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Abstract 
Advanced multimodal large language models (LLM), such as GPT-4V(ision) and Gemini 
Ultra, have shown promising results in the diagnosis of complex pathological conditions. This 
raises questions about their knowledge base: Do these models deeply understand medical 
cases, including images, or do they simply recognize superficial patterns from extensive pre-
training? We aimed to determine whether LLMs can develop useable internal 
representations of images, and if these representations improve the classification of medical 
images. We rigorously tested the performance of the open-source Flamingo-80B model, 
which is not specifically tailored for medical tasks, against traditional pre-training methods. 
The tests covered eight distinct image classification tasks in pathology, dermatology, 
ophthalmology, and radiology, using CLIP, Flamingo-80B, and 9B multimodal models. These 
tasks ranged from tissue and nuclear classification in histopathology to lesion detection in 
dermatology and disease grading in radiology. We systematically evaluated the model's 
internal image representations to determine their relevance and usefulness in medical 
diagnosis. Our analysis showed that the internal representation of these images in the 
largest model, Flamingo-80B, was more accurate in classifying medical images than in all 
other methods. These results held even when the number of samples available for training 
was small. Our results show that multimodal LLMs acquire structured knowledge in medical 
domains. This suggests that these models are evolving from mere pattern recognition tools 
into entities with broader medical generalist capabilities. This evolution underscores the 
potential for these models to make contributions to medical diagnosis and research, 
although it is important to continue to evaluate their capabilities and limitations in real-world 
medical settings. 
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Introduction 
Recent advances in natural language processing have notably enhanced the capabilities of 
multimodal large language models (LLMs) so that they are now able to answer complex 
medical questions almost on par with human experts1–4(Figure 1). Multimodal LLMs, being 
trained on vast amounts of written text5–7, exhibit new capabilities, previously attributed only 
to humans like the ability to reason and to abstract away from specific problems enabling 
them to apply their knowledge to new, unseen problems8. This ability is especially important 
in medical training, where knowledge is largely disseminated through language, even for 
specialties that focus intensively on visual patterns such as radiology, pathology, or 
ophthalmology9. Provided only with a textual description of pathological image changes, 
medical doctors can generalize well from textual descriptions to image interpretation. 
Replicating this ability using deep learning (DL) models has been a long-sought goal of 
research10–17.  

To enhance performance in medical tasks, specialized LLMs have been developed, primarily 
through augmenting generalist models with extensive training on medical data18–21.  

However, recent literature questions the need to transform generalist models into specialists. 
Using advanced prompting techniques, generalist models can outperform their specialist 
counterparts on medical tasks22. The success of these prompting techniques in medical 
contexts indicates that these models inherently contain accurate representations of domain-
specific knowledge. The objective of our study was to investigate the extent of generalist 
models' comprehension of medical data, with a specific emphasis on medical imaging. 

In particular, our approach employs open-source multimodal LLM models, notably those not 
specifically tailored to medical tasks. We focus on images from four medical fields heavily 
reliant on image classification: pathology, dermatology, ophthalmology, and radiology. For 
each field, we selected two use cases and applied them to distinct datasets, observing how 
the LLMs internally represented these images and whether this representation could 
distinguish between various medical subclasses. 

Our findings indicate that the general natural language pre-training undergone by LLMs may 
offer advantages over more specialized, task-specific pre-training methods in certain medical 
contexts. This comparison includes benchmarks in image- and language-pretraining, such 
as those reported in the recent work by Huang et al23,24. While this suggests a promising 
direction for the application of LLMs in medical image analysis, it also highlights the need for 
further research and validation25–27. Our study aims to contribute to the ongoing dialogue on 
the utility of LLMs in medical science, particularly in integrating and interpreting complex 
visual and textual data - a prerequisite for foundational models28–30. 
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Methods 

Ethics Approval 
This study was conducted in accordance with the tenets of the Declaration of Helsinki and 
was approved by the local institutional review board (EK259/22). 

Patient Cohorts and Imaging Data 
In this study, we systematically examined medical imaging datasets across four key medical 
disciplines: pathology, dermatology, ophthalmology, and radiology. We conducted two 
specific image classification tasks within each discipline, resulting in a total of eight distinct 
tasks (T), see Figure 2a and Table 1: 
 
Tissue Classification in Histopathology Images (T1):  Using the NCT-CRC-HE-100K 
dataset, this task includes histological imaging data from 136 colorectal cancer patients. 
Following the dataset partitioning proposed by Kather et al31, we formed a training set of 
100,000 image patches from 86 patients and a test set of 7,180 patches from 50 patients. 
Each patch, measuring 224×224 pixels, is classified into one of nine tissue categories: 
adipose tissue, background, debris, lymphocytes, mucus, smooth muscle, normal colonic 
mucosa, cancer-associated stroma, and colorectal adenocarcinoma epithelium31. 
 
Nuclear Classification in Histopathology Images (T2): This task uses the PanNuke 
dataset, which contains 7,558 pan-cancer images from 19 different organ types32. These 
images, which were annotated by Gamper et al., include various nuclear categories such as 
neoplastic, inflammatory, connective, epithelial, and dead tissue, including both apoptotic 
and necrotic cells. 
 
Lesion Detection in Dermatology (T3): For this task, we utilized the 2018 International 
Skin Imaging Collaboration (ISIC) Challenge dataset, comprising 10,208 training and 1,512 
testing images of various skin lesions. Classifications include melanoma, basal cell 
carcinoma, and several other lesion types, as detailed in the work by Tschandl et al33,34. 
 
Melanoma Classification in Dermatology (T4):  Derived from the ISIC 2020 Challenge, 
this task includes dermatology data with images labeled as benign or malignant35. The 
dataset, which differs from the 2018 challenge, includes 26,045 images for training and 
7,081 for testing, stratified by patient (1,644 patients for training, 412 for testing). 
 
Diabetic Retinopathy Grading in Fundoscopic Images (T5):: We sourced data from the 
2015 EyePACS Diabetic Retinopathy Detection Challenge36 and the APTOS-2019 Blindness 
Detection Challenge37, totaling 88,700 fundoscopies from 44,350 patients. The combined 
dataset was divided into 73,622 training images (only EyePACS) and 18,740 testing images 
(from EyePACS (7,539 patients) and APTOS-2019). 
 
Glaucoma Detection in Fundoscopic Images (T6): This task incorporates data from the 
AIROGS38 and ODIR-201939 challenges, resulting in a large dataset of 101,442 
fundoscopies from 54,274 patients for training and 7,000 fundoscopies from 3,500 patients 
for testing. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.23300146doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300146
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 
Lung Disease Detection in Chest Radiographs in Radiology (T7): Using the 'PadChest' 
cohort, this task focuses on radiology data with 86,715 chest radiographs from 59,975 
patients for training and 7,943 radiographs from 7,272 patients for testing40,41. The dataset 
includes 174 radiographic findings and 19 radiological diagnoses41. 
 
Osteoarthritis Grading in Knee Radiographs in Radiology (T8): Employing data from the 
Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST), this task 
involves grading osteoarthritis in knee radiographs42,43. Following the methodology of Han et 
al.15, we constructed a dataset with 56,185 training images from 6,425 patients and 9,904 
testing images from 1,095 patients. 
 

Table 1: Details on eight image classification tasks. 
Task Type Datasets Training Set Testing Set 

   Images Patients Images Patients 

T1 Histopathology NCT-CRC-HE-100K31 
CRC-VAL-HE-7K31  

100,000   136 7,180  
 

50 

T2 Histopathology PanNuke32 4,971 N/A 1,263 N/A 

T3 Dermatology HAM1000034 
ISIC 201833 

10,208  N/A 1,512  
 

N/A 

T4 Dermatology SIIM-ISIC 202035 26,045  1,644  7,081  412 

T5 Ophthalmology EyePACS36 73,622  36,811 15,078 7,539  

  APTOS-201937 0 0 3,662 N/A 

T6 Ophthalmology AIROGS38  
ODIR-201939  

101,442  
0 

54,274 
0 

0 
7,000 

0 
3,500 

T7 Radiology PadChest41 86,715 59,975  7,943   7,272 

T8 Radiology OAI42,43 
MOST42,43 

39,921 
16,264 

3,831 
2,594 

7,108  
2,796 

677 
418 

 

NEJM Image Challenge Benchmarking 
In this study, we collected 931 clinical cases from the NEJM Image Challenge from October 
2005 to August 2023. Each case presented a medical image accompanied by a short text 
describing the clinical context, culminating in a specific question such as "What is the 
diagnosis?" (see Figure S1 for an example). We provided five possible answers for each 
case and tasked DeepMind's Flamingo model with selecting the correct answer.6 The 
dataset covered a wide range of medical fields, including pathology, dermatology, 
ophthalmology, and radiology, providing a comprehensive mix of medical imaging data. 
Statistics on the number of correct answers provided by NEJM readers were used to stratify 
the difficulty of the questions into five equal intervals according to the percentage of correct 
answers provided by human readers.3 
 
We used a few-shot, in-context learning approach to test Flamingo on the NEJM cases.44 
This involved using the first two cases from the dataset (dated October 13th and 20th, 2005) 
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as initial examples for the model (Figure S2). The remaining 929 cases were then used as a 
test set to assess the model's ability to interpret medical images across different disciplines. 

Multimodal LLMs 
We used the open-source Flamingo architecture, 45 which was trained by Hugging Face M4 
and is available in two sizes: Flamingo-80B with 80 billion parameters and Flamingo-9B with 
9 billion parameters. Both models are VLMs that accept text interleaved with images and 
output free-form text. Flamingo combines a pre-trained LLM (LLaMA-65B for Flamingo-80B 
and Llama-7B for Flamingo-9B46) and a pre-trained Vision Transformer (ViT, 632M 
parameters47) via a transformer-based mapper (Perceiver Sampler48). To fuse vision and 
text signals, Flamingo uses cross-attention layers interleaved with LLM residual blocks (see 
Figure 2c). LLaMA-65B was pre-trained on 1.4 trillion tokens from publicly available data 
sources, including Wikipedia, arXiv, Github, Books, StackExchange, C4, and 
CommonCrawl46. The ViT was pre-trained on 2.3 billion images obtained from the web as 
part of the LAION-5B dataset49. The combined Flamingo model was then further pre-trained 
for its perceiver samplers and cross-attention blocks on 141 million interleaved image-text 
documents and 353 million images45. 

Testing the Models' Medical Image Interpretation 
To test the medical reasoning of the models and their ability to stratify medical images for 
downstream tasks, we use a method similar to recently published approaches 50–53, i.e., we 
present the respective images to the model along with a general prompt, e.g., "What can you 
see on this radiological image?”. We then extract the representation of the images in the 
model's internal latent space and test whether these representations can be used for 
classification by a simple linear logistic regression model, see Figure 2c. This concept is 
called "probing the model" and tests whether the internal representation of the images is 
linearly separable, i.e. whether the LLM has allocated healthy and pathological images to 
separate regions of its high-dimensional space. 

CLIP as a Comparison Model 
We used OpenAI's CLIP (Contrastive Language-Image Pre-training) as a benchmark to 
evaluate Flamingo's performance. CLIP, specifically the CLIP-ViT-B/32 model, is trained on 
a corpus of over 400 million Internet-sourced image-text pairs, providing robust "zero-shot" 
learning capabilities54. We use this baseline model in all tasks T1-T8. As a second baseline 
model, focused only on the pathology tasks, we employ PLIP (Pathology Language-Image 
Pre-training), which has been trained with contrastive learning specifically on pathology 
images sourced from X (formerly Twitter) and has recently been presented as a foundational 
model with state-of-the-art performance in histopathology23. 

Image Pre-processing 
Images larger than 1024×1024 pixels were downsampled to 1024×1024 pixels and 
underwent normalization relative to their maximum pixel value to ensure uniformity across 
the datasets. T2 and T8 required specific preprocessing: in T2, images of nuclei were 
processed according to the work of Huang et al23. The image was considered 'malignant' if 
the total number of neoplastic cells was more than ten and covered more than 30% of the 
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total cells. Images were considered 'benign' if no neoplastic cells were present. This resulted 
in 2,866 malignant images and 3,368 benign images. For T8, knee radiographs were 
preprocessed to include only a 140 mm×140 mm region using a pre-trained hourglass 
network reported by Tiulpin et al.55 

Computational Resources 
We use four NVIDIA A6000 (48GB) GPUs on a local server system to probe the models. To 
train the logistic regression model on the internal probes of Flamingo activations, an NVIDIA 
RTX 3090 (24GB) GPU was used. 

Evaluation and Statistical Analysis 
For T3 to T8, the performance of the classifiers was evaluated by the area under the 
receiver-operator curve (AUC). For T1 and T2, the classification performance was evaluated 
by the F1 score according to Huang et al.23 Standard deviations (SDs) and P values were 
calculated using bootstrapping with 1,000 replicates and paired 2-tailed t-tests. 
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Results 
We present our results as follows: First, we show Flamingo's performance on the NEJM 
Image Challenge dataset by prompting it with medical speech-image questions and 
recording the output as text (Figure 1).  This mimics direct human interaction with the model. 
We then use T1 through T8 to explore the model's internal medical reasoning capabilities 
and compare its performance to CLIP on large datasets across eight application cases 
(Figure 3-5). Finally, we show that the internal image representation allows for highly data-
efficient development of AI models when limited labels are available, achieving state-of-the-
art performance with a fraction of the data of other models (Figure 6). 

Accuracy in a Complex Diagnostic Challenge 
When analyzing 929 diagnostic cases, Flamingo-80B's primary diagnosis matched the final 
diagnosis in 40.4% (375 of 929) of cases (Figure 1d). When the model was prompted three 
times in succession, it included the correct diagnosis in 54.3% (504 of 929) of cases, as 
determined by stochastic top-K sampling with T=1.0 and top k=50. Notably, Flamingo-80B's 
performance outperformed guesswork at various levels of difficulty, except for the most 
difficult category (Figure 1d). In Figure 1a-c, we illustrate selected Flamingo-80B responses 
and their rationale. These results highlight Flamingo-80B's ability to provide medical insight 
and to integrate medical knowledge, albeit with the need for careful interpretation and 
validation in real-world settings. 

Systematic Investigation 
To determine whether the ability of multimodal LLM models to answer complex medical 
questions stems from an understanding of medical principles, we presented image data with 
textual prompts to Flamingo-80B and Flamingo-9B, as well as using OpenAI's CLIP as a 
benchmark. Our focus was on analyzing the internal state representations of these models 
to determine their medical relevance. 

Classification in Pathology 

The colorectal tissue classification task (T1) focused on classifying tissue into nine 
categories based on hematoxylin & eosin (H&E)-stained histologic images from a human 
colorectal cancer (CRC) cohort. In this task, a linear classifier was trained on internal 
activations obtained from multimodal LLMs and the CLIP model, analyzing a total of 7,158 
histopathological image patches. The results showed that Flamingo-80B's internal 
representations achieved a higher average F1 score of 0.892 as compared to the CLIP 
method, which scored 0.764. Notably, Flamingo-80B also outperformed the visual language 
foundation model developed by Huang et al.23, which was pre-trained on Twitter for domain-
specific data, with an F1 score of 0.892 versus 0.877. Detailed results for the different 
categories can be found in Figure 3a-i. 
 
In the nuclear classification task (T2), our goal was to discriminate between benign and 
malignant cases among samples from 19 different organs using the PanNuke dataset 
(Figure S6). By applying a linear classifier to the internal activations derived from both 
multimodal LLMs and the CLIP model, Flamingo-80B demonstrated superior performance. 
Specifically, its internal representations yielded a consistently higher F1 score of 0.870 (95% 
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CI: [0.847 to 0.891]) compared to the baseline CLIP method's 0.797 (95% CI: [0.774 to 
0.821]) (t-statistic=139.7, P<0.001), as detailed in Figure 3j. These results collectively 
confirm the advanced capabilities of multimodal LLMs over traditional pre-training methods 
in histopathology, even matching the accuracies of specialized foundation models that rely 
on domain-specific data. 

Classification in Dermatology 

The skin lesion detection task (T3) involves the multiclass classification of dermatological 
images into seven classes: melanoma, basal cell carcinoma, actinic keratosis carcinoma, 
melanocytic nevus, benign keratinocytic lesions, dermatofibroma, and vascular lesions. After 
training the linear classifier on the internal activations extracted from multimodal LLMs and 
the CLIP model Flamingo-80B's internal representations resulted in a consistently higher 
AUC as compared with the baseline CLIP method in all seven classes, see Figure 3k-q for a 
more detailed breakdown (P<0.001 for all). 
 
The second skin lesion classification task (T4) on a separate dataset classified 33,126 
dermatological images into malignant or benign lesions. Following the same architecture as 
above, Flamingo-80B achieved a significantly higher AUC on this task than CLIP (0.885, 
95% CI: [0.859 to 0.909] vs. 0.834, 95% CI: [0.810 to 0.857], P<0.001), see Figure 3r. 

Classification in Ophthalmology 

T5 focuses on the detection of diabetic retinopathy using over 90,000 fundus photographs in 
the US and India.  Flamingo-80B shows superior performance in grading diabetic retinopathy 
(see Figure 4), especially in detecting proliferative and severe diabetic retinopathy (Figure 
4a, b), achieving state-of-the-art results (AUC=0. 949, 95% CI: 0.939 to 0.958; and 
AUC=0.903, 95% CI: 0.889 to 0.917) and significantly outperformed the baseline CLIP 
model (AUC=0.883, 95% CI: 0.870 to 0.896 and AUC=0.826, 95% CI: 0.808 to 0.846; P< 
0.001 for both classes). Performance in detecting mild diabetic retinopathy is lower for all 
three models (Figure 4d), possibly due to class imbalance and labeling ambiguity, with 
Flamingo-80B performing best with an AUC of 0.629 (95% CI: 0.612 to 0.644). 
 
T6 addresses another significant visual impairment cause, glaucoma, assessed in a large 
patient cohort from Beijing, China, comprising 3,500 individuals56. Here again, the probe 
trained on the Flamingo-80B activations showed superior performance in AUC (0.868) 
compared to both its smaller variant, Flamingo-9B (AUC: 0.843; P<0.001), and the baseline 
CLIP model (AUC: 0.716; P<0.00, Figure 4f). 

Classification in Radiology 

The chest X-ray classification task (T7) aims at allocating 54 radiographic findings to chest 
X-rays from the PadChest dataset. We utilized 94,658 chest X-rays of which 27.9% were 
labeled manually by board-certified radiologists. A subset of 7,943 manually labeled chest X-
rays was set aside for testing. After training the linear classifier on the internal activations of 
the multimodal LLMs, Flamingo-80B led to an AUC of at least 0.90 in 7 findings and of at 
least 0.70 in 40 findings. CLIP achieved these AUC thresholds in none and only 6 findings, 
respectively, see Figure 5. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.23300146doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300146
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

T8 investigates the performance of diagnosing osteoarthritis (OA) in knee X-rays. OA was 
graded based on manual labels by board-certified radiologists.15 Again training a linear 
model on the internal activations led to the superior performance of Flamingo-80B in severe 
OA (0.971, 95% CI: 0.965 to 0.976), moderate OA (0.870, 95% CI: 0.860 to 0.880), and no 
OA (0.815, 95% CI: 0.807 to 0.824). CLIP’s performance was consistently lower with an 
AUC of (0.907, 95% CI: 0.894 to 0.920) in severe OA, (0.734, 95% CI: 0.720 to 0.748) in 
moderate OA, and (0.706, 95% CI: 0.696 to 0.715) in no OA, see Figure 4g-k. 

Multimodal LLMs are data efficient 
Our goal was to determine whether LLMs' inherent knowledge and inference capabilities 
could facilitate the development of AI models using a reduced number of labels. To this end, 
we conducted a series of label efficiency experiments. These experiments were designed to 
determine the minimum amount of training data and labels required for LLMs to achieve 
specific performance benchmarks on various medical tasks.29 
 
Our results were particularly striking with Flamingo-80B. Using only 10% of the training data, 
Flamingo-80B was able to retain good performance across four medical disciplines. 
Specifically, it maintained 95.8% (comparing an F1 score of 0.855 with 10% data to an F1 
score of 0.892 with 100% data), 94.3% (comparing an AUC of 0.892 with 10% data to an 
AUC of 0.945 with 100% data), 95. 2% (comparing an AUC of 0.764 with 10% data to an 
AUC of 0.803 with 100% data) and 94.7% (comparing an AUC of 0.767 with 10% data to an 
AUC of 0.810 with 100% data) of its peak performance in pathology, dermatology, 
ophthalmology, and radiology, respectively. Detailed results of these findings are shown in 
Figure 6. 
 
These results suggest that the knowledge and inference capabilities embedded in 
multimodal LLMs are highly effective, enabling the development of AI models with minimal 
labeled data.28 This feature of LLMs holds great promise for applications where large labeled 
datasets are not readily available. 
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Discussion 
In our study, we present evidence that generalist models such as Flamingo-80B can 
inherently understand medical images and, in some cases, even outperform specialized 
models, such as PLIP23, to achieve new state-of-the-art performance. Using representations 
for generalist models may thus offer a data-effective solution for developing classification 
models in the medical domain.  
 
In the past, the predominant technique for solving tasks in particular domains such as 
medicine was the training of specialist models. This led to the creation of first-generation 
specialized language models such as PubMedBERT57 and BioGPT58, and multiple other 
models, specialized for electronic health records59 or diagnostic applications in radiology60 or 
ophthalmology29. The most advanced medical language model is the proprietary model Med-
PaLM 218,61, a 340 billion parameter model from Google, fine-tuned from Palm 262.  
However, specialist models now seem to be losing their advantage over generalist models. 
Today, the best-performing model on various benchmarks is the generalist GPT-48,22, raising 
the question of whether fine-tuning is still needed or whether generalists will soon be able to 
solve all tasks, making specialist models obsolete. For example, GPT-4 with specialized 
prompting achieves an accuracy of 90.2% on the MedQA63 benchmark of USMLE-style 
questions beating Med-PaLM 2 which achieved 86.5%22.  
 
However, comparing models to GPT-4 is inherently flawed because not much is known 
about this proprietary model by OpenAI, such as model size, architecture, and amount of 
training data5. It is conceivable that GPT-4's training dataset encompasses an extensive 
range of biomedical knowledge, possibly more data than specialized models were trained 
on5, which expresses a strong performance on most specialized benchmarks. Furthermore, 
language models benefit immensely from scale64,65, and the size of GPT-4, although 
unknown, is likely an order of magnitude larger than that of other models. This may explain 
why this generalist model, with appropriate prompting techniques, excels in several 
specialized domains such as medicine. 
 
Our research differs by focusing on the open-source VLM Flamingo-80B, ensuring a more 
equitable comparison. We show that Flamingo-80B, a generalist VLM, inherently possesses 
medical knowledge and excels at classification tasks without specialized training. We 
performed an extensive evaluation of eight datasets from four medical specialties comprising 
more than 450,000 medical images and demonstrated the wide applicability of our findings. 
We thus conclude that VLMs encode general medical knowledge and are suitable as 
generalist medical image interpreters. This finding suggests a reevaluation of the current 
approach to AI in medicine, where specialist models are trained for new applications, and 
argues for a more integrated use of generalist models in the field. Generalist VLMs offer a 
versatile, cost- and data-efficient alternative to the development of multiple specialized 
models. We demonstrated that Flamingo-80B allows for the creation of highly performant 
image classification models based on the internal representations of the model, using only 
10% of the training data. Given the general sparsity of medical training data and the high 
costs of labeling data with domain experts, the use of models such as Flamingo-80B 
possesses great potential. In addition, their inherent knowledge and ability to process 
information from other domains can facilitate the linking of different domains within the 
medical field and the incorporation of existing knowledge18,26. 
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Limitations  
Our work has limitations and leaves room for future research. Specifically, we performed a 
proof-of-concept and focused solely on imaging information. Therefore, we did not 
investigate the fusion of imaging information with more complex textual information, such as 
patient reports or patient history. Additionally, the model exhibited hallucinations when 
answering some of the clinical vignette questions for the NEJM challenge. We provided 
examples in Figure S3 and Figure S4 but did not conduct a thorough analysis of 
hallucinated findings. A third limitation is that the NEJM challenge questions are not a factual 
representation of the clinical workflow, but rather a vignette of clinical cases used to evaluate 
the LLM's clinical reasoning skills. Follow-up studies are necessary to establish the real 
clinical use of such models. Most importantly, we used LLaMA as the LLM backbone. While 
there are more powerful proprietary models like GPT4V by OpenAI and Gemini Ultra by 
Google, LLAMA is the current state-of-the-art among open-source models. We were unable 
to test these proprietary models due to their closed nature, but we anticipate that they, along 
with future open-source LLMs, will result in even more high-performing vision-language 
models. 

Conclusions 
The development of large generalist visual language models, such as Flamingo-80B is 
transforming medical diagnostics. The performance of Flamingo-80B, particularly its ability to 
create high-performing image classification models using substantially less training data, 
highlights the model's innate medical knowledge and its applicability in scenarios 
characterized by data scarcity and high costs of expert data labeling. This efficiency in 
leveraging internal representations of medical imagery opens new possibilities for medical 
AI, particularly in domains where data is limited. 
 

Data availability 
The NEJM challenge questions are available to the public via: https://www.nejm.org/image-
challenge. The validation datasets are publicly available and can be accessed from the 
following: Kather Colon (https://zenodo.org/record/1214456); PanNuke 
(https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke); ISIC-2018 (https://challenge.isic-
archive.com/data/#2018); ISIC-2020 (https://challenge.isic-archive.com/data/#2020); 
EyePACS Diabetic Retinopathy Detection (https://www.kaggle.com/c/diabetic-retinopathy-
detection/); APTOS-2019(https://www.kaggle.com/c/aptos2019-blindness-detection); 
AIROGS (https://zenodo.org/records/5793241); ODIR-2019 (https://odir2019.grand-
challenge.org/Download/); PadChest (https://bimcv.cipf.es/bimcv-projects/padchest/); OAI 
(https://nda.nih.gov/oai/query-download); MOST (https://most.ucsf.edu/multicenter-
osteoarthritis-study-most-public-data-sharing).      

Code availability 
The source codes can be accessed at https://github.com/peterhan91/Multimodal-Probes. 
The weights of open-sourced Flamingo models can be downloaded via 
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https://huggingface.co/HuggingFaceM4/idefics-80b-instruct and 
https://huggingface.co/HuggingFaceM4/idefics-9b-instruct.  
OpenAI’s CLIP model can be downloaded via https://huggingface.co/openai/clip-vit-base-
patch32.  
Inferencing of multimodal LLMs was performed using Huggingface transformers library 
(v.4.34.0.dev0, https://huggingface.co/docs/transformers/index) and PyTorch (v.2.0.1, 
https://pytorch.org/). Analysis of LLM’s representations was performed using Python 
(v.3.9.17, https://www.python.org/), scikit-learn (v.1.3.0, https://scikit-learn.org/stable/), and 
SciPy (v.1.11.1, https://scipy.org/).   
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Figures 

 
Figure 1:  Performance of the multimodal LLM with 80 billion parameters on the NEJM 
Image Challenge Cases. (a)-(e): Selected NEJM cases correctly answered by the 
multimodal 80B LLM. The model provided the answer along with an explanation that was 
checked by a board-certified radiologist with 12 years of experience. (f): performance of 
Flamingo-80B in the NEJM challenge as compared to non-selective human participants. 
Bars indicate accuracy means; vertical lines indicate standard deviations.NEJM - The New 
England Journal of Medicine.  
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Figure 2: Setup of Experiments. (a)-(b): Flamingo (80B and 9B) models were evaluated on 
eight image classification tasks of four medical imaging domains. (c): Visualization of the 
probing of internal states used for the classification. Both vision and LLM-trained weights are 
frozen during probing (colored in light blue). 
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Figure 3: Performance in histopathological and dermatological image classification. 
(a-j) F1-score when classifying tissue type in task 1. Linear probes are fine-tuned on each 
dataset (Kather Colon and PanNuke) and evaluated on a hold-out test set. (a) to (i): 
classification of nine tissue types from colorectal cancer patients using image data from the 
Kather Colon dataset. (j): Malignancy classification in the PanNuke dataset in task 2. (k-r) 
AUC when classifying skin lesions. The probes are trained on the multimodal LLM’s internal 
representations to predict the type of skin lesions (k-q) and malignancy (r). The center of 
each bar represents the mean of the metrics (F1 and AUC) and the error bars indicate the 
SDs. SDs and P-values are calculated using bootstrapping and paired, two-tailed t-tests. 
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Figure 4: Performance in ophthalmological and radiological image classification. (a-e): 
Grading of diabetic retinopathy (DR). Linear probes are adapted to the EyePACS dataset by 
fine-tuning and evaluated on a hold-out test set to differentiate different stages of DR, such 
as proliferative DR, mild DR, and no DR eyes. (f): Classification of referrable glaucoma. (g-k) 
Performance in OA diagnosis based on knee radiographs. The center of each bar represents 
the mean AUC, and the error bars indicate the SDs. SDs and P-values are calculated using 
bootstrapping and paired, two-tailed t-tests. 
 

 
Figure 5: Detection of imaging and radiological findings on PadChest radiographs. 
Mean AUC and SD are shown for each finding with more than 50 entries in the PadChest 
testing cohort. The top 27 imaging findings are shown in the left panel and the remaining 
imaging findings are shown in the right panel. Flamingo-90B (green) consistently achieves 
higher AUC than CLIP (blue). 
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Figure 6: Robustness of our approach to data scarcity. In all four tasks, the performance 
of Flamingo-80B is robust to a reduced amount of training data. Tuning on only 10% of the 
training data, we maintained 95.8%, 94.3%, 95.2%, and 94.7% of the best performances in 
the pathology, dermatology, ophthalmology, and radiology tasks, respectively. The SDs of 
the AUC are plotted in colored bands, and the midpoints of the bands indicate the mean 
AUC. 
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Online Supplement 

 
Figure S1: An illustrative example of the clinical case descriptions and answer choices from 
the “NEJM Image Challenge”.  
 

 
Figure S2: Two-shot example prompt used to query multimodal LLMs to answer NEJM 
Image Challenge questions. 
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Figure S3: Cases from the NEJM Image Challenge with hallucinations. Flamingo-80B 
answered these questions correctly but reasoned incorrectly. We observed that multimodal 
LLMs can hallucinate strongly in certain medical cases such as (a), (c), (d), and (f). 
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Figure S4: Selection of NEJM Image Challenge cases that were answered incorrectly. 
Flamingo-80B struggled to give the correct answer in these cases. We observe that 
Flamingo-80B mainly suffered from hallucinations (c), (e), and (f) or misperceptions (a), (b), 
and (d). 
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Figure S5: Testing the AUC for linear probes trained on each layer of the Flamingo-80B 
model. We select one layer (i.e., 32, highlighted in black, dashed lines) in a pre-experiment 
and then use it consistently for all subsequent experiments. In contrast to previously 
reported results,45 representations from the 80B multimodal LLM regularly fluctuate in 
quality across layers. We found that this phenomenon generalizes across evaluations in 
pathology (a), dermatology (b), ophthalmology (c), and radiology (d). The SDs of the AUCs 
are plotted in color bands, and the midpoints of the bands indicate the mean value of the 
AUC. 
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 Figure S6: Evaluation of activation probes in the PanNuke dataset within each organ type.  
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