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Abstract 9 

Background: The comprehensive exploration of genomic risk loci for heart failure (HF) remains 10 

constrained, and the genetic role of blood lipids (BL), blood pressure (BP) and blood glucose (BG) in 11 

HF has not been fully characterized. 12 

Methods: We first assessed the global and local genetic correlations between HF and the quantitative 13 

traits of BL, BP, and BG. We then employed multi-trait association analysis and multi-trait 14 

colocalization analysis to identify novel and pleiotropic genomic risk loci for HF. Furthermore, we 15 

explored potential genes, pathways, tissues, and cells associated with HF involving BL, BP, and BG. 16 

Lastly, we investigated potential therapeutic targets for HF. 17 

Findings: We found extensive global and local genetic correlations between HF and the traits of BL, 18 

BP, and BG. Multi-trait association analysis successfully identified 154 novel genomic risk loci for HF. 19 

Multi-trait colocalization analysis further revealed 46, 35, and 14 co-localized loci shared by HF with 20 

BL, BP, and BG, respectively. We found that the loci shared by HF with these traits rarely overlapped, 21 

indicating distinct shared mechanisms. Gene-mapping, gene-based, and transcriptome-wide 22 

association analyses prioritized noteworthy candidate genes (such as LPL, GRK5, and TNNC1) for 23 

HF. In enrichment analysis, HF exhibited comparable characteristics with cardiovascular traits and 24 

metabolic correlated to BL, BP, and BG. We provided genetic evidence for putative drugs, and 25 

highlighted 33 robust potential protein targets. 26 

Interpretation: These findings will provide biological insights into the pathogenesis for HF, and 27 

benefit the development of preventive or therapeutic drugs for HF. 28 

  29 
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Introduction 1 

Heart failure (HF) is a prominent public health issue. Global statistics indicate that HF impacts over 64 2 

million individuals, which contributes the major cause of cardiovascular hospitalization rates, mortality, 3 

and healthcare expenditures(1, 2). As the terminal state of cardiac diseases, HF is a polygenic disease 4 

and presents a more intricate genetic structure than other cardiometabolic disorders. Therefore, 5 

investigating the underlying genetic mechanisms of HF could enhance our etiological understanding of 6 

HF and facilitate the development of potential targets for intervention. However, the exploration of the 7 

genetic mechanisms of HF is still insufficient. 8 

Previous studies have identified several genomic risk loci associated with HF(3, 4). However, further 9 

identification of risk loci for HF remains challenging due to the limited sample size. Therefore, it is 10 

necessary to employ advanced statistical genetics methods to investigate the association of potential 11 

loci with HF. Multi-trait joint analysis can borrow relevant information from multiple related traits and 12 

has become an effective statistical method to improve statistical power to identify novel genomic risk 13 

loci for target traits(5). In the clinical practice, dyslipidemia, elevated blood pressure (BP), and blood 14 

glucose (BG), are main risk factors for HF, and these abnormal statuses are highly prevalent among HF 15 

patients, exerting a substantial influence on disease progression(6).  16 

Despite HF is an irreversible progressive disease, the abnormalities in blood lipids (BL), BP, and BG 17 

can be identified early and treated effectively with medications. Previous studies have reported that BL, 18 

BP, and BG have potential shared genomic loci with HF(7, 8). In addition, the present genetics 19 

association study of BL, BP, and BG exhibits a substantial sample size, demonstrating significant 20 

polygenic heritability and greater multitude of genomic loci in contrast to prior research. Therefore, 21 

their multi-trait joint analysis with HF can not only borrow information from these traits to deeply 22 

explore HF-related genetic variations, but also identify pleiotropic loci shared by HF with BL, BP, and 23 

BG.  24 

In this study, we utilized the largest publicly available genome-wide association study (GWAS) 25 

summary statistics to perform multi-trait analysis between HF and the quantitative traits of BL, BP, and 26 

BG. Our study aims to achieve two primary objectives. Firstly, we aim to discover potential novel 27 

genomic risk loci for HF, elucidate its genetic mechanism, and explore potential drug targets. Secondly, 28 

we aim to investigate the shared genetic etiology basis for HF with BL, BP, and BG, and characterize 29 

the genetic roles of BL, BP, and BG in HF. 30 
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Methods 1 

1.Population samples and ethics 2 

Figure 1 presents a schematic overview of our study. In this study, we utilized GWAS summary 3 

statistics for a total of 12 traits. For each trait, we utilized the most recent and largest publicly available 4 

GWAS summary statistics from European ancestry individuals. The GWAS summary statistics for HF 5 

were obtained from the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) 6 

consortium, which combined data from 26 cohort-level GWAS comprising 47,309 cases and 930,014 7 

controls(3). The Global Lipids Genetics Consortium (GLGC) consortium provided summary statistics 8 

[high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total 9 

cholesterol (TC), and triglyceride (TG)] (N= 1,320,016) of BL(9), and additional summary statistics 10 

[apolipoprotein A1(APOA1) (N= 393,193) and apolipoprotein B(APOB) (N= 439,214)] for BL traits 11 

were from UK Biobank(10). The GWAS summary statistics for BP traits [systolic blood pressure (SBP), 12 

diastolic blood pressure (DBP), and pulse pressure (PP)] were used from a meta-analysis study of UK 13 

Biobank (N= 458,577) and the International Consortium of Blood Pressure genetics (ICBP) (N= 14 

299,024, across 77 cohorts)(11). For BG, the summary statistics [fasting glucose (FG) (N=314,916) and 15 

hemoglobin A1c (HbA1c) (N=344,182)] were obtained from the UK Biobank-Neale lab(12). The 16 

supplementary Table 1 provides access to the specific details of each GWAS summary statistics. 17 

2.Statistical analysis  18 

The GWAS summary statistics underwent genotypic quality control measures. Supplement Methods 19 

provide more comprehensive description of these analytical procedures. 20 

Both linkage disequilibrium score regression (LDSC)(13) and high-Definition Likelihood (HDL)(14) 21 

were conducted to evaluate heritability of each trait and the genetic correlation between HF and the 22 

quantitative traits of BL, BP, and BG. Latent causal variable model (LCV)(15) was employed to further 23 

evaluate the genetic causality proportion between HF and these traits. Given the intricate genetic 24 

structure of each region, we employed local analysis of [co]variant association (LAVA)(16) to examine 25 

local genetic correlation. To correct for multiple testing for above statistical analyses, we applied the 26 

Benjamini-Hochberg false discovery rate (FDR) approach, with the threshold set at 0.05. 27 

We utilized multi-trait analysis of GWAS (MTAG)(5) to identify novel genomic risk loci for HF by 28 

leveraging the interrelationships among pairwise traits exhibiting significant genetic correlation. To 29 

assess the overall inflation resulting from the violation of the homogeneous assumption in MTAG 30 
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analysis, we computed the maximum FDR (maxFDR), which evaluate the overall inflation due to 1 

violation of the homogeneous assumption. The genome-wide significance threshold for HFMTAG was 2 

determined to be P < 5×10−8. We further employed the Functional Mapping and Annotation of Genetic 3 

Associations (FUMA)(17) to characterize significant genomic loci. FUMA identified independent 4 

significant single nucleotide variants (SNVs) with a genome-wide significant and a linkage 5 

disequilibrium (LD) measure of r2�<�0.6. Lead SNVs were determined by selecting independent 6 

significant SNVs that were not in LD with each other at r2�<�0.1. Risk loci were defined by 7 

combining lead SNVs that physically overlapped or had LD blocks within 250�kb apart. FUMA 8 

additionally provided functional annotations such as ANNOVAR analysis, combined annotation 9 

dependent depletion (CADD) scores, and RegulomeDB scores. Variants with a CADD score exceeding 10 

12.37 were deemed potentially deleterious. To identify shared causal variants within each genomic 11 

locus across traits, hypothesis prioritization in multi-trait colocalization (HyPrColoc)(18) analysis was 12 

conducted based on genomic risk loci of HFMTAG. The colocalized locus was considered if the posterior 13 

probability exceeded 0.7. 14 

Based on MTAG results, we conducted a comprehensive investigation into the underlying shared 15 

biological mechanisms for HF with BL, BP, and BG. In order to identify potential genes associated 16 

with HF, a combination of gene-mapping, multi-marker analysis of genomic annotation (MAGMA)(19), 17 

and transcriptome-wide association analysis (TWAS)(20) methods were employed. The threshold for 18 

FDR.P correcting multiple testing was set at 0.05. Furthermore, we elucidated the biological pathways 19 

by conducting gen-set enrichment analyses using the GO and KEGG databases. In addition, we used 20 

the DESE (driver tissue estimation by selective expression) approach implemented in 21 

phenotype-cell-gene association analysis (PCGA)(21-24) website to further explore the tissue/cell 22 

types specificity and similar phenotypes for HFMTAG. 23 

3.Genomics-driven drug discovery 24 

To further enhance gene-driven drug discovery for HF, we utilized the Genome for Repositioning drugs 25 

(GREP)(25) software to determine the clinical indication categories and the enrichment of candidate 26 

effector genes in drug repositioning. GREP conducts Fisher's exact tests to detect enrichment of a gene 27 

set within genes targeted by drugs currently in use or previously developed for the specific clinical 28 

indication category (Anatomical Therapeutic Chemical Classification System [ATC]). Furthermore, 29 

proteome-wide mendelian randomization (MR) was utilized to identify potential therapeutic plasma 30 
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protein targets for HF [UK Biobank Pharma Proteomics Project (UKB-PPP)(26), and deCODE 1 

genetics(27)]. The primary analysis was employed using the inverse variance weighted method, and all 2 

results underwent FDR correction (FDR.P<0.05). The steiger test was conducted to assess whether the 3 

MR results were affected by potential reverse causality. The MR-Egger regression intercept test and 4 

Cochran's Q test were used to respectively assess the presence of pleiotropy and heterogeneity of the 5 

results. Bayesian colocalization analysis was utilized to examine whether the observed significant 6 

protein-disease pairs were driven by single causal SNV in the LD region(28). Specifically, we set the 7 

threshold of posterior probability hypotheses 4(the protein and HF were driven by single causal SNV) 8 

at 0.7. Based on MR and colocalization, phenome-wide MR analysis was conducted to investigate the 9 

pleiotropic or side effects of the protein targets (FDR.P<0.05). 10 

Results 11 

1.Genetic correlation and genetic causality proportion 12 

LDSC results showed that BG (FG, HbA1c), BP (SBP, DBP, and PP), and TC exhibited significant 13 

positive genetic correlations with HF. Conversely, HDL-C and APOA1 displayed significant negative 14 

genetic correlations (Supplementary Table 2; Fig. 2). The results pertaining to HDL exhibit a notable 15 

level of congruity with the findings of LDSC (Supplementary Table 3; Fig. 2). LAVA discovered a total 16 

of 366 significant bivariate local genetic correlations (FDR.P<0.05) for HF with BL, BP, and BG at 224 17 

specific regions (Supplementary Table 4; Fig. 2). The present study reveals a general pattern in the 18 

local genetic correlations for HF with HDL-C, APOA1, and APOB, indicating a notable inclination 19 

towards negative correlations. Conversely, other traits exhibit a tendency towards positive correlations, 20 

aligning with the direction of their respective global genetic correlations. It should be noted that the 21 

coexistence of both negative and positive local genetic correlations suggests a multifaceted impact.  22 

The LCV analyses demonstrated significant associations between HF and FG (|GCP| = 0.65, FDR.P = 23 

0.015), SBP (|GCP| = 0.33, FDR.P = 0.002), DBP (|GCP| = 0.38, FDR.P = 7.91×10−5) (Supplementary 24 

Table 5; Fig. 2), suggesting a potential genetic causal association for HF with FG, SBP, and DBP.  25 

2. Multi-trait association analysis 26 

Multi-trait association analyses combining HF with BL, BP, and BG, respectively, significantly 27 

increased the effective sample sizes and heritability of HF. Specifically, the polygenic heritability 28 

exhibited an impressive 2.02-, 1.83-, and 1.3-fold escalation for each respective HFMTAG consideration. 29 

Accompanied by max-FDR values of 0.046, 0.032, and 0.029 (Table 1), respectively, showed no 30 
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indication of inflation, thereby confirming the reliability of our methodology and findings. We 1 

successfully identified 93, 48 and 40 genomic risk loci from 486, 109 and 97 independent 2 

genome-wide significant SNVs for HFBL, HFBP, and HFBG, of which 85, 41, and 31 are novel risk loci 3 

for HF (Supplementary Table 6-12; Fig. 3). The HyPrColoc further identified 46, 35, and 14 pleiotropic 4 

loci that exhibited evidence of colocalization, indicating the widely distribution of shared genominc 5 

risk loci for HF with BL, BP, and BG (Supplementary Table 13-15). 6 

Furthermore, ANNOVAR offered notable variants' annotation information regarding these loci 7 

(Supplementary Table 16-18). For instance, we discovered 117 (2.8%) of 4188 genome-wide 8 

significant SNVs from HFBL loci are exons, 77 of which are located in protein-coding genes (35 9 

synonymous SNVs, 42 nonsynonymous SNVs). Further annotation by Combined 10 

Annotation-Dependent Depletion (CADD) scores predicted that 186 SNVs were deleterious (CADD 11 

score > 12.37). We noted several novel genomic risk loci and variants of interest. The most significant 12 

risk locus is located at region 8p21.3, and its index variant rs144958026 (P = 5.51×10-65) is an intronic 13 

variant of LPL gene which encoding lipoprotein lipase. The next significant locus is located at region 14 

11q12.2, whose index variant rs174551 (P = 6.92×10-50) is located in the 5-UTR of genes FADS1 and 15 

FADS2. Fatty acid desaturase (FADS) genes encode the fatty acid desaturase enzyme that is mainly 16 

responsible for regulating the biosynthesis of unsaturated fatty acids in the fatty acid metabolic 17 

pathway. In addition, rs34312154 (P=3.38×10-09) in region 11p11.2 has the highest CADD score of 31. 18 

We also noted four index variants that fell in the exonic region, including rs61749613 (P = 3.62×10-9; 19 

gene = VCAN), rs55707100 (P = 2.61×10-15; gene = MAP1A), rs1800961 (P = 4.06×10-16; gene = 20 

HNF4A), and rs9935936 (P = 1.72×10-9; gene = GNAO1:RP11-441F2.5). 21 

Notably, by combining MTAG analysis for HF with BL, BP and BG, we discovered a total of 165 HF 22 

risk loci, of which 154 of these identified loci were novel discoveries in relation to HF. By comparing 23 

locus reported in GWAS catalog (Supplementary Table 19-21), we found that a total of 143 loci have 24 

not been reported before. Interestingly, there was only a 6.1% overlap between the loci related to HFBL, 25 

HFBP, and HFBG, indicating that these three with different mechanisms that contribute to the effects on 26 

HF. 27 

3.Gene-based and transcriptome-wide association analysis 28 

FUMA mapped 1466 [including 1251 positional mapped genes, 327 expression quantitative trait loci 29 

(eQTL) mapped genes and 540 3D Chromatin Interaction mapped genes], 486 (including 406 30 
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positional mapped genes, 108 eQTL mapped genes and 145 3D Chromatin Interaction mapped genes), 1 

500 (including 435 positional mapped genes, 113 eQTL mapped genes and 190 3D Chromatin 2 

Interaction mapped genes) genes for HFBL, HFBP, and HFBG, respectively (Supplementary Table 22-24). 3 

We obtained a total of 2444 candidate genes, of which only 5.8% overlapped.  4 

The MAGMA gene-based analysis found a total of 910, 703, and 398 genes significantly associated 5 

with HFBL, HFBP, and HFBG (FDR.P<0.05) (Supplementary Table 25-27). We obtained a total of 1539 6 

candidate genes, of which only 23.8% overlapped. 7 

Combined with tissue-specific eQTL data (GTEx v8)(29) for whole blood, artery-aorta, coronary, 8 

heart-atrial appendage, and left ventricle, TWAS analysis revealed 248, 71, 53 genes for HFBL, HFBP, 9 

and HFBG (FDR.P<0.05) (Supplementary Table 28-30). Among a total of 359 candidate genes, only a 10 

minimal proportion of 3.34% exhibited overlapping associations. 11 

In summary, the results obtained from the parallel gene-level analyses are consistent with the findings 12 

of the preceding SNV-level analyses, indicating a limited overlap among the genes associated with 13 

HFBL, HFBP, and HFBG (Supplementary Fig. 1). This provides additional support to the concept that BL, 14 

BP, and BG exert their impact on HF through separate mechanisms. 15 

4. Gene-set enrichment 16 

The MAGMA gene-set analysis indicated that the predominant biological processes of 87 pathways 17 

implicated in the interaction between HF and BL primarily revolve around lipid metabolism. 18 

Furthermore, we identified 43 HFBP and 16 HFBG pathways (Supplementary Table 31-34; 19 

Supplementary Fig. 2). The results demonstrate that the biological processes involved in the association 20 

between HF and BP are significantly linked to vasculature and muscle development, while the 21 

association between HF and BG primarily revolves around hexokinase activity and lipid metabolism.  22 

5. Phenotype-cell-gene specificity association analysis 23 

We found that arterial, adipose, and lung tissues displayed significant associations with HFMTAG. The 24 

tissues that exhibited the top 3 strongest correlations with HFBL were adipose-visceral omentum, 25 

artery-coronary, and adipose-subcutaneous (Supplementary Table 34-36; Supplementary Fig. 3). For 26 

HFBP, the top 3 significant associations were observed in artery-coronary, artery-tibial, and lung. And 27 

HFBG demonstrated a strong correlation with artery-coronary, subcutaneous adipose, and artery-tibial. 28 

Among 2,214 human single cell types, macrophages were identified as pivotal cell types for HFBL, 29 

endothelial cells for HFBP, and ACE2-expressing AT2 cells exhibited the most notable association with 30 
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HFBG (Supplementary Table 37-39; Supplementary Fig.4). Through the examination of phenotypic 1 

similarities in 1,588 unique phenotypes, our findings align with established biological knowledge. As 2 

expected, HFBL, HFBP, and HFBG exhibited comparable characteristics with cardiovascular traits and 3 

metabolic traits correlated to BL, BP, and BG (Supplementary Table 40-42; Supplementary Fig. 5). 4 

6.Existing drug effects for heart failure 5 

Using GREP software for enrichment of significant HF-related genes obtained from gene-mapping, 6 

MAGMA, and TWAS analyses, we identified significant enrichment genes (ABCA1, APOB, LPL, 7 

PPARD, PPARG, and THRA) for HFBL in drug targets of the cardiovascular lipid-modifying drug 8 

targets (ATC C10 drugs), which encode targets for probucol, mipomersen, clofibrate, gemfibrozil, 9 

bezafibrate, and dextrothyroxine (Supplementary Table 43). HFBP genes demonstrated significant 10 

enrichment within the cardiovascular beta-blocking drug targets (ATC C07 drugs), incorporating 11 

ADRA1B and KCNH2 genes that encode targets for labetalol and sotalol (Supplementary Table 43). 12 

And HFBG genes exhibited a significant enrichment within drug targets for systemically used antivirals 13 

(ATC J05 drugs), which included the ADORA2B and CES1 genes, the encoding targets for vidarabine 14 

and oseltamivir (Supplementary Table 43). 15 

7.Plasma protein targets for heart failure 16 

We performed two-sample MR using plasma protein quantitative trait loci (pQTL) statistics from the 17 

UK Biobank Pharma Proteomics Project (UKB-PPP)(26) and deCODE(27) genetics with HFMTAG 18 

statistics to evaluate protein targets for primary prevention for HF. We identified a total of 33 protein 19 

targets that satisfied the statistical significance of both MR (FDR.P<0.05) and colocalization 20 

(PP.H4>0.7) support in at least one cohort, and there was no reverse causal association by steiger 21 

testing (Fig. 4). Sensitivity analyses also showed that there was no pleiotropy or obvious heterogeneity. 22 

Among the 4907 pQTL for drug target proteins from deCODE, our results identified a total of 16 23 

plasma proteins with potential causal associations with HF risk (Supplementary Table 44-46). These 24 

proteins were supported by MR (FDR.P < 0.05) and colocalization (PP.H4>0.7) analyses, and no 25 

reverse causal association was indicated by steiger test. Among them, GSTM4, NADK, and NPPB 26 

were replicated in the UKB-PPP cohort (FDR.P < 0.05; PP.H4>0.7; Steiger.P < 0.05) and had 27 

consistent effect directions. GSTA1 and LILRA5 were supported by colocalization in the UKB-PPP 28 

cohort (PP.H4>0.7), and the MR results showed nominal significance (P<0.05). INHBC, despite having 29 

a consistent direction of effect in the UKB-PPP cohort, was not supported by MR and colocalization. 30 
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The remaining proteins (APOA4, KPNA2, ALDH2, CSK, HEXIM2, NMT1, NPPA, ULK3, ALDH6A1, 1 

PFKM) are only available in the deCODE cohort due to strict instrumental variable filtering conditions. 2 

For 2941 pQTL in UKB-PPP, additional 17 protein targets (FDR.P < 0.05; PP.H4>0.7; Steiger.P < 0.05) 3 

were identified (Supplementary Table 47-49). Among them, NCAN, PLTP, and DLL1 received 4 

colocalization support in the previous deCODE cohort (PP.H4>0.7), and the MR results all showed 5 

nominal significance (P<0.05). PLG did not find MR significance in the deCODE cohort but was 6 

supported by colocalization. DLK1 was not supported by MR and colocalization. The remaining 7 

proteins (APOA2, ATRAAID, CELSR2, CTRL, HYOU1, LPL, CELSR2, FES, SH2B3, SPINK8, 8 

TJAP1, WASHC3, ZBTB17) could not be replicated in the deCODE cohort due to lack of instrumental 9 

variables. In addition, further phenome-wide MR analysis revealed that no side effects for the majority 10 

of identified protein targets were observed, while simultaneously indicating potential therapeutic 11 

benefits for other significant medical conditions (Supplementary Results; Supplementary Fig. 6-7). 12 

Discussion 13 

Multi-trait association analysis for HF with BL, BP, and BG significantly improved the statistical 14 

power in identification of novel genomic risk loci for HF. We discovered 154 novel HF loci, of which 15 

143 have not been reported previously. We further explored the shared genetic etiology, including 16 

potential genes, pathways, tissues, and cells for HF with these traits. The novel loci we have identified 17 

hold promise as potential targets for drug development or therapeutic interventions. Furthermore, 18 

bioinformatics analyses provide genetic evidence for putative drug effects and novel protein targets of 19 

HF (Supplementary Discussion). 20 

In this study, our findings suggest that there is minimal overlap between the risk loci or genes 21 

associated with HFBL, HFBP, and HFBG, indicating that the risk of HF caused by these factors appears to 22 

be independent, with distinct biological mechanisms. Consequently, the combination therapeutic 23 

strategy targeting HF with BL, BP, and BG may offer additive and diverse benefits.  24 

The 154 risk loci include some noteworthy HF-related genes. Lipoprotein lipase (LPL)-mediated 25 

hydrolysis of circulating lipoproteins into fatty acids (FA) is thought to be the primary source of FA 26 

utilization by the heart(30). Studies have shown that mice with cardiac LPL deficiency develop HF as 27 

they age and are unable to respond normally to increased afterload. In addition, LPL-deficient mice 28 

result in a reduction in HDL-C of more than 50%(30). The significance of G protein-coupled receptor 29 

kinase 5 (GRK5) as a key regulator of pathological cardiac hypertrophy has been documented, 30 
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rendering it a potential therapeutic target for HF. GRK5 was found to be upregulated in the 1 

myocardium of individuals with HF, as well as to promote maladaptive cardiac hypertrophy in animal 2 

models(31). Furthermore, an experimental and pharmacogenomic research showed the 3 

pharmacogenomic interaction between GRK5 and beta-blocker therapy, wherein the presence of the 4 

GRK5-Leu41 polymorphism was linked to a reduction in mortality rates among African American 5 

individuals afflicted with HF or cardiac ischemia(32). TNNC1 (Troponin C1, Slow Skeletal and 6 

Cardiac Type) is a protein coding gene. Diseases associated with TNNC1 include cardiomyopathy, 7 

familial hypertrophic and cardiomyopathy(33). TNNC1 is mainly related to striated muscle contraction. 8 

The inotropic drug levosimendan, which targets TNNC1, is a common drug for HF. 9 

We acknowledge some limitations. Our analyzes were limited to individuals of European ancestry and 10 

the results may not be generalizable to other ancestry. Additionally, we excluded all rare variants (MAF 11 

< 1%) from the MTAG analysis and therefore from all subsequent analyses. Therefore, we may not be 12 

able to identify rare variants with large effects. In MR analyses, we exclusively utilized cis-regulatory 13 

regions as instrumental variables, which may mitigate horizontal pleiotropy to some extent and result in 14 

reduced statistical efficacy. Lastly, our inquiry was restricted to identifying and validating pQTL data 15 

utilizing accessible instrumental variables, potentially neglecting alternative therapeutic targets. 16 

Conclusion 17 

In conclusion, this multi-trait association study provides important insights to the risk loci for HF and 18 

the shared genetic etiology for HF with BL, BP, and BG. Additionally, it highlights existing drugs and 19 

potential novel protein targets for HF therapy. These findings will provide biological insights into the 20 

pathogenesis for HF, and benefit the development of preventive or therapeutic drugs for HF.21 
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 1 

Legend 2 

Fig.1 Design schematic of the present study. HDL-C: high-density lipoprotein cholesterol, LDL-C: 3 

low-density lipoprotein cholesterol, TC: total cholesterol, TG: triglyceride, APOA1: apolipoprotein A1, 4 

APOB: apolipoprotein B, SBP: systolic blood pressure, DBP: diastolic blood pressure, PP: Pulse 5 

pressure, FG: Fasting glucose, HbA1c: Hemoglobin A1c. 6 

 7 

Fig.2 Genetic correlation and genetic causality proportion between HF and the quantitative traits 8 

of BL, BP, and BG. a, The correlation heat-map shows the global genetic correlation and genetic 9 

causality proportion between HF and the quantitative traits of BL, BP, and BG. b, Chord diagram 10 

shows the local genetic correlation between HF and these traits. LDSC: linkage disequilibrium score 11 

regression, HDL: high-Definition Likelihood, LCV: latent causal variable model, rg: genetic 12 

correlation estimate, gcp: genetic causality proportion, HF: heart failure, HDL-C: high-density 13 

lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol, TC: total cholesterol, TG: 14 

triglyceride, APOA1: apolipoprotein A1, APOB: apolipoprotein B, SBP: systolic blood pressure, DBP: 15 

diastolic blood pressure, PP: Pulse pressure, FG: Fasting glucose, HbA1c: Hemoglobin A1c. 16 

 17 

Fig.3 Circular plot of multi-trait analysis of GWAS results for HFGWAS, HFBL, HFBP, and HFBG. 18 

The dots in the inner circle represent the loci (index SNV) associated with each trait. The middle part 19 

presents the genomic risk loci. The outer part presents the nearest genes to the top signals of HF, and 20 

the associated traits are indicated by different coloured squares. Genes in red denote novel loci. The 21 

details of these risk loci in the traits of BL, BP, and BG are presented in Supplementary Table 10-12. 22 

HF: heart failure, BL: blood lipids, BP: blood pressure, BG: blood glucose. 23 

 24 

Fig.4 Forest plot of protein targets for heart failure indicated by mendelian randomization 25 

analysis. The forest plot only displayed 33 specific protein targets that satisfied the statistical 26 

significance of both mendelian randomization (FDR.P<0.05) and colocalization (PP.H4>0.7) in at least 27 

one cohort. The square symbolizes the odds ratio for mendelian randomization, while the horizontal 28 

line represents the 95% confidence interval. UKB-PPP: UK Biobank Pharma Proteomics Project; 29 

deCODE: deCODE genetics; HF: heart failure; BL: blood lipids; BP: blood pressure; BG: blood 30 
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glucose; P.adjusted: false discovery rate (FDR) adjusted p-value; OR: odds ratio; CI: confidence 1 

interval. 2 

 3 

Table 1. The summary of MTAG results for heart failure. MTAG: multi-trait analysis of GWAS; h2: 4 

Observed scale heritability (LD score regression); Se: standard error; gcov_int: genetic covariance 5 

intercept; λGC: the genomic control inflation factor based on the median; maxFDR: maximum FDR; 6 

CADD: combined annotation dependent depletion. 7 

 8 

Supplementary Materials 9 

Supplementary Methods 10 

Supplementary Results 11 

Supplementary Discussion 12 

Supplementary Tables 1-49: Table of contents, S1-S49. 13 

Supplementary Fig. 1 Wayne diagrams of the results indicated by gene base and 14 

transcriptome-wide association analyses. a, Plots shows the results of gene-mapping analysis. b, 15 

Plots shows the results of MAGMA and TWAS analysis. MAGMA: multi-marker analysis of genomic 16 

annotation, TWAS: transcriptome-wide association analysis. 17 

Supplementary Fig. 2 Significantly enriched in GO and EKGG gene sets of heart failure 18 

indicated by MAGMA analysis. a, gene-set enrichment of HFBL. b, gene-set enrichment of HFBP. c, 19 

gene-set enrichment of HFBG. GO: Gene Ontology, KEGG: Kyoto Encyclopedia of Genes and 20 

Genomes, MAGMA: multi-marker analysis of genomic annotation, HF: heart failure, BL: blood lipids, 21 

BP: blood pressure, BG: blood glucose. 22 

Supplementary Fig. 3 Enrichment of tissue specificity associated with heart failure. a, associated 23 

tissues of HFBL. b, associated tissues of HFBP. c, associated tissues of HFBG. HF: heart failure, BL: 24 

blood lipids, BP: blood pressure, BG: blood glucose. 25 

Supplementary Fig. 4 Enrichment of cell-type specificity associated with heart failure. a, 26 

associated cell types of HFBL. b, associated cell types of HFBP. c, associated cell types of HFBG. HF: 27 

heart failure, BL: blood lipids, BP: blood pressure, BG: blood glucose. 28 

Supplementary Fig. 5 Enrichment of similar phenotype specificity associated with heart failure. a, 29 

associated similar phenotypes of HFBL. b, associated similar phenotypes of HFBP. c, associated similar 30 
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phenotypes of HFBG. HF: heart failure, BL: blood lipids, BP: blood pressure, BG: blood glucose. 1 

Supplementary Fig. 6 The exploration of non-HF pleiotropic or side effects for the protein targets 2 

from UKB-PPP. Manhattan plot utilizes black circles to highlight the statistically significant results of 3 

the FDR correction. UKB-PPP: UK Biobank Pharma Proteomics Project.  4 

Supplementary Fig. 7 The exploration of non-HF pleiotropic or side effects for the protein targets 5 

from deCODE. Manhattan plot utilizes black circles to highlight the statistically significant results of 6 

the FDR correction. deCODE: deCODE genetics. 7 
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