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Abstract 

 

Evidence indicates a great degree of genetic overlap between psychiatric diagnoses. 

Accounting for these transdiagnostic effects can sharpen research on disorder-specific 

genetic architecture. Here we isolate genetic effects that are shared across 11 major 

psychiatric disorders (p factor) to gain further insight into genetic specificity and 

comorbidity over and above that contributed by the p factor, unique to each psychiatric 

disorder. After adjusting for transdiagnostic genetic effects, we examined genetic 

correlations among psychiatric traits as well as relationships with other biobehavioural traits. 

The landscape of genetic associations between pairs of psychiatric disorders changed 

substantially, and their genetic correlations with biobehavioural traits showed greater 

specificity. Isolating transdiagnostic genetic effects across major psychiatric disorders 

provides a nuanced understanding of disorder-specific genetic architecture and genetic 

comorbidity, and may help guide diagnostic nomenclature and treatment research.   

 

Introduction 

 

Genetic studies have challenged the current classification of psychiatric disorders as distinct 

categorical diagnoses by revealing overlaps in their genetic architectures 
1
. For instance, the 

first genome-wide association study (GWAS) of schizophrenia uncovered shared genetic loci 

between schizophrenia and bipolar disorder 
2
 despite their distinct categorization in 

diagnostic manuals (e.g., DSM-IV 
3
). Further research using Linkage Disequilibrium Score 

Regression (LDSC 
4
) highlighted significant genetic correlations across most psychiatric 

diagnoses 
5-8

, unlike other neurological disorders such as Parkinson’s and Alzheimer's 

disease, which remained genetically distinct 
9
. A recent LDSC analysis of 11 major psychiatric 

diagnoses found that the genetic correlation between schizophrenia and bipolar disorder 

was 0.68, and the average of 55 genetic correlations between 11 diagnoses was 0.28 
10

. 
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The positive genetic manifold between diagnoses is consistent with the idea of a general 

factor of psychopathology 
11

,  called p 
12

. The p factor describes the propensity to 

developing all forms of psychopathologies 
13

, and reflects the comorbidities between 

psychiatric conditions that have been observed concurrently 
14

, across the lifespan 
15, 16

,  

and even across generations 
13, 17

. A p factor has also emerged from recent genetic and 

genomic studies 
8, 10, 18

. Shared genetic effects across different disorder dimensions were 

found to be stable over development, even when considering different measures and 

reporters 
18

. Capturing what cuts across diagnostic categories (i.e., a transdiagnostic 

approach) was found to be more effective in predicting functional and life outcomes than 

individual diagnoses 
19

.  

 

Therefore, isolating p from major psychiatric disorders could better capture the specific 

genetic effects associated with each disorder and provide a more precise understanding of 

disorder-specific biology. Previous research that isolated transdiagnostic effects to 

investigate specificity revealed novel genetic profiles and biological pathways in 

neurodevelopmental disorders 
20

 and alcohol use disorder 
21

. In this study, we applied 

Genomic Structural Equation Modelling (Genomic SEM) 
22

 to isolate transdiagnostic genetic 

effects across 11 psychiatric disorders from genetic effects specific to each psychiatric 

condition. As shorthand, we refer to these disorder-specific genetic effects as non-p to 

describe residual genetic variance independent of genomically identified p. We used 

summary statistics from these non-p GWA analyses to estimate SNP heritability,  genetic 

correlations between the disorders beyond transdiagnostic effects, and their correlations 

with external biobehavioural traits. We hypothesized that non-p traits will provide us with 

novel insight into the genetic architecture of psychiatric disorders and their correlations 

with other disorders and traits, consequently informing research and practice into 

diagnostics and treatment.   

 

 

Methods 

 

The article is accompanied by Supplementary Information and the study followed a 

preregistered analysis plan. Deviations from preregistered analyses are described in 

Supplementary Note 1. 

 

GWAS summary statistics  

 

We used the most recent publicly available summary statistics from GWA studies of 11 

major psychiatric disorders. Detailed information about the GWAS summary statistics, 

sample sizes and availability are provided in Supplementary Table 1. All summary statistics 

are based on samples of European ancestry GWAS only. For details on the analysis protocol, 

we refer to the original publications. 
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Genomic SEM 
 

Genomic SEM 
22

 is a statistical framework that can model the shared and unique genetic 

architecture of complex traits by applying structural equation modelling principles to GWAS 

summary statistics. Genomic SEM is unbiased by sample overlap and imbalanced sample 

sizes 
22

. Here, we used Genomic SEM to perform multivariate GWAS analysis of 11 major 

psychiatric disorders (Figure 1) in order to capture transdiagnostic effects across all 11 

disorders and isolate genetic variance in each psychiatric disorder beyond that captured by 

the p factor.  

 

Genomic SEM uses multivariable LD score regression to estimate the genetic covariance 

matrix and sampling covariance matrix. We applied quality control filters for this step using 

the defaults in Genomic SEM, including restricting SNPs to those present in HapMap3 with a 

minor allele frequency > 1% and information score > 0.9. The LD weights used for LDSC were 

calculated using the European subsample of the 1000 Genomes phase 3 project; excluding 

the major histocompatibility complex (MHC) due to complex LD structures in this region that 

can bias estimates. When calculating the liability scale heritability estimates for the 

uncorrected psychiatric disorders, we used the sum of effective sample sizes, and a sample 

prevalence of 0.5 to reflect that the corrected sample size already accounts for sample 

ascertainment. See Supplementary Notes for more details about processing summary 

statistics in Genomic SEM and calculating effective sample sizes. After the quality control 

steps, 3,746,806 SNPs were present across all 11 disorders.  

Independent SNPs, Genes, and Enrichment and Pathway Analysis (MAGMA) 

 

To identify independent hits from the 11 non-p GWAS, we applied a pruning approach using 

a window of 250Akb and an linkage disequilibrium (LD) threshold of r2A<A0.1. This was done 

using the LD clumping function in Plink v1.9 
23

, with LD statistics obtained from the 1000 

Genome Project. Independent significant SNPs were considered novel if they were not 

present in the original disorder GWAS. 

 

We used MAGMA within the FUMA framework (v1.5.6) 
24

 to map SNPs to genes based on 

their position (within 35kb upstream and 10kb downstream of each gene). We performed 

genome-wide gene-based association tests using MAGMA. The gene-based test combines 

results from multiple SNPs within a gene to assess the association between the gene and 

the disorder, while accounting for LD between SNPs. LD information was obtained from the 

1000 Genomes Phase 3 EUR reference panel, and Bonferroni correction was applied to 

identify genes with genome-wide significance. 

 

We used MAGMA to conduct tissue-specific gene-set analysis and gene property analysis. 

Gene-set analyses assessed whether genes within an annotated set exhibited stronger 

associations with the disorder compared to other genes. Meanwhile, the tissue specificity 

test examined the relationship between tissue-specific gene expression profiles and 

disorder-gene associations. The gene-set analyses were performed using curated gene sets 

and Gene Ontology (GO) terms obtained from the Molecular Signatures Database 

v2023.1Hs. For the MAGMA gene property analysis, tissue expression profiles were 

obtained from GTEx v8 (comprising 54 tissue types) and BrainSpan (brain samples at 11 
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general developmental stages), available in FUMA. Gene sets and tissues were considered 

significant if the p-value was <0.05 after Bonferroni correction. 

 

Genetic correlations  

 

We used LDSC 
4
 to compute genetic correlations between the 11 psychiatric disorders after 

accounting for transdiagostic effects, as well as between each of the 11 psychiatric disorders 

–uncorrected and corrected for p– and 34 external traits. The LD scores used were 

computed using 1,215,002 SNPs present in the HapMap 3 reference panel, excluding the 

MHC region on chromosome 6. The differences between genetic correlations with external 

traits before and after partialling out genetic effects associated with the p factor were 

assessed using a two-stage method described in Coleman et al. (2020) 
25

. In this method, 

first, differences in genetic correlations were assessed using a two sample z-test, and 

significant differences (p < 0.05) were then compared using a block-jackknife correction. The 

results using the jackknife were then further corrected using the Benjamini-Hochberg False 

Discovery Rate (FDR) method to account for multiple testing. 

 

Results 

 

Isolating transdiagnostic genetic signal from 11 major psychiatric disorders 
  

We used Genomic SEM to construct a genomic p factor using the most recent publicly 

available summary statistics from GWAS of 11 major psychiatric disorders (see 

Supplementary Table 1). We applied a standard set of quality control (QC) filters to the 11 

GWAS summary statistics within Genomic SEM and then used them in a multivariable 

version of LDSC. Genetic correlations are presented in Supplementary Table 2. We found a 

positive manifold of genetic correlation (rG) among most disorders, with a mean rG of 0.29. 

Estimates ranged between -0.11 for the rG between obsessive compulsive disorder (OCD) 

and attention deficit hyperactivity disorder (ADHD) and 0.90 between anxiety and major 

depressive disorder (MDD).  

 

To capture these transdiagnostic genetic effects across all 11 disorders, we fitted a common 

factor model to the genetic covariance matrix. In this model, all disorders loaded on a single 

common factor (i.e., the p-factor; top half of Fig. 1A). This same model also allowed us to 

capture residual genetic variance that was associated with each disorder independent of 

transdiagnostic effects (i.e., non-p; bottom half of Fig. 1A). We simultaneously ran GWAS on 

p and residual variance in each psychiatric disorder. Figure 1A provides a diagram of the 

GWAS that we ran to capture genetic variance in PTSD after accounting for transdiagnostic 

genetic effects. We repeated this procedure 11 times to isolate transdiagnostic genetic 

effects from each of the 11 major psychiatric disorders. After accounting for p, we identified 

genome-wide significant lead SNPs for schizophrenia (SCZ, 118 hits), bipolar disorder (BIP, 

22 hits), major depressive disorder (MDD, 14 hits), attention-deficit /hyperactivity disorder 

(ADHD, 12 hits), anorexia nervosa (AN, 10 hits), problematic alcohol use (ALCH, 3 hits), and 

Autism spectrum disorder (ASD, 2 hits); see Supplementary Figures 1-11, see Supplementary 

Tables 3-9 and Supplementary Note 4 for novel SNPs. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2024. ; https://doi.org/10.1101/2023.12.20.23300292doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.20.23300292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

We used MAGMA 
26

 (see Methods) to evaluate the genetic effects of the 11 non-p GWASs 

on protein-coding genes. We performed gene-set analyses to identify biological pathways 

linked to genes associated with each major psychiatric disorder before and after accounting 

for p, and to analyse tissue type enrichment (Supplementary Note 4). The full results are 

reported in the Supplementary Notes 4 and Supplementary Tables 10-47. 

 

 
Figure 1. Isolating transdiagnostic genetic effects from 11 major psychiatric disorders. A. Standardized 

results for a common factor model of genomic p. Each square indicates observed variables (i.e., the summary 

statistics for each of the 11 major psychiatric disorders) and circles represent latent variables that are 

statistically inferred from the data (i.e., genomic p-factor). One-headed arrows are standardized factor 

loadings, representing regression relations with the arrow pointing from the predictor variable to the outcome 

variable. Covariance relationships between variables are represented as two-headed arrows linking the 

variables. Residual variances of a variable are represented as a two-headed arrow connecting the variable to 

itself. SEs are shown in parentheses. The red arrows linking the SNP to both the p-factor and PTSD provide an 

example of the model used to partition genetic variance associated with transdiagnostic effects from the 

genetic variance specific to each disorder. We ran the model 11 times, isolating transdiagnostic effects from 

each psychiatric condition at a time.  ANX = anxiety disorder; MDD = major depressive disorder; PTSD = post-

traumatic stress disorder; BIP = bipolar disorder; SCZ =  schizophrenia; ADHD = attention-deficit hyperactivity 

disorder; ASD =  autism spectrum disorder; ALCH = problematic alcohol use; OCD = obsessive-compulsive 

disorder; AN = anorexia nervosa; TS = Tourette syndrome; p =  general psychopathology factor. B and C. SNP-

based heritability estimates including and after accounting for transdiagnostic effects. SNP heritabilities 

were calculated before (on the liability scale) and after (on the observed scale) removing genetic effects 

shared with the p-factor. Error bars indicate standed errors. 
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SNP heritabilities for disorders independent of p 
 

We used LDSC implemented in Genomic SEM to estimate SNP-based heritability (h
2
) for the 

11 disorders before and after partialing out the genetic variance associated with p. Figures 

1B and 1C, and Supplementary Table 48 show the SNP-based h
2
 estimates for the 11 

disorders (on the liability scale; Figure 1B) and for the residual variance in each psychiatric 

disorder after accounting for the genetic effects associated with p (on the observed scale; 

Figure 1C). In general, the pattern of SNP h
2
 remained similar before and after controlling 

for p. For example, the highest SNP h
2
 were observed for OCD and TS (.49 and .49, 

respectively) and the lowest estimates for ALCH and PTSD (.02 and .04).  

 

Removing transdiagnostic genetic effects significantly changed genetic relationships 

between psychiatric disorders. 

  

Figure 2 compares genetic correlations between each disorder and the other 10 disorders 

before and after removing the genetic variance each has in common with p (see 

Supplementary Figure S2 for the full genetic correlation matrices as heat maps and 

Supplementary Table 2 and 4  for the genetic correlation estimates and confidence 

intervals.) It can be seen from Figure 2 that genetic correlations were lower after accounting 

for genomic p. The average genetic correlation dropped from 0.29 to -0.05 after 

residualizing genomic p. This reduction in genetic correlation suggests greater specificity in 

that the pervasive contribution of p to the positive manifold of genetic correlations is 

reduced.  

 

The major finding visualized in Figure 2 is that the reductions in transdiagnostic correlations 

are not uniform – that is, the blue and green lines are not parallel. For example, consider the 

genetic correlations between ADHD corrected and uncorrected for p with PTSD and MDD. 

Uncorrected for p, the genetic correlation between ADHD and PTSD is very high, 0.72. When 

ADHD and PTSD are corrected for p, the genetic correlation declines to 0.50, a 

nonsignificant difference. This means that the substantial genetic correlation between 

ADHD and PTSD is only slightly due to p, which could motivate the search for common 

mechanisms and transdiagnostic interventions. In contrast, for MDD, the genetic correlation 

with ADHD drops from 0.52 to -0.08. In other words, the substantial genetic correlation 

between ADHD and MDD disappears when ADHD is corrected for p, suggesting that the 

ostensible genetic relationship between ADHD and MDD is completely mediated by p.   

 

These differences in genetic correlations are not simply due to the disorders’ loading on the 

genomic p factor. For example, loadings on the genomic p factor are similar for PTSD (0.78) 

and MDD (0.82), but the p-corrected genetic correlation with ADHD is much reduced for 

MDD (from 0.52 to -0.08) but not for PTSD (0.72 to 0.50). These predictive profile 

differences reveal differences in disorder-specific genetic architecture when the positive 

manifold of transdiagnostic effects of genomic p is removed.  

 

The most interesting illustrations of prediction profile differences are cases where the 

genetic correlations between pairs of disorders goes from positive to negative. For example, 
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the genetic correlation between BIP and MDD uncorrected for p was substantially positive 

(0.44), but after controlling for p, the genetic correlation became negative (-0.64).  

 

Like ADHD and PTSD, for some pairs of disorders, genetic correlations remained substantial 

after accounting for transdiagnostic effects. For example, moderate to strong genetic 

correlations between ANX and MDD (rG = 0.74, SE = 0.08) and between SCZ and BIP (rG = 

0.42, SE = 0.04) could still be observed. Like ADHD and MDD, for other pairs of disorders, 

genetic associations were not significant after accounting for transdiagnostic genetic effects. 

This could be observed most notably for the otherwise strong correlation between PTSD and 

ANX (rG = 0.63, SE = 0.08), which was reduced to 0.09 (SE = 0.17) after removing the genetic 

variance they shared with p. Similarly, the moderate genetic correlation between ASD and 

ANX (rG = 0.36, SE = 0.05) dropped to -0.03 (SE = 0.10). 

  

Another pattern of change was observed for the genetic correlations between OCD and 

ADHD and between TS and PTSD. For these disorder pairs, associations that were previously 

negative, but small or not significant, remained negative, but their effect size increased 

substantially. The genetic correlation between OCD and ADHD increased from -0.11 (SE = 

0.06) to -0.45 (SE = 0.09), and the genetic correlation between TS and PTSD increased from -

0.09 (SE = 0.10) to -0.35 (SE = 0.19). The most dramatic pattern of change emerged for the 

psychotic disorders of MDD, BIP and SCZ, in which genetic correlations switched from 

positive to negative after removing transdiagnostic genetic effects. For MDD and SCZ, the 

genetic correlation changed from 0.34 (SE = .03) to -0.81 (SE = 0.05). The change was 

similarly dramatic for the association between MDD and BIP, from 0.44 (SE = 0.03) to -0.64 

(SE = 0.06).  

 

The same pattern of genetic correlations was obtained when isolated transdiagnostic effects 

and obtained disorder-specific summary statistics using a different method that followed a 

two-step procedure: 1) we created a genomic p factor and 2) we used GWAS-by-subtraction 
27

 to separate genetic effects associated with the genomic p-factor constructed at Step 1 

from the genetic effects associated with each psychiatric disorder. (See Supplementary Note 

5). 
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Figure 2| Changes in the landscape of genetic correlaitons between psychiatric disorders after accounting 

for transdiagnostic effects. For every psychiatric disorder, we present genetic correlations with the other 10 

psychiatric conditions uncorrected for p (blue line) and the genetic correlations wit the other psychiatric 

disorders after removing the genetic variance captured by the p factor (non-p; green line). Disorders are 

presented ordered by their loading on the p factor, starting from the highest-loading disorders in the top row 

(i.e., PTSD, MDD and ANX) to those that shared the least amount of genetic variance with the p factor in the 

bottom row (i.e., AN and OCD). Correlations were estimated using LDSC within Genomic SEM. ANX, anxiety 

disorder; MDD, major depressive disorder; PTSD, post-traumatic stress disorder; BIP, bipolar disorder; SCZ, 

schizophrenia; ADHD = attention-deficit hyperactivity disorder; ASD, autism spectrum disorder; ALCH, 

problematic alcohol use; ; OCD, obsessive-compulsive disorder; AN, anorexia nervosa; TS, Tourette syndrome. 

 

 
Genetic architecture of the associations with external traits 
 

In addition to removing transdiagnostic genetic effects from the relationships between 

psychiatric disorders, we also compared genetic correlations between each of the 11 

psychiatric disorders – uncorrected and corrected for p – and 34 traits that are not 

psychiatric disorders. We focused on four broad categories of external traits: socio-
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demographic, anthropometric, health-related, and psychological traits. These correlations 

are shown in Figure 3 and 4 and Supplementary Figures 26 and 27, with details in 

Supplementary Table 50.  

 

 

 
Figure 3. Genetic correlations between 11 major psychiatric disorders and psychological traits. The dots 

represent genetic correlations estimated using LDSC regression. Correlations with psychiatric disorders 

uncorrected for p (‘original’) are in blue, with psychiatric disorders corrected for p (‘non-p’) in green. Error bars 

represent 95% confidence intervals. Red asterisks indicate a statistically significant (FDR-corrected P<<<0.05, 

two-tailed test) differences in the magnitude of the correlation with disorders uncorrected for 

p versus disorders corrected for p. Exact P values for all associations are reported in Supplementary Table 50. 

The FDR correction was applied based on all genetic correlations tested (including those reported in 

Supplementary Figures 26-27). Source GWASs are listed in Supplementary Table 51. 

 

Figure 3 presents genetic correlations for the 11 psychiatric disorders uncorrected and 

corrected for p and psychological traits. Correlations between disorders uncorrected and 

corrected for p and most psychological traits differed significantly, as indicated by the red 

asterisks. In almost all cases, the genetic correlations were lower for the corrected than for 

the uncorrected psychiatric traits. Importantly, correlations with the same traits often 

appeared to be significantly different across major psychiatric disorders, such as subjective 

wellbeing, sensitivity to environmental stress and tiredness. For example, consider 

sensitivity to environmental stress. Uncorrected for p, genetic correlations were significant 
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and substantial between sensitivity to environmental stress and major psychiatric disorders, 

but corrected for p, these correlations were significantly lower and sometimes negligible: 

SCZ (0.19 vs -0.02), MDD (0.53 vs 0.03), ASD (0.19 vs. -0.002) and ALCH (0.29 vs. 0.04). A 

similar pattern of results was observed for several external traits that often co-occur with 

most psychiatric disorders, such as subjective wellbeing, loneliness, tiredness and insomnia.   

 

In other words, genetic effects associated with each major psychiatric disorder also include 

overlapping genetic variance associated with these transdiagnostic traits, such as sensitivity 

to environmental stress, which mask their specificity. Supplementary Figures 26-27 and 

Supplementary Table 50 present the genetic correlations between psychiatric disorders and 

all socio-demographic, anthropometric, health-related and psychological traits.  

 

As shown in Figure 4, similar results emerged for health-related traits. Genetic correlations 

between disorders corrected for p were generally lower than those uncorrected for p, often 

significantly lower. For example, self-reported poor health showed significant reductions for 

most disorders (ADHD, ALCH, ANX, BIP, MDD, SCZ); number of sexual partners showed 

significant reductions for four disorders (ADHD, ALCH, BIP, SCZ); and cigarette per day 

yielded significant reductions for three disorders (ALCH, ANX, MDD; see Supplementary 

Table 50).  

 

Though most of the changes in correlations were reductions, there were some exceptions. 

For example, after accounting for p, the genetic correlation between BIP and SCZ and 

educational attainment increased significantly. Other genetic correlations reversed after 

accounting for p. For example, the genetic correlation between BIP and loneliness changed 

from rG = 0.11 before accounting for p to rG = -0.26 after removing transdiagnostic effects, a 

similar change was also observed for the genetic correlations between BIP and Back Pain 

(from 0.08 to -0.15) and MDD and several cognitive traits (cognitive performance (from -

0.10 to 0.18), executive functions (from -0.18 to 0.31) and noncognitive skills (from -0.09 to 

0.22) and risk-taking behaviours (e.g., the correlation between MDD and risk tolerance 

changed from 0.14 to -0.29). Significant changes were also observed for the genetic 

correlations between ANX and risk-taking behaviour (from 0.14 to -0.26), ANX and risk 

tolerance (from 0.07 to -0.39), and SCZ and back pain (from 0.05 to -0.16). Removing 

transdiagnostic genetic effects from psychiatric disorders, particularly MDD, ANX, SCZ and 

BIP, resulted in divergent patterns of genetic associations with external biobehavioural 

traits.  
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Figure 4. Genetic correlations between 11 major psychiatric disorders and health-related traits. The dots 

represent genetic correlations estimated using LDSC regression. Correlations with psychiatric disorders 

uncorrected for p (‘original’) are in blue, with psychiatric disorders corrected for p (‘non-p’) in green. Error bars 

represent 95% confidence intervals. Red asterisks indicate a statistically significant (FDR-corrected P<<<0.05, 

two-tailed test) differences in the magnitude of the correlation with disorders uncorrected for 

p versus disorders corrected for p. Exact P values for all associations are reported in Supplementary Table 50. 

The FDR correction was applied based on all genetic correlations tested (including those reported in 

Supplementary Figures 26-27).  

 

 

DISCUSSION  

 

One of the most important findings from the genomic analysis of psychiatric disorders is the 

consistent evidence for genetic overlap among disorders 
10-12

, leading to the concept of a 

general factor called genomic p. While acknowledging the importance of p, the present 

paper’s focus on genetic specificity is motivated by the need to control for the pervasive 

transdiagnostic influence of p in order to understand the genetic architecture of psychiatric 

disorders independent of p. The results show that the genetic landscape shifts dramatically 

when we remove the effect of genomic p from each of 11 psychiatric disorders.  

 

A striking example is the genetic relationship between Bipolar Disorder and Major 

Depressive Disorder. As has been found in other studies, uncorrected for p, the genetic 
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correlation is substantially positive, 0.44 in our analysis.  However, after controlling for p, 

the genetic correlation was highly negative (-0.64). This negative correlation suggests that, 

once transdiagnostic effects are accounted for, a genetic liability for one disorder conveys a 

lower genetic liability for the other disorder. This finding has the potential to inform 

diagnostic categorization and has far-reaching implications for future studies aimed at 

understanding biological causes and treatments for these disorders. The positive genetic 

correlation between BIP and MDD uncorrected for p would suggest a search for common 

mechanisms and transdiagnostic interventions that affect BIP and MDD similarly. However, 

when p is controlled, their strong negative genetic correlation suggests that mechanisms 

and interventions work in opposite directions for BIP and MDD. 

 

The pattern of genetic correlations between several other disorders also shifted 

dramatically for other psychiatric disorders, highlighting discrepancies between diagnostic 

nosology and genetic structure of psychiatric disorders. For some pairs of disorders, positive 

genetic correlations disappeared entirely after correction for p, such as the genetic 

correlation between ANX and PTSD, suggesting that their overlap is entirely captured by 

what cuts across all psychiatric diagnoses. Another major shift was observed for the slightly 

negative genetic correlation between OCD and ADHD, which became strongly negative after 

accounting for p. This suggests that their genetic overlap with p obscured the negative 

genetic relationship between these disorders. This finding is consistent with the current 

clinical perspective suggesting that OCD and ADHD lie at the opposite extremes of the 

impulsivity-compulsivity continuum 
28, 29

.   

 

Other pairs of disorders remained correlated positively after accounting for p, such as the 

genetic correlation between SCZ and BIP and between ANX and MDD, which suggests that 

only part of their overlap is shared with the other disorders included in our transdiagnostic 

model. It is important to remember that, although latent variables serve to summarize 

patterns of comorbidity or covariation among indicators, they are statistical constructs that 

depend on the indicators that are included in each model. 

 

Removing transdiagnostic genetic effects from psychiatric disorders, particularly MDD, ANX, 

SCZ and BIP, also resulted in divergent patterns of genetic associations with external 

biobehavioural traits, especially health-related and psychological traits. In other words, 

genetic effects associated with each major psychiatric disorder also include overlapping 

genetic variance associated with these transdiagnostic traits, such as sensitivity to 

environmental stress, which mask their specificity. Focusing on disorder-specific genetic 

effects provides novel insights into the genetic architecture, biology and comorbidity 

between psychiatric conditions that can inform research on sequelae and antecedents as 

well as treatment.  

 

Together, our findings highlight how isolating transdiagnostic genetic risk from major 

psychiatric disorders provides novel insight into disorder-specific genetic architecture and a 

more nuanced understanding of their comorbidities and co-occurrences with psychological 

and health-related traits. Consequently, these findings emphasize the significance of 

considering specificity as well as generality in psychiatric genetics. By demonstrating distinct 

genetic correlations and outcomes associated with psychiatric conditions independent of 

transdiagnostic effects, the findings pave the way for new avenues of research. One such 
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application is the use of non-p summary statistics to create polygenic scores that index 

greater specificity in psychiatric disorders (Keser et al., in press). For example, isolating 

transdiagnostic effects from psychiatric polygenic risk scores can lead to refined predictions 

of how biological risk for each disorder unfolds developmentally and can offer new avenues 

to investigate how genetic and environmental risk combine.  

 

Our findings need to be interpreted in the context of their limitations. The most important 

limitation is that our research begins with case-control GWAS based on traditional diagnoses 

perfused with transdiagnostic effects. This points to the need for GWA research using 

phenotypes that correspond more closely to the genetic architecture of psychopathology 
1
. 

The origin of psychiatric nosology is historical rather than empirical; progress depends on 

more empirically derived dimensional approaches such as HiTop 
30

 and Rdoc 
31

.  

 

Another limitation is that p is a statistical construct for which there is no consensus on what 

it is or how to measure it 
32

, which leaves non-p even further adrift from reality. However, 

similar accusations could be levelled at g, the general factor that emerges from diverse 

cognitive traits, but g is one of the most stable and predictive variables in the behavioural 

sciences 
33

. g is what diverse cognitive traits have in common and is not caused by any single 

physiological process, such as speed of neural conduction, nor is it defined by any single 

psychological process such as abstract reasoning. We embrace the possibility that p, like g, is 

not one thing – it is precisely what diverse traits have in common 
34

. We suggest that p will 

be similarly valuable for understanding general genetic influences, and that isolating the 

transdiagnostic effects captured by p will be useful in sharpening research on specific 

genetic influences, particularly in the context of developmental psychopathology and clinical 

epidemiological studies. Genetic effects that are disorder-specific might inform future 

research into causes and consequences of psychiatric conditions applying causal designs 

including mendelian randomization and longitudinal models 
35, 36

.  

 

A further limitation is related to our choice of modelling p as a common factor, given our 

interest in capturing transdiagnostic genetic effects that could index shared genetic liability 

across all 11 major psychiatric disorders. Although alternative models have been proposed 
10, 17, 37

 different statistical approaches to modelling p were found to lead to similar 

estimates 
17

. Relatedly, we allowed our indicators to load freely onto the common factor, as 

such, some disorders (e.g., ANX, MDD and PTSD) contributed more than others to the 

general factor (e.g., OCD and AN). A model in which all indicators are restricted to 

contribute the same amount of variance to the general factor would likely have led to 

different results, although arguably it would have provided a poorer account of 

transdiagnostic effects in psychopathology. It should also be noted that, while general factor 

models can fit psychopathological data, alternative explanations have been proposed, most 

notably network models 
38

.  

 

Other limitations are general issues in GWA research. For example, the GWA studies that 

are the basis for this research are largely limited to individuals of European ancestry, so the 

results reported here might not generalize beyond this population 
39, 40

. In addition, the 

contributing GWA studies are meta-analyses of different cohorts that may be subject to 

heterogeneity that cannot be fully quantified. Moreover, our research is limited by issues 
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that could affect any GWA results, such as cross-trait assortative mating 
41

 and population 

stratification 
42

. 

 

In conclusion, our results show that isolating transdiagnostic effects from major psychiatric 

disorders provides novel insight into disorder-specific genetic architecture by providing. a 

more precise understanding of comorbidities and co-occurrences in psychopathology. Until 

better correspondence between psychiatric diagnoses and the genetic architecture of 

psychopathology is achieved, isolating p from diagnostic categories will sharpen genetic 

research by focusing on disorder-specific genetic effects. 
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