images31.

Testing Medical Image Interpretation
To test the medical reasoning of the models and their ability to stratify medical images for
downstream tasks, we use a method similar to recently published approaches 36–39, i.e., we
present the respective images to the model along with a general prompt, e.g., "What can you
see on this radiological image?”. We then extract the representation of the images in the
model's internal latent space and test whether these representations can be used for
classification by a simple linear logistic regression model, see Figure 2c. This concept is
called "probing the model" and tests whether the internal representation of the images is
linearly separable, i.e. whether the LLM has allocated healthy and pathological images to
separate regions of its high-dimensional space.

CLIP as a Comparison Model
We used OpenAI's CLIP (Contrastive Language-Image Pre-training) as a benchmark to
evaluate Flamingo's performance. CLIP, specifically the CLIP-ViT-B/32 model, is trained on a
corpus of over 400 million Internet-sourced image-text pairs, providing robust "zero-shot"
learning capabilities40. We use this baseline model in all tasks T1-T8. As a second baseline
model, focused only on the pathology tasks, we employ PLIP (Pathology Language-Image
Pre-training), which has been trained with contrastive learning specifically on pathology
images sourced from X (formerly Twitter) and has recently been presented as a foundational
model with state-of-the-art performance in histopathology11.

Image Pre-processing
Images larger than 1024×1024 pixels were downsampled to 1024×1024 pixels and
underwent normalization relative to their maximum pixel value to ensure uniformity across
the datasets. T2 and T8 required specific preprocessing: in T2, images of nuclei were
processed according to the work of Huang et al11. The image was considered 'malignant' if
the total number of neoplastic cells was more than ten and covered more than 30% of the
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total cells. Images were considered 'benign' if no neoplastic cells were present. This resulted
in 2,866 malignant images and 3,368 benign images. For T8, knee radiographs were
preprocessed to include only a 140 mm×140 mm region using a pre-trained hourglass
network reported by Tiulpin et al41.

Computational Resources
We use four NVIDIA A6000 (48GB) GPUs on a local server system to probe the models. To
train the logistic regression model on the internal probes of Flamingo activations, an NVIDIA
RTX 3090 (24GB) GPU was used.

Evaluation and Statistical Analysis
For T3 to T8, the performance of the classifiers was evaluated by the area under the
receiver-operator curve (AUC). For T1 and T2, the classification performance was evaluated
by the F1 score according to Huang et al11. Standard deviations (SDs) and P values were
calculated using bootstrapping with 1,000 replicates and paired 2-tailed t-tests.

Data availability
The NEJM challenge questions are available to the public via:
https://www.nejm.org/image-challenge. The validation datasets are publicly available and
can be accessed from the following: Kather Colon (https://zenodo.org/record/1214456);
PanNuke (https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke); ISIC-2018
(https://challenge.isic-archive.com/data/#2018); ISIC-2020
(https://challenge.isic-archive.com/data/#2020); EyePACS Diabetic Retinopathy Detection
(https://www.kaggle.com/c/diabetic-retinopathy-detection/);
APTOS-2019(https://www.kaggle.com/c/aptos2019-blindness-detection); AIROGS
(https://zenodo.org/records/5793241); ODIR-2019
(https://odir2019.grand-challenge.org/Download/); PadChest
(https://bimcv.cipf.es/bimcv-projects/padchest/); OAI
(https://nda.nih.gov/oai/query-download); MOST
(https://most.ucsf.edu/multicenter-osteoarthritis-study-most-public-data-sharing).

Code availability
The source codes can be accessed at https://github.com/peterhan91/Multimodal-Probes.
The weights of open-sourced Flamingo models can be downloaded via
https://huggingface.co/HuggingFaceM4/idefics-80b-instruct and
https://huggingface.co/HuggingFaceM4/idefics-9b-instruct.
OpenAI’s CLIP model can be downloaded via
https://huggingface.co/openai/clip-vit-base-patch32.
Inferencing of multimodal LLMs was performed using Huggingface transformers library
(v.4.34.0.dev0, https://huggingface.co/docs/transformers/index) and PyTorch (v.2.0.1,
https://pytorch.org/). Analysis of LLM’s representations was performed using Python
(v.3.9.17, https://www.python.org/), scikit-learn (v.1.3.0, https://scikit-learn.org/stable/), and
SciPy (v.1.11.1, https://scipy.org/).
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Results

Accuracy in a Complex Diagnostic Challenge
First, we analyzed Flamingo-80B’s performance in answering clinical vignette questions from
the NEJM challenge to mimic direct human-machine interaction through text. When testing
on 929 cases, Flamingo-80B's primary diagnosis matched the correct diagnosis in 40.4%
(375 of 929) of cases (Figure 1d). When the model was prompted three times in succession,
it included the correct diagnosis in 54.3% (504 of 929) of cases, as determined by stochastic
top-K sampling with T=1.0 and top k=50. Notably, Flamingo-80B's performance
outperformed guesswork at various levels of difficulty, except for the most difficult category
(Figure 1d). In Figure 1a-c, we illustrate selected Flamingo-80B responses and the
explanation as provided by the model. These results highlight Flamingo-80B's ability to
provide medical insight and to integrate medical knowledge, albeit with the need for careful
interpretation and validation in real-world settings.

Systematic Testing in Histopathology, Dermatology, Ophthalmology, and
Radiology
To put the vision-language models’ performance in a wide range of medical disciplines in
context to existing pre-training methods, we presented image data with textual prompts to
Flamingo-80B and Flamingo-9B, as well as using OpenAI's CLIP as a benchmark.

Vision-Language Models are Concept Encoders in Pathology
We investigated if histopathological images can be stratified by vision-language models and
tested two tasks: classification of colorectal tissue and classification of nuclei.
The colorectal tissue classification task (T1) focused on classifying tissue into nine
categories based on hematoxylin & eosin-stained histologic images from a human colorectal
cancer (CRC) cohort. In this task, a linear classifier was trained on internal activations
obtained from multimodal LLMs and the CLIP model, analyzing a total of 7,158
histopathological image patches. The results showed that Flamingo-80B's internal
representations achieved a higher average F1 score of 0.892 as compared to the CLIP
method, which scored 0.764. Notably, Flamingo-80B also outperformed the domain-specific
foundation model developed by Huang et al.11, which was pre-trained on Twitter, with an F1
score of 0.892 versus 0.877. Detailed results for the different categories can be found in
Figure 3a-i.
In the nuclear classification task (T2), our goal was to discriminate between benign and
malignant cases among samples from 19 different organs using the PanNuke dataset
(Figure S6). By applying a linear classifier to the internal activations derived from both
multimodal LLMs and the CLIP model, Flamingo-80B demonstrated superior performance.
Specifically, its internal representations yielded a consistently higher F1 score of 0.870 (95%
CI: [0.847 to 0.891]) compared to the baseline CLIP method's 0.797 (95% CI: [0.774 to
0.821]) (t-statistic=139.7, P<0.001), as detailed in Figure 3j. These results collectively
confirm the advanced capabilities of multimodal LLMs over traditional pre-training methods
in histopathology, even matching the accuracies of specialized foundation models that rely
on domain-specific data.
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Vision-Language Models can Interpret Dermatological Images
We investigated if photos of skin lesions can be stratified by vision-language models and
utilized two tasks to compare the performance of Flamingo-80B to CLIP pre-training:
The first skin lesion task (T3) involves the multiclass classification of dermatological images
into seven classes: melanoma, basal cell carcinoma, actinic keratosis carcinoma,
melanocytic nevus, benign keratinocytic lesions, dermatofibroma, and vascular lesions. After
training the linear classifier on the internal activations extracted from multimodal LLMs and
the CLIP model Flamingo-80B's internal representations resulted in a consistently higher
AUC as compared with the baseline CLIP method in all seven classes, see Figure 3k-q for a
more detailed breakdown (P<0.001 for all).
In the second skin lesion task (T4) on a separate dataset the models classified 33,126
dermatological images into malignant or benign lesions. Following the same architecture as
above, Flamingo-80B achieved a significantly higher AUC on this task than CLIP (0.885,
95% CI: [0.859 to 0.909] vs. 0.834, 95% CI: [0.810 to 0.857], P<0.001), see Figure 3r.
Together, these results show that vision-language models that have been pre-trained on
non-domain-specific text- and image-data can differentiate between photos of dermatological
lesions.

Vision-Language Models are Generalist Image Interpreters in Ophthalmology
We performed additional experiments with two datasets of fundoscopic images to compare
the vision-language models’ performance to pre-training with CLIP.
T5 focuses on the detection of diabetic retinopathy using over 90,000 fundus photographs in
the US and India. Flamingo-80B shows superior performance in grading diabetic retinopathy
(see Figure 4), especially in detecting proliferative and severe diabetic retinopathy (Figure
4a, b), achieving state-of-the-art results (AUC=0. 949, 95% CI: 0.939 to 0.958; and
AUC=0.903, 95% CI: 0.889 to 0.917) and significantly outperformed the baseline CLIP
model (AUC=0.883, 95% CI: 0.870 to 0.896 and AUC=0.826, 95% CI: 0.808 to 0.846; P<
0.001 for both classes). Performance in detecting mild diabetic retinopathy is lower for all
three models (Figure 4d), possibly due to class imbalance and labeling ambiguity, with
Flamingo-80B performing best with an AUC of 0.629 (95% CI: 0.612 to 0.644).
T6 addresses another significant visual impairment cause, glaucoma, assessed in a large
patient cohort from Beijing, China, comprising 3,500 individuals42. Here again, the probe
trained on the Flamingo-80B activations showed superior performance in AUC (0.868)
compared to both its smaller variant, Flamingo-9B (AUC: 0.843; P<0.001), and the baseline
CLIP model (AUC: 0.716; P<0.00, Figure 4f).
Together these results show the general applicability of vision-language models to previously
unseen images in ophthalmology underlining their potential for the development of generalist
image interpreters.

Vision-Language Models can find Radiological Abnormalities
We performed two experiments with radiological images to test the vision-language models’
identification of radiological findings and compare their performance CLIP.
The chest X-ray classification task (T7) aims at allocating 54 radiographic findings to chest
X-rays from the PadChest dataset. We utilized 94,658 chest X-rays of which 27.9% were
labeled manually by board-certified radiologists. A subset of 7,943 manually labeled chest
X-rays was set aside for testing. After training the linear classifier on the internal activations
of the multimodal LLMs, Flamingo-80B led to an AUC of at least 0.90 in 7 findings and of at
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least 0.70 in 40 findings. CLIP achieved these AUC thresholds in none and only 6 findings,
respectively, see Figure 5.
T8 investigates the performance of diagnosing osteoarthritis (OA) in knee X-rays. OA was
graded based on manual labels by board-certified radiologists.4 Again training a linear model
on the internal activations led to the superior performance of Flamingo-80B in severe OA
(0.971, 95% CI: 0.965 to 0.976), moderate OA (0.870, 95% CI: 0.860 to 0.880), and no OA
(0.815, 95% CI: 0.807 to 0.824). CLIP’s performance was consistently lower with an AUC of
(0.907, 95% CI: 0.894 to 0.920) in severe OA, (0.734, 95% CI: 0.720 to 0.748) in moderate
OA, and (0.706, 95% CI: 0.696 to 0.715) in no OA, see Figure 4g-k.
Together these results demonstrate that vision-language models can identify a wide range of
radiological findings without having been specifically trained for this task.

Vision-Language Models are data efficient
Our goal was to determine whether LLMs' inherent knowledge and inference capabilities
could facilitate the development of AI models using a reduced number of labels. To this end,
we conducted a series of label efficiency experiments. These experiments were designed to
determine the minimum amount of training data and labels required for LLMs to achieve
specific performance benchmarks on various medical tasks.10

Our results were particularly striking with Flamingo-80B. Using only 10% of the training data,
Flamingo-80B was able to retain good performance across four medical disciplines.
Specifically, it maintained 95.8% (comparing an F1 score of 0.855 with 10% data to an F1
score of 0.892 with 100% data), 94.3% (comparing an AUC of 0.892 with 10% data to an
AUC of 0.945 with 100% data), 95. 2% (comparing an AUC of 0.764 with 10% data to an
AUC of 0.803 with 100% data) and 94.7% (comparing an AUC of 0.767 with 10% data to an
AUC of 0.810 with 100% data) of its peak performance in pathology, dermatology,
ophthalmology, and radiology, respectively. Detailed results of these findings are shown in
Figure 6.
These results suggest that the knowledge and inference capabilities embedded in
multimodal LLMs are highly effective, enabling the development of AI models with limited
amounts of labeled data.8 This feature of LLMs holds great promise for applications where
large labeled datasets are not readily available.
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Discussion
Deep Learning methods have been applied to a vast variety of medical problems in the past
decade and their performance has increased to such an extent that they now equal or excel
clinical experts in dedicated narrow tasks1,43,44. However, models that are good at solving one
task, but fail to generalize to other tasks are of limited use in daily clinical routine.
This has ushered a push towards more general foundation models that are envisioned to
carry out a diverse set of tasks using very little or no task-specific labeled data8. First steps
in this direction have been taken by groups that trained domain-specific foundation models in
ophthalmology10 and histopathology11. However, the training of such models still requires
access to very large domain-specific datasets comprising millions of images. This limits the
development of such models to a few groups. Furthermore, these models can not be
regarded as true general foundation models as their applicability is limited to their specific
domain. In this work, we present evidence that large vision-language models can serve as
the sought general foundation models. We show how these vision-language models can be
used as medical image interpreter base models that can be fine-tuned to specific tasks with
a fraction of the data necessary to train conventional deep learning models. This opens up
new possibilities in the application of AI to medical problems: there is a large number of
medical tasks for which no AI models have been developed so far due to the scarcity of
data. With vision-language models as general image interpreters, these tasks may now be
tackled which can ultimately benefit clinical routine.
We performed our experiments with publicly available models that have been trained on
publicly available data in a transparent manner. We thus set ourselves apart from research
on the proprietary model GPT4-Vision45,46 which is touted as the state-of-the-art foundation
model However, not much is known about the internal architecture, the model size, or the
training data of GPT4-Vision. Not least due to its proprietary nature, the extent to which it
can be used to drive progress in medicine is thus severely limited. Rather we focus on the
open-source vision-language model Flamingo-80B. We show that Flamingo-80B inherently
possesses medical knowledge and excels at classification tasks without specialized training.
For this, we performed an extensive evaluation of eight datasets from four medical
specialties comprising more than 450,000 medical images and demonstrated the wide
applicability of our findings.
Our findings suggest a reevaluation of the current approach to AI in medicine, where
specialist models are trained for new applications. Instead, generalist vision-language
models offer a versatile, cost- and data-efficient alternative to the development of multiple
specialized models. In addition, their inherent knowledge and ability to process information
from other domains can facilitate the linking of different domains within the medical field and
the incorporation of existing knowledge47,48.

Our work has limitations and leaves room for future research. Specifically, we performed a
proof-of-concept and focused solely on imaging information. Therefore, we did not
investigate the fusion of imaging information with more complex textual information, such as
patient reports or patient history. Second, the model exhibited hallucinations when answering
some of the clinical vignette questions for the NEJM challenge. We provided examples in
Figure S3 and Figure S4. There is thus an urgent need for the development of safeguards
against these hallucinations.
Third, the NEJM challenge questions are not a factual representation of the clinical workflow,
but rather a vignette of clinical cases used to evaluate the LLM's clinical reasoning skills.
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Follow-up studies are necessary to establish the real clinical use of such models. Most
importantly, we used LLaMA as the LLM backbone. While there are more powerful models
like GPT4-Vision by OpenAI and Gemini Ultra by Google, we were unable to test these due
to their closed nature, but we anticipate that they, along with future open-source LLMs, will
result in even better performing vision-language models.

Conclusions
Large vision-language models that have been trained on publicly available data can serve as
general medical image interpreters. They are data-efficient and publicly available, rendering
them ideal for the development of new AI models in medical areas where the lack of large
labeled datasets has so far been prohibitive.
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Figures

Figure 1: Performance of the multimodal LLM with 80 billion parameters on the NEJM
Image Challenge Cases. (a)-(c): Selected NEJM cases correctly answered by the
multimodal 80B LLM. The model provided the answer along with an explanation that was
checked by a board-certified radiologist with 12 years of experience. (d): performance of
Flamingo-80B in the NEJM challenge as compared to non-selective human participants.
Bars indicate accuracy means; vertical lines indicate standard deviations.NEJM - The New
England Journal of Medicine.
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Figure 2: Setup of Experiments. (a)-(b): Flamingo (80B and 9B) models were evaluated on
eight image classification tasks of four medical imaging domains. (c): Visualization of the
probing of internal states used for the classification. Both vision and LLM-trained weights are
frozen during probing (colored in light blue).
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Figure 3: Performance in histopathological and dermatological image classification.
(a-j) F1-score when classifying tissue type in task 1. Linear probes are fine-tuned on each
dataset (Kather Colon and PanNuke) and evaluated on a hold-out test set. (a) to (i):
classification of nine tissue types from colorectal cancer patients using image data from the
Kather Colon dataset. (j): Malignancy classification in the PanNuke dataset in task 2. (k-r)
AUC when classifying skin lesions. The probes are trained on the multimodal LLM’s internal
representations to predict the type of skin lesions (k-q) and malignancy (r). The center of
each bar represents the mean of the metrics (F1 and AUC) and the error bars indicate the
SDs. SDs and P-values are calculated using bootstrapping and paired, two-tailed t-tests.
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Figure 4: Performance in ophthalmological and radiological image classification. (a-e):
Grading of diabetic retinopathy (DR). Linear probes are adapted to the EyePACS dataset by
fine-tuning and evaluated on a hold-out test set to differentiate different stages of DR, such
as proliferative DR, mild DR, and no DR eyes. (f): Classification of referrable glaucoma. (g-k)
Performance in OA diagnosis based on knee radiographs. The center of each bar represents
the mean AUC, and the error bars indicate the SDs. SDs and P-values are calculated using
bootstrapping and paired, two-tailed t-tests.
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Figure 5: Detection of imaging and radiological findings on PadChest radiographs.
Mean AUC and SD are shown for each finding with more than 50 entries in the PadChest
testing cohort. The top 27 imaging findings are shown in the left panel and the remaining
imaging findings are shown in the right panel. Flamingo-90B (green) consistently achieves
higher AUC than CLIP (blue).
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Figure 6: Robustness of our approach to data scarcity. In all four tasks, the performance
of Flamingo-80B is robust to reducing the training data. Tuning on only 10% of the training
data, we maintained 95.8%, 94.3%, 95.2%, and 94.7% of the best performances in the
pathology, dermatology, ophthalmology, and radiology tasks, respectively. For tasks with
multiple classification subtasks, we give the mean AUC. SDs is given as colored bands.
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Online Supplement

Figure S1: An illustrative example of the clinical case descriptions and answer choices from
the “NEJM Image Challenge”.

Figure S2: Two-shot example prompt used to query multimodal LLMs to answer NEJM
Image Challenge questions.
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Figure S3: Cases from the NEJM Image Challenge with hallucinations. Flamingo-80B
answered these questions correctly but reasoned incorrectly. We observed that multimodal
LLMs can hallucinate strongly in certain medical cases such as (a), (b), and (c).
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Figure S4: Selection of NEJM Image Challenge cases that were answered incorrectly.
Flamingo-80B struggled to give the correct answer in these cases. We observe that
Flamingo-80B mainly suffered from hallucinations (c) and (d) or misperceptions (a) and (b).
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Figure S5: Testing the AUC for linear probes trained on each layer of the Flamingo-80B
model. We select one layer (i.e., 32, highlighted in black, dashed lines) in a pre-experiment
and then use it consistently for all subsequent experiments. In contrast to previously
reported results,45 representations from the 80B multimodal LLM regularly fluctuate in
quality across layers. We found that this phenomenon generalizes across evaluations in
pathology (a), dermatology (b), ophthalmology (c), and radiology (d). The SDs of the AUCs
are plotted in color bands, and the midpoints of the bands indicate the mean value of the
AUC.
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Figure S6: Evaluation of activation probes in the PanNuke dataset within each organ type.
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