- 1 Women empowerment and utilization of HIV testing among couples
- ² in Zambia: Evidence from the Zambia Demographic and Health
- 3 Survey 2018
- 4 Whiteson Mbele ^{1,2,¶*}, Phyllis Dako-Gyeke^{1,¶}, Andreas Ndapewa Frans^{1, &}, Jordanne Ching¹
- ⁵ ¹ Department of Social and Behavioral Sciences, School of Public Health, College of Health Sciences,
- 6 University of Ghana, Accra, Ghana
- 7 ² Kasiya Mission Hospital, Pemba District Health Office, Southern Province, Zambia
- 8 * Corresponding author
- 9 Email: whitesonmbele@gmail.com
- 10 [¶] These authors contributed equally to this work
- 11 [&] These authors also contributed equally to this work.

It is made available under a CC-BY 4.0 International license .

In Zambia, women are disproportionally more affected by HIV compared to men. This has mainly been

attributed to harmful gender norms that enhance male dominance and disempower women,

preventing them from exercising their right to negotiate for safe sex and utilizing HIV prevention

services such as HIV testing. This study examined associations between women's empowerment and

12 Abstract

13

14

15

16

17 HIV testing among married and partnered women. We analyzed secondary data from the couple's recode of the 2018 Zambia demographic and health 18 19 survey. Univariable and multivariable logistic regression analysis was conducted, and p<0.05 was considered statistically significant. We included a total of 5,328 married and partnered women in the 20 analysis, of which 5057 (94.9%) had undergone an HIV test before. After adjusting for confounders, 21 22 decision-making was the only independent predictor of HIV testing among measures of empowerment. Women who were highly empowered in decision-making were more likely to have undergone an HIV 23 24 test compared to those who were lowly empowered (AOR = 2.1; 95% CI: 1.5, 2.9). Women aged 20-29 25 years (AOR = 2.4; 95% CI: 1.6, 3.6), 30-39 years (AOR = 5.3; 95% CI: 3.4, 8.2), or 40-49 years (AOR = 2.9; 26 95% CI: 1.9, 4.7), those with primary education (AOR = 2.4; 95% CI: 1.7, 3.4) or secondary and higher (AOR = 4.1; 95% CI: 2.3, 7.2), rich women (AOR = 2.4; 95% CI: 1.5, 3.7) or women with middle wealth 27 (AOR = 1.5; 95% CI: 1.1, 2.2) and those who gave birth in the last 5 years (AOR = 3.3; 95% CI: 2.5, 4.5) 28 were more likely to have been tested for HIV. This study highlights the critical influence of women's 29 30 empowerment in decision-making on HIV testing. Additionally, level of education, wealth, age, and having given birth before are essential factors to consider in promoting HIV testing among women in 31 32 Zambia.

It is made available under a CC-BY 4.0 International license .

33 Introduction

34	Of the estimated 39 million people living with HIV and AIDS globally in 2022, more than half (53%) were
35	Women and girls [1]. In Sub-Saharan Africa, over 63% of all new HIV infections occur among Women
36	and girls [1]. Women's access to HIV prevention services, such as HIV testing depends significantly on
37	the level of empowerment. Women who are empowered can make independent decisions regarding
38	their health, including HIV testing without depending on their husbands or partners. Empowered
39	women can negotiate for safer sex with their partners, reducing the chances of risky sexual behaviors
40	[2]. However, harmful gender norms that enhance male dominance prevent women from exercising
41	their right to negotiate for safe sex and utilize HIV prevention services such as HIV testing, putting them
42	at a disproportionally higher risk of HIV transmission [3]. To address gendered risks of HIV transmission,
43	a call for strategies that address female disempowerment has been made [4].
44	The ability of Women to exercise their sexual and reproductive rights is crucial in achieving gender
44 45	The ability of Women to exercise their sexual and reproductive rights is crucial in achieving gender equity and equality in health. Among married or cohabiting couples, gender norms that limit Women's
45	equity and equality in health. Among married or cohabiting couples, gender norms that limit Women's
45 46	equity and equality in health. Among married or cohabiting couples, gender norms that limit Women's decision-making power about their sexual and reproductive rights are key drivers of HIV transmission
45 46 47	equity and equality in health. Among married or cohabiting couples, gender norms that limit Women's decision-making power about their sexual and reproductive rights are key drivers of HIV transmission [5,6]. It is evident from previous studies that a large proportion of HIV infections occur within marital or
45 46 47 48	equity and equality in health. Among married or cohabiting couples, gender norms that limit Women's decision-making power about their sexual and reproductive rights are key drivers of HIV transmission [5,6]. It is evident from previous studies that a large proportion of HIV infections occur within marital or cohabiting relationships [5–9]. Women are only empowered if they consider themselves to have the
45 46 47 48 49	equity and equality in health. Among married or cohabiting couples, gender norms that limit Women's decision-making power about their sexual and reproductive rights are key drivers of HIV transmission [5,6]. It is evident from previous studies that a large proportion of HIV infections occur within marital or cohabiting relationships [5–9]. Women are only empowered if they consider themselves to have the right and be able to make independent decisions about their health [10]. However, gender norms that
45 46 47 48 49 50	equity and equality in health. Among married or cohabiting couples, gender norms that limit Women's decision-making power about their sexual and reproductive rights are key drivers of HIV transmission [5,6]. It is evident from previous studies that a large proportion of HIV infections occur within marital or cohabiting relationships [5–9]. Women are only empowered if they consider themselves to have the right and be able to make independent decisions about their health [10]. However, gender norms that promote Women's subordination and justify men's dominance are key obstacles to Women's

It is made available under a CC-BY 4.0 International license .

with little voice [13]. This has resulted in a disproportion in HIV transmission between boys and girls,
with girls and young women carrying the heaviest burden of HIV prevalence (13%) compared to boys
and men (7%) [13,14].

57 The significance of women's empowerment in addressing the HIV epidemic cannot be overstated. Empowerment plays a pivotal role in instilling confidence among women to undergo HIV testing. This 58 59 newfound confidence not only allows women to ascertain their HIV status but also empowers them to take preventive measures, such as averting mother-to-child transmission of HIV (MTCT) and minimizing 60 the risk of transmitting the virus to their partners [15]. The extent to which a woman has been 61 62 empowered significantly influences her accessibility to HIV testing. An empowered woman, whether through cultural, political, or professional means, is more likely to autonomously decide to undergo HIV 63 64 testing [15]. Such empowerment liberates her from dependency on her husband or partner for decisions related to HIV testing, fostering a proactive approach to her healthcare. In Zambia, HIV testing 65 66 among pregnant women declined from 85% in 2013 to 82% in 2018 [16]. The underutilization of HIV testing services in Zambia has been attributed to factors such as social relations [18], gender 67 inequalities [19–21], and individual beliefs and perceptions [22]. 68

To increase the ability of women to make independent decisions regarding their health, including HIV testing, Zambia strengthened its policy and legal frameworks for promoting gender equality and women empowerment [23]. The country has observed a positive drop in the gender inequality index from 0.627 in 2011 to 0.540 in 2021 [24,25]. Despite this step in the right direction, the country is still ranked low on gender gap reduction and inequalities, sitting at 138 out of 195 countries in the gender inequality index [25]. The slow pace of the attainment of women's empowerment and gender equality in Zambia has been attributed to factors such as the conservation of cultural values that disempower

It is made available under a CC-BY 4.0 International license .

women in decision-making [24]. Empowerment has been variably defined, with limited data for 76 77 comparisons across countries, especially in Sub-Saharan Africa [26–28]. With the growing need for a reliable indicator to measure and track progress on women and girls empowerment, several 78 empowerment indicators have been proposed and contextualized [26–29]. The Survey-based Women's 79 80 empowerment Index (SWPER) is one such indicator developed in 2017 for use in Low- and Middle-Income countries in the African context to address the need for a single consistent measure of Women 81 empowerment [29]. The SWPER was validated using Demographic and health survey (DHS) data from 82 83 34 African countries and attracted interest from international agencies and the academic community [29]. In 2020, the SWPER was expanded beyond Africa to all low and middle-income countries (LMICs) 84 to make it a global monitoring tool [30]. The indicator measures three domains of empowerment 85 86 namely, attitude to violence, social independence, and decision making using fourteen questions [30]. The indicator uses individual-level data which allows for the assessment of associations between 87 88 empowerment and several health interventions or outcomes [29]. Because of its global validation, the SWPER allows for not only within-country comparisons but also between-country comparisons as well 89 as time and trend analysis as new data emerge [30]. Despite the robustness and novelty of the SWPER 90 index in assessing associations between measures of women empowerment and health-related 91 outcomes, the tool has not been utilized in Zambia to unravel the challenge of underutilization of HIV 92 93 testing services among women in the country.

This study therefore assessed the effects of women's empowerment on HIV testing among couples in Zambia, employing the SWPER index as a measure of empowerment. To the best of our knowledge, this was the first study to utilize the novel, globally standardized SWPER indicator to determine the influence of Women's empowerment on HIV testing among Zambian women. Results from this study

It is made available under a CC-BY 4.0 International license .

98	will set the baseline for monitoring of progress made on Women empowerment in Zambia and identify
99	areas for priority in HIV testing programs.
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	

It is made available under a CC-BY 4.0 International license .

115 Materials and methods

116 Study area

117	The area for this study was Zambia. The Republic of Zambia is in Southern Africa and is one of the low-
118	income countries. The country has a population of 19,610,769 with a male population of 9,603,056 and
119	a female population of 10, 007,713 according to the 2022 national census [31]. Zambia is one of the
120	countries possessing biased gender social norms, with a Gender Inequality Index (GII) of 0.540 in 2021,
121	ranking 138 out of 195 countries globally [25]. This has resulted in gender inequities in health with
122	resultant higher HIV infection among females compared to males in the country [32–36], impeding the
123	achievement of sustainable development goal 5 (SDG 5). Moreover, the country recorded a drop of
124	43.7% in HIV testing in 2020 compared to 2019 [17]. The country has an ambitious goal of achieving the
125	joint United Nations Program on HIV/AIDS (UNAIDS) "95-95-95" targets which state that by 2030, 95%
126	of people living with HIV should be aware of their status, 95% of those aware of their status should be
127	on antiretroviral therapy (ART), and 95% of those on ART should be virally suppressed [17]. The
128	country made commendable progress in achieving the targets in 2021, where 98% of those who were
129	aware of their HIV status were on treatment, and 96% of those on treatment were virally suppressed
130	[37]. However, only 89% of adults aged 15 years and older knew their status, indicating there is still a
131	gap in HIV testing [37]. To achieve the UNAIDS 95-95-95 targets by 2030 in Zambia, there is a need for
132	interventions that enhance HIV testing.

133

134

It is made available under a CC-BY 4.0 International license .

135 Study design and data source

136	This was a cross-sectional study that utilized secondary data from the couples recode file of the 2018
137	Zambia demographic and health survey (2018 ZDHS). The 2018 ZDHS was implemented by the Zambia
138	Statistics Agency in partnership with the Ministry of Health, and data was collected from July 2018 to
139	January 2019. This was the 6th Demographic and Health Survey conducted in Zambia since 1992 as
140	part of several surveys obtained from the MEASURE DHS program, to provide reliable national
141	estimates of demographic and health indicators such as gender relations, sexual and reproductive
142	health, and other health issues relevant to the achievement of SDG's. The DHS is a reliable source of
143	individual-level information on socio-economic characteristics, health, and development indicators in
144	LMICs. Since 1999, the surveys have incorporated questions on women's empowerment that
145	potentially allow for within and between countries comparisons using an intersectional lens [30]. The
146	2018 ZDHS included a nationally representative sample of 13,683 women aged between 15-49 years
147	and 12,132 men aged between 15-59 years in 12,831 households, with a response rate of 96% among
148	women and 92% among men. The sample design provided estimates at the national level, for both
149	urban and rural areas, and each of the 10 provinces in the country.

150 Sampling frame

151 The sampling frame used for the 2018 ZDHS is based on the Census of Population and Housing

152 conducted in 2010. Zambia is divided into 10 provinces, and each province is subdivided into districts,

each district into constituencies, and each constituency into wards. Additionally, wards are subdivided

into convenient areas called census supervisory areas (CSAs) which are further subdivided into

155 Standard Enumeration Areas (SEAs). The list of SEAs was used as the sampling frame for the 2018 ZDHS.

It is made available under a CC-BY 4.0 International license .

156 Sampling

The survey used a stratified two-stage sample design. Each of the 10 provinces was stratified into urban 157 158 and rural areas and this yielded 20 sampling strata. Samples of SEAs were selected independently from each stratum in two stages. In the first stage, 545 SEAs (198 Urban and 347 Rural) were selected with 159 probability proportional to SEA size and with independent selection in each sampling stratum. The SEA 160 size was the number of residential households residing in the SEA based on the sampling frame. A 161 household listing was carried out in all the selected sample SEAs and the resulting lists of households 162 served as the sampling frame for the second stage of sampling. In the second stage of sampling, a fixed 163 164 number of 25 households per cluster was sampled from each cluster using equal probability systematic sampling from the newly created household listing. All women aged 15-49 years and men aged 15-59 165 years who were usual members of the selected households or who spent the night before the survey in 166 the selected households were eligible for the woman's questionnaire and the man's questionnaire, 167 respectively. Our study was restricted to married/partnered Women with a focus on the couples recode 168 169 section of the data since the SWPER index considers only married or partnered women. Women with 170 incomplete information on any variable of interest were excluded from the analysis. A total of 13,683 women completed the survey, of which 5,560 were either married or living with a partner. Of the 5,560 171 coupled women, 5,328 had values to all variables of interest and thus were included in the analysis 172 while 232 women had missing variables and were excluded. Therefore, this study analyzed data of 173 5,328 married/partnered women. Details of the sample selection are illustrated in Fig 1 174

175 Fig 1. Flow chart of sample selection

176

It is made available under a CC-BY 4.0 International license .

177 Dependent variable

178	The dependent variable in this study was self-reported HIV testing, measured with two outcomes
179	(yes/no). Women who responded "yes" to the question "Have you ever tested for HIV" were
180	categorized as having tested for HIV and assigned a code of 1 while respondents who answered "no" to
181	this question were categorized as never tested for HIV and assigned a code of 0 for this variable.

182 Independent variables

Independent variables were categorized into socio-demographic and empowerment measures. The 183 choice and categorization of these variables were based on data from existing studies [38-41]. Socio-184 demographic factors included in the study were participants' ages (<20, 20-29, 30-39, and 40-49 years), 185 type of residence (Rural, Urban), education level collapsed into three categories (No education, 186 primary, secondary or higher), Wealth index collapsed into three categories (poor, middle, rich), 187 working status (working, not working), health insurance coverage (yes, no), and number of unions 188 (once, more than once). Women's empowerment included three domains of the SWPER global index 189 190 [30]. The SWPER global measures three domains of empowerment using 14 items from the DHS surveys. Five items are related to Women's opinion on justification of husbands beating their wives in 191 192 specific situations (attitude to violence domain), six items relate to preconditions that enable women to 193 achieve their goal (social independence domain) and three items relate to Women's participation in decision making (decision making domain) as indicated in (Table 1). All three measures of 194 empowerment included all 14 items with different item weights for each empowerment measure. 195 Standardization of the scores was done using the means and standard deviations for southern Africa. 196 197 Each domain of the SWPER index was categorized into three groups as low empowerment, medium

It is made available under a CC-BY 4.0 International license .

- empowerment, and high empowerment based on set cut-offs as shown in (Table 2). Full details related 198
- 199 to the equations used to calculate and standardize the SWPER scores are available online [42] and
- 200 described elsewhere [30].

201 Table 1: Items used in each domain of the SWPER index and corresponding response codes.

ITEM	CODE OR UNIT
Attitude to violence domain	
1. Beating justified if wife goes out without telling	Yes = -1; Don't know = 0; No = 1
husband	
2. Beating justified if wife neglects the children	Yes = -1; Don't know = 0; No = 1
3. Beating justified if wife argues with husband	Yes = -1; Don't know = 0; No = 1
4. Beating justified if wife refuses to have sex with	Yes = -1; Don't know = 0; No = 1
husband	
5. Beating justified if wife burns the food	Yes = -1; Don't know = 0; No = 1
Social independence domain	
6. Frequency of reading newspaper or magazine	Not at all = 0, <once a="" week="2</td" ≥once=""></once>
7. Woman education in completed years of schooling	
8. Age of woman at first birth*	Years
9. Age at first cohabitation	Years
10. Age difference: woman's minus husband's age	Years
11. Education difference: woman's minus husband's	Years
years of schooling	
Decision Making Domain	
12. Who usually decides on respondents' health care	Husband or other alone = -1; Joint decision or
	respondent alone = 1
Who usually decides on large household	Husband or other alone = -1; Joint decision or
Purchases	respondent
	alone = 1
14. Who usually decides on visits to family or	Husband or other alone = -1; Joint decision or
Relatives	respondent
	alone = 1

²⁰²

* This item age at first birth was imputed with age at first cohabitation for those women who had not had a child 203

Table 2: Cut-offs used to categorize women's empowerment in each domain of the SWPER index. 204

CATEGORY	ATTITUDE TO VIOLENCE	SOCIAL INDEPENDENCE	DECISION-MAKING
Low Empowerment	≤-0.700	≤-0.559	≤-1.000
Medium Empowerment	>-0.700 ≤0.400	>-0.559 ≤0.293	>-1.000 ≤0.600
High Empowerment	>0.400	>0.293	>0.600

205

206

207

208

It is made available under a CC-BY 4.0 International license .

209 Data analysis

210 Data was analyzed using SPSS version 22. Participants' socio-demographic characteristics, HIV testing 211 rate, and levels of Women empowerment are presented using descriptive statistics. Bivariate analysis was conducted using the Chi-square test of independence to examine potential candidate variables for 212 213 inclusion in logistic regression models. To account for the multistage sampling design used in the survey and produce estimates that were representative of the country, we employed the complex samples 214 procedure in SPSS. Firstly, we set up a complex sampling plan using the CSPLAN command and adjusted 215 for individual weights, clusters (primary sampling unit), and strata following the guidelines of DHS [43] 216 217 on handling individual weight variables. Since our study involved a subpopulation of married/partnered women, we used the variable "current marital status" to specify the subpopulation during the analysis. 218 We constructed six logistic regression models. Model 1 was a univariable analysis of measures of 219 220 women empowerment and socio-demographic factors with the dependent variable (ever tested for 221 HIV). Variables that were statistically significant at p<0.2 in model 1 were analyzed simultaneously for 222 their combined effects in model 2. Thereafter, models 3, 4, and 5 were constructed to assess the 223 direction of the relationships between measures of empowerment (attitude to violence, social 224 independence, and decision-making) respectively when considered independently, while adjusting for confounding socio-demographic variables that were statistically significant at p<0.2 from model 2. 225 Finally, we assessed the combined effects of measures of empowerment on HIV by running the 226 227 variables simultaneously in model 6 while controlling for confounding socio-demographic factors. The 228 significance level was considered as p < 0.05. We present both the AOR and the corresponding 95% CI.

229

It is made available under a CC-BY 4.0 International license .

230 Ethics considerations

231	A formal request for analysis of all data was made to the DHS program, through their website
232	(www.dhsprogram.com), and permission and access to the data was granted 30 th November 2023. The
233	original data was collected with ethical approval from the Tropical Disease and Research Center (TDRC)
234	and the Research Ethics Review Board of the Center for Disease Control and Prevention (CDC) Atlanta.
235	The study did not require any formal ethical approval because we used secondary data sources. The
236	process of collecting data for the Zambia Demographic and Health Survey (ZDHS) necessitated
237	obtaining consent from individuals aged 18 and above. Before seeking assent from minors, the DHS
238	protocol mandated obtaining written informed consent from parents or guardians of all participants
239	under 18 years of age.
240	
241	
242	
243	
244	
245	
246	
247	

248

It is made available under a CC-BY 4.0 International license .

249

250 **Results**

- 251 (Table 3) shows the background characteristics of the studied women. Overall, 5,328
- 252 married/partnered women were included in the analysis. The majority of women studied were
- between the ages of 20 to 39 years. Only 5.6% were aged below 20 years and 18.8% were aged
- between 40 to 49 years. Close to two-thirds (62.8%) were living in rural areas and more than half
- 255 (52.2%) had primary education. With regards to wealth, a large proportion (41.6%) of women were
- poor, 20.2% were in the middle class and 38.2% were rich. More than two-thirds (85.2%) had no
- 257 previous union. There was an almost equal proportion of women who were working and not working
- 258 (49.5% and 50.5% respectively). The majority (97.8%) of women had no health insurance coverage.
- 259 There was a high (94.9%) HIV testing rate among women.
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- _ . .
- 269

It is made available under a CC-BY 4.0 International license .

270

Table 3: Socio-demographic Characteristics of Married/partnered Women in Zambia (n=5328)

Variable	Frequency (Weighted)		
	n (%)		
Ever been tested for HIV			
Yes	5057 (94.9)		
No	271 (5.1)		
Age group			
<20 years	300 (5.6)		
20 to 29 years old	2158 (40.5)		
30 to 39 years old	1871 (35.1)		
40 to 49 years old	999 (18.8)		
Type of residence			
Rural	3346 (62.8)		
Urban	1982 (37.2)		
Level of education			
No education	510 (9.6)		
Primary	2781 (52.2)		
Secondary or higher	2037 (38.2)		
Wealth			
Poor	2218 (41.6)		
Middle	1078 (20.2)		
Rich	2032 (38.2)		
Number of unions			
Once	4542 (85.2)		
More than once	786 (14.8)		
Working status			
Working	2639 (49.5)		
Not working	2689 (50.5)		
Health insurance coverage			
Covered	119 (2.2)		
Not covered	5209 (97.8)		
Given birth in the last five years			
Yes	3912 (73.4)		
No	1416 (26.6)		

272

273 Associations between socio-demographic characteristics and HIV testing

274 To assess associations between socio-demographic characteristics and the outcome variable (ever

tested for HIV), the Pearson Chi-square test was conducted. (Table 4) presents the results of the

associations. HIV testing did not significantly vary by the number of previous unions a woman had.

277 However, there were significant variations in HIV testing by age group, place of residence, level of

It is made available under a CC-BY 4.0 International license .

- 278 education, wealth quintile, working status, health insurance coverage, and having given birth in the last
- 279 five years preceding the survey.

Table 4: Bivariate association between socio-demographic characteristics and HIV testing among Zambian married/partnered women (N=5328).

Socio-demographic characteristics	Tested for HIV N=5057 n (%)	Never been tested for HIV. N=271	Chi-Square (χ2)	P-value
A		n (%)	112.2	-0.001
Age group			113.3	<0.001
<20 years	251 (83.7)	49 (16.3)		
20 to 29 years old	2061 (95.5)	96 (4.5)		
30 to 39 years old	1820 (97.3)	51 (2.7)		
40 to 49 years old	925 (92.5)	75 (7.5)		
Type of residence			56.1	<0.001
Rural	3118 (93.2)	228 (6.8)		
Urban	1939 (97.8)	43 (2.2)		
Level of education			138.4	<0.001
No education	435 (85.4)	74 (14.6)		
Primary	2624 (94.4)	157 (5.6)		
Secondary or higher	1998 (98.0)	40 (2.0)		
Wealth			86.9	<0.001
Poor	2036 (91.8)	182 (8.2)	0.2	
Middle	1029 (95.4)	49 (4.6)		
Rich	1992 (98.0)	40 (2.0)		
Number of unions			0.1	0.781
Once	4312 (94.9)	229 (5.1)		
More than once	745 (94.7)	42 (5.3)		
Working status			6.7	0.034
Working	2573 (95.7)	116 (4.3)		
Not working	2484 (94.1)	155 (5.9)		
Health insurance coverage			5.2	0.006
Covered	118 (99.4)	1 (0.6)		
Not covered	4939 (94.8)	270 (5.2)		
Given birth in the last five			52.7	<0.001
years				
Yes	3765 (96.2)	148 (3.8)		
No	1292 (91.3)	123 (8.7)		

282

283 284

-0

It is made available under a CC-BY 4.0 International license .

286 Women empowerment and HIV testing

- 287 As mentioned in previous sections, women's empowerment was measured using the standardized
- 288 SWPER index. Three domains of empowerment were assessed, namely attitude to violence, social
- independence, and decision-making. To understand the influence of women empowerment on the
- 290 utilization of HIV testing services, we conducted a Pearson Chi-square test between measures of
- 291 empowerment and the outcome variable. The results of the analysis are displayed in (Table 5). More
- than half of women were highly empowered in the attitude to violence and decision-making domains
- of the SWPER index (50.6% and 52.9% respectively). However, a larger proportion (41.5%) of women
- 294 had medium levels of empowerment in the social independence domain. HIV testing significantly
- varied by levels of empowerment on all three domains of the SWPER index.

Women empowerment	Total n (%)	Tested for HIV	Chi-Square (χ2)	P-value
domain	N=5328	n (%)		
		N=5057		
Attitude to violence			17.2	0.002
Low empowerment	1669 (31.3)	1553 (93.1)		
Medium empowerment	961 (18.1)	920 (95.8)		
High empowerment	2698 (50.6)	2584 (95.8)		
Social independence			62.5	<0.001
Low empowerment	1663 (31.2)	1524 (91.6)		
Medium empowerment	2208 (41.5)	2111 (95.6)		
High empowerment	1457 (27.3)	1422 (97.6)		
Decision making			62.4	<0.001
Low empowerment	1226 (23.0)	1118 (91.0)		
Medium empowerment	1286 (24.1)	1212 (94.2)		
High empowerment	2816 (52.9)	2729 (96.9)		

Table 5. Women empowerment and HIV testing among Zambian married/partnered women.

- 297
- 298 299
- 300
- - -
- 301

It is made available under a CC-BY 4.0 International license .

³⁰² Predictors of HIV testing among Zambian coupled women

Complex samples binary logistic regression analysis was conducted to assess the relationship of the 303 304 three measures of women empowerment and of socio-demographic characteristics with HIV testing. We constructed six models for the univariable and multivariable analysis. Model 1 focused on 305 univariable analysis, examining the associations of socio-demographic factors and women 306 empowerment measures with HIV testing individually, to identify candidate variables for inclusion in 307 308 multivariable analysis (Table 6). Model 2 involved multivariable analysis, simultaneously adding all sociodemographic factors that were statistically significant at p<0.2 in model 1. Models 3 to 5 309 310 incorporated the three measures of empowerment individually, each introduced separately into the analysis while adjusting for socio-demographic factors that were statistically significant at p<0.2 in 311 model 2. In Model 3, social independence and decision-making were excluded; in Model 4 attitude to 312 313 violence and decision-making were excluded; and in Model 5 we excluded attitude to violence and 314 social independence. Thus models 3, 4, and 5 addressed attitude to violence, social independence, and 315 decision-making empowerment variables respectively while controlling for the effects of socio-316 demographic factors (Table 7). In model 6, all three empowerment measures were run simultaneously to determine their combined effects on HIV testing. The model explained 17.3% (Nagelkerke) of the 317 variance in the dependent variable and correctly classified 94.9% of the cases. 318 When measures of women empowerment were assessed individually in the unadjusted model (model 319 320 1), high empowerment was significantly associated with HIV testing. Compared to women with low

were 1.7 times (COR = 1.7; 95% CI: 1.1, 2.6) and 1.7 times (COR = 1.7; 95% CI: 1.7, 2.3) more likely to

empowerment on attitude to violence, those with high empowerment and medium empowerment

18

It is made available under a CC-BY 4.0 International license .

323	have been tested for HIV respectively. With regards to the social independence domain, women with
324	high empowerment and those with medium empowerment were 3.8 times (COR = 3.8; 95% CI: 2.5, 5.8)
325	and 2.0 times (COR = 2.0; 95% CI: 1.5, 2.7) more likely to have undergone an HIV test compared to
326	those with low empowerment respectively. Moreover, women who were highly empowered and those
327	with medium empowerment in decision-making were 3.1 times (COR = 3.1; 95% CI: 2.3, 4.2) and 1.6
328	times (COR = 1.6; 95% CI: 1.2, 2.2) more likely to have an HIV test done compared to those with low
329	empowerment (model 1). After adjusting for the effects of other variables as illustrated in Table 5,
330	women with high empowerment and medium empowerment in attitude to violence and social
331	independence were no more likely to test for HIV than those with low empowerment (models 3 and 4).
332	The decision-making domain remained a significant predictor of HIV testing in the adjusted model
333	(Models 5). Women who were highly empowered in decision-making were 2.0 times more likely to be
334	tested for HIV than those with low empowerment in decision-making after adjusting for confounding
335	socio-demographic variables (AOR = 2.0; 95% CI: 1.5, 2.8). However, there was no significant difference
336	in HIV testing between those with medium and low empowerment in decision-making in the adjusted
337	model. When considering the combined effects of all measures of empowerment and socio-
338	demographic factors in model 6, women with high empowerment in decision-making were 2.1 times
339	more likely to have tested for HIV than those with low empowerment (AOR = 2.1; 95% CI: 1.5, 2.9).
340	Among socio-demographic characteristics, age category, level of education, wealth, and having given
341	birth in the last 5 years were the factors significantly associated with HIV testing. The odds of HIV
342	testing were higher among women aged 20 years or older than those aged below 20 years (AOR = 2.4;
343	95% CI: 1.6, 3.6 for 20-29 years old versus <20 years old, AOR = 5.3; 95% CI: 3.4, 8.2 for 30-39 years old
344	versus <20 years old, AOR = 2.9; 95% CI: 1.9, 4.7 for 40-49 years old versus <20 years old). Compared to

It is made available under a CC-BY 4.0 International license .

345	women with no education, the odds of HIV testing significantly increased with increasing level of
346	education (AOR = 2.4; 95% CI: 1.7, 3.4 for primary versus no education, AOR = 4.1; 95% CI: 2.3, 7.2 for
347	secondary or higher versus no education). With regards to wealth, the odds of HIV testing significantly
348	increased with an increase in the level of wealth (AOR = 1.5; 95% CI: 1.1, 2.2 for middle wealth versus
349	poor, AOR = 2.4; 95% CI: 1.5, 3.7 for rich versus poor). Moreover, women who gave birth in the last 5
350	years preceding the survey were significantly more likely to have tested for HIV than those who had not
351	given birth (AOR = 3.3; 95% CI: 2.5, 4.5).
352	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	

It is made available under a CC-BY 4.0 International license .

Table 6. Univariable and multivariable analysis of socio-demographic factors associated with HIV

testing among Zambian married/partnered women.

Variables	Model 1 (Univaria	ble analysis)	Model 2	Model 2		
	COR (95% CI)	P value	AOR (95% CI)	P value		
Age group						
<20 years (ref)	1.0		1.0			
20 to 29 years	2.7 (1.8-4.0)	<0.001	2.4 (1.6-3.7)	<0.001		
30 to 39 years	6.1 (3.9-9.5)	<0.001	6.9 (4.6-10.4)	<0.001		
40 to 49 years	3.6 (2.3-5.6)	<0.001	5.1 (3.7-7.2)	<0.001		
Level of education						
No education (ref)	1.0		1.0			
Primary	2.8 (2.0-4.0)	<0.001	2.8 (2.0-3.9)	<0.001		
Secondary or higher	8.6 (5.2-14.0)	<0.001	5.9 (3.5-9.9)	<0.001		
Wealth						
Poor (ref)	1.0		1.0			
Middle	1.9 (1.4-2.6)	<0.001	1.5 (1.1-2.2)	0.006		
Rich	4.5 (2.9-7.0)	<0.001	2.4 (1.4-4.0)	<0.001		
Working status	- (/					
Not working (ref)	1.0		1.0			
Working	1.4 (1.0-1.9)	0.034	1.2 (0.9-1.6)	0.159		
Number of unions						
Once (ref)	1.0		-	-		
More than once	1.1 (0.7-1.5)	0.781	-	-		
Health insurance coverage	1.1 (017 1.0)	01/01				
Not covered (ref)	1.0		1.0			
Covered	9.7 (1.3-70.7)	0.026	2.1 (0.3-16.8)	0.491		
Type of residence	5.7 (1.5 70.7)	0.020	2.1 (0.5 10.0)	0.451		
Rural (ref)	1.0		1.0			
Urban	3.3 (2.2-5.0)	<0.001	0.8 (0.5-1.4)	0.476		
Given birth in the last five	3.3 (2.2-3.0)	\0.001	0.0 (0.3-1.4)	0.470		
years						
-	1.0		1.0			
No (ref)	1.0	10.001	1.0			
Yes Attituda ta vialanca	2.4 (1.8-3.3)	<0.001	3.2 (2.4-4.4)	<0.001		
Attitude to violence	1.0					
Low empowerment (ref)	1.0 1.7 (1.1-2.6)	0.022				
Medium empowerment High empowerment	1.7 (1.1-2.8)	0.001				
Social independence	1.7 (1.2-2.3)	0.001				
Low empowerment (ref)	1.0					
Medium empowerment	2.0 (1.5-2.7)	<0.001	-			
High empowerment	3.8 (2.5-5.8)	<0.001				
Decision making	3.0 (2.3-3.0)		-			
Low empowerment (ref)	1.0					
Medium empowerment	1.6 (1.2-2.2)	0.004	-	-		
High empowerment	3.1 (2.3-4.2)	<0.001				

366 COR-Crude Odds Ratio, AOR-Adjusted Odds Ratio

It is made available under a CC-BY 4.0 International license .

368	Table 7. Associations between measures of women empowerment and H	IV testing among Zambian

Variables	Model 3		Model 4		Model 5		Model 6	
	AOR (95% CI)	P value	AOR (95% CI)	P value	AOR (95% CI)	P value	AOR (95% CI)	Р
		<u> </u>		<u> </u>		<u> </u>		value
Attitude to violence							_	_
Low empowerment (ref)	1.0		-	-	-	-	1.0	
Medium empowerment	1.3 (0.8-2.0)	0.245	-	-	-	-	1.4 (0.9-1.8)	0.169
High empowerment	1.2 (0.9-1.7)	0.165	-	-	-	-	1.2 (0.9-1.6)	0.277
Social independence								1
Low empowerment (ref)	-	-	1.0		-	-	1.0	
Medium empowerment	-	-	1.2 (0.9-1.6)	0.218	-	-	1.3 (0.9-1.8)	0.068
High empowerment	-	-	1.5 (0.9-2.4)	0.146	-	-	1.6 (0.9-2.7)	0.096
Decision making				1				
Low empowerment (ref)	-	-	-	1-	1.0		1.0	
Medium empowerment	-	-	-	-	1.4 (0.9-1.9)	0.053	1.4 (0.9-1.9)	0.067
High empowerment	-	-	-	-	2.0 (1.5-2.8)	<0.001	2.1 (1.5-2.9)	<0.00
Age group								1
<20 years (ref)	1.0		1.0		1.0		1.0	1
20 to 29 years	2.7 (1.8-4.0)	<0.001	2.6 (1.7-3.9)	<0.001	2.6 (1.7-3.9)	<0.001	2.4 (1.6-3.6)	<0.00
30 to 39 years	6.1 (3.9-9.5)	<0.001	5.8 (3.7-9.1)	<0.001	5.8 (3.7-8.9)	<0.001	5.3 (3.4-8.2)	<0.00
40 to 49 years	3.6 (2.3-5.6)	<0.001	3.3 (2.1-5.3)	<0.001	3.4 (2.2-5.2)	<0.001	2.9 (1.9-4.7)	<0.00
Level of education								
No education (ref)	1.0		1.0		1.0			1
Primary	2.8 (2.0-3.9)	<0.001	2.6 (1.9-3.7)	<0.001	2.6 (1.9-3.7)	<0.001	2.4 (1.7-3.4)	<0.00
Secondary or higher	5.9 (3.6-10.0)	<0.001	4.9 (2.9-8.7)	<0.001	5.3 (3.1-9.0)	<0.001	4.1 (2.3-7.2)	<0.00
Wealth								1
Poor (ref)	1.0		1.0		1.0		1.0	1
Middle	1.5 (1.1-2.2)	0.009	1.6 (1.1-2.3)	0.006	1.5 (1.1-2.2)	0.012	1.5 (1.1-2.2)	0.012
Rich	2.6 (1.7-4.1)	<0.001	2.7 (1.7-4.3)	<0.001	2.4 (1.5-3.9)	<0.001	2.4 (1.5-3.7)	<0.00
Working status				1				
Not working (ref)	1.0	<u> </u>	1.0		1.0		-	-
Working	1.2 (0.9-1.7)	0.140	1.2 (0.9-1.6)	0.156	1.2 (0.9-1.6)	0.200	-	-
Given birth in the last five years								
No (ref)	1.0	+	1.0	+	1.0		1.0	-
Yes	3.3 (2.4-4.4)	<0.001	3.2 (2.4-4.4)	<0.001	3.4 (2.5-4.6)	<0.001	3.3 (2.5-4.5)	<0.00

370 AOR-Adjusted odds ratio

It is made available under a CC-BY 4.0 International license .

376 **Discussion**

377	A woman's ability to undergo HIV testing is significantly influenced by her level of empowerment. It is
378	presumed that an empowered woman, whether through cultural, political, or professional means,
379	possesses the confidence to independently choose to undergo HIV testing [15]. This autonomy ensures
380	that she is not reliant on her husband or partner to make decisions regarding whether to undergo HIV
381	testing. In Zambia, the cultural expectation of men's dominance and women's subordination has
382	resulted in limited access to healthcare among women and reduced their autonomy to make
383	independent decisions regarding their health [13,14,23]. Regardless, the influence of women
384	empowerment on HIV testing has not been studied in Zambia. This study therefore examined the
385	association between women empowerment and HIV testing among married and partnered women in
386	Zambia using the nationally representative Zambia demographic and health survey 2018 data. Three
387	domains of women empowerment (attitude to violence, social independence, and decision-making)
388	were measured using the novel, globally validated SWPER index. HIV testing among married and
389	partnered women in Zambia was found to be encouragingly high, as 94.9% of women had undergone
390	an HIV test. In Zambia, women are tested for HIV when pregnant during antenatal care attendance as
391	part of HIV prevention, treatment, and care strategy [44]. This could explain the high HIV testing rate
392	observed in this study. Delaying the detection of HIV and remaining uninformed about one's positive
393	status entails various adverse consequences. Unawareness of HIV positivity raises the risk of
394	transmitting the virus to others, including mother-to-child transmission for pregnant women [45,46].
395	Additionally, late diagnosis can diminish the life expectancy of an infected person by elevating the viral
396	load and diminishing the body's CD4+ T-cell count [47]. Timely identification of HIV is crucial to ensure

It is made available under a CC-BY 4.0 International license .

that those with the infection receive appropriate treatment and care, thereby restricting thetransmission of the virus to others [48].

399 The majority of women had higher levels of empowerment in decision-making and attitude to violence 400 and lower levels of empowerment in social independence. This study found that women's 401 empowerment influenced HIV testing. Women who were highly empowered in attitude to violence, 402 social independence, and decision-making were significantly more likely to have undergone an HIV test compared to those with medium or low empowerment in the unadjusted analysis. Moreover, decision-403 making was the strongest predictor of HIV testing. Women who were highly empowered in decision-404 405 making had higher odds of having tested for HIV compared to those with low empowerment, even 406 after controlling for the effects of other variables in the adjusted model. These results are consistent 407 with findings from a pooled analysis of 31 sub-Saharan African countries that assessed the association 408 between HIV testing and the decision-making domain of the SWPER index [49]. However, attitude to 409 violence and social independence domains had no significant associations with HIV testing after 410 controlling for the effects of other variables in the adjusted model. The diminished significance of associations with HIV testing after adjusting for the effects of other variables may be attributed to a 411 412 potential confounding factor. It is plausible that the higher proportion of women in our study who had given birth in the last 5 years could have influenced the results. In Zambia, HIV testing is done routinely 413 during pregnancy as part of services offered during antenatal care attendance, and this might have 414 415 played a role in shaping women's decision to test for HIV. This highlights the need to consider such contextual factors in the interpretation of the findings. Moreover, previous studies have reported mixed 416 417 results on the relationship between partner violence and HIV testing, with some studies reporting 418 negative associations [50–56], some reporting positive associations [57–60], and others finding no

It is made available under a CC-BY 4.0 International license .

419 associations [61–66]. The observed differences in findings may stem from variations in study

420 populations, contexts, and methodological approaches used in these studies. Our study, however, used

421 a nationally representative sample of married and partnered women in Zambia and measured women's

422 empowerment using a globally validated tool, thereby contributing valuable insights to the body of

423 existing literature.

424 Finally, among socio-demographic factors studied, age category, level of education, wealth quintile, and

425 having given birth in the last 5 years were significantly associated with HIV testing across all models.

426 Regarding age category, women who were aged 20 years or more had higher odds of testing for HIV

427 compared to those younger than 20 years. Similar results have been reported in prior studies [49,67–

428 69]. A possible explanation for this consistent finding could be attributed to the fact that this age group

429 is less likely to have gone through pregnancy compared to older age categories, hence they may have

430 had fewer opportunities to encounter HIV testing through routine antenatal care, resulting in lower

431 overall odds of testing for HIV within this age group. In many African settings, routine HIV testing is

432 commonly integrated into antenatal care services for pregnant women.

Women with primary education and those with secondary education or higher were consistently more likely to test for HIV compared to those with no education across all models. This finding was consistent with studies conducted in Ethiopia [70,71], Nigeria [72], and in Tanzania [73]. Women with some form of education are more likely to be aware of the importance of HIV testing. They may also have a greater understanding of the risks associated with HIV and the benefits of early detection. Moreover, educational attainment is linked to socioeconomic status, and individuals with higher socioeconomic status may face fewer barriers, such as financial constraints or lack of awareness, that could impede

It is made available under a CC-BY 4.0 International license .

access to HIV testing [74]. Enabling Zambian women to attend at least primary education would aid in
improving HIV testing uptake.

442 Additionally, wealth was an independent predictor of HIV testing. Rich women and those in the middle 443 wealth quintile had higher odds of testing for HIV compared to poor women. This is supported by different studies in Tanzania [15], and in the Gambia [69]. Giving birth in the last 5 years preceding the 444 445 survey remained significantly associated with HIV testing, even after controlling for the effects of other variables. Similar results were reported in another similar study among Tanzanian women [15]. These 446 results could be attributed to the fact that antenatal care services integrate various health 447 448 interventions, including HIV testing, to provide comprehensive care to pregnant women. As a result, women who gave birth in the last 5 years were more likely to have undergone HIV testing as part of 449 450 routine antenatal care, leading to higher odds of HIV testing in this demographic group.

451 Strengths and limitations of the study

452 The large sample size in this study enhanced the statistical robustness of this investigation.

453 Furthermore, the utilization of weight application and complex samples plan during analysis addressed

454 potential biases and considerations associated with the DHS sampling design, resulting in unbiased

455 national estimates. However, this study recognizes some limitations. Firstly, we could not infer causality

456 due to the cross-sectional design of the study. Secondly, the analysis involved only married and

457 partnered women because questions of the SWPER index are addressed to this category of women.

- 458 Hence, results cannot be generalized to the broader category of Zambian women. Furthermore,
- 459 participants were asked about events that occurred in the past (ever tested for HIV), with the possibility

It is made available under a CC-BY 4.0 International license .

460 of recall bias. The findings from this study should, therefore, be interpreted within the context of these461 limitations.

462

463 Conclusion

	464	This study sheds light on the critical influence	of women's empowerment on HIV	' testing among
--	-----	--	-------------------------------	-----------------

- 465 married and partnered women in Zambia. While overall HIV testing rates were high, empowered
- 466 women, particularly those highly empowered in decision-making, were more likely to have undergone
- 467 HIV testing. The study emphasizes the influence of contextual factors, such as routine antenatal care
- 468 testing during pregnancy, on HIV testing patterns. Moreover, socio-demographic factors, including age,
- education, wealth, and recent childbirth, were identified as significant predictors of HIV testing.

470

471

472 Acknowledgments

The authors express gratitude to the DHS program for providing the data used in the analysis.

474

- 475
- 476
- 477
- 478
- 479

It is made available under a CC-BY 4.0 International license .

UNAIDS. Global HIV & AIDS Statistics. 2023.

480 **References**

1.

482 483 484	2.	Woolfork MN, Fox A, Swartzendruber A, Rathbun S, Lee J, Mutanga JN, et al. Empowerment and HIV Risk Behaviors in Couples: Modeling the Theory of Gender and Power in an African Context. Women's Health Reports. 2020;1: 89–101. doi:10.1089/whr.2019.0020
485 486 487	3.	Amin A. Addressing gender inequalities to improve the sexual and reproductive health and wellbeing of women living with HIV. Journal of the International AIDS Society. International AIDS Society; 2015. doi:10.7448/IAS.18.6.20302
488 489 490	4.	Kishor S, Subaiya L. DHS COMPARATIVE REPORTS 20 Understanding Women's empoWerment: a Comparative analysis of demographiC and health sUrveys (dhs) data. 2008. Available: www.measuredhs.com
491 492 493 494	5.	Madiba S, Ngwenya N. Cultural practices, gender inequality and inconsistent condom use increase vulnerability to HIV infection: narratives from married and cohabiting women in rural communities in Mpumalanga province, South Africa. Glob Health Action. 2017;10. doi:10.1080/16549716.2017.1341597
495 496 497 498	6.	Mtenga SM, Pfeiffer C, Merten S, Mamdani M, Exavery A, Haafkens J, et al. Prevalence and social drivers of HIV among married and cohabitating heterosexual adults in south-eastern Tanzania: Analysis of adult health community cohort data. Glob Health Action. 2015;8. doi:10.3402/gha.v8.28941
499 500 501	7.	Hugonnet S, Mosha F, Todd J, Mugeye. Kokugonza. Incidence of HIV infection in stable sexual partnerships: a retrospective cohort study of 1802 couples in Mwanza Region, Tanzania. National Library of Medicine. 2002.
502 503 504	8.	Malamba SS, Mermin JH, Bunnell R, Mubangizi J, Kalule J, Marum E, et al. Couples at Risk HIV-1 Concordance and Discordance Among Sexual Partners Receiving Voluntary Counseling and Testing in Uganda. EPIDEMIOLOGY AND SOCIAL SCIENCE. 2005. Available: http://journals.lww.com/jaids
505 506 507	9.	Biraro S, Ruzagira E, Kamali A, Whitworth J, Grosskurth H, Weiss HA. HIV-1 Transmission within Marriage in Rural Uganda: A Longitudinal Study. PLoS One. 2013;8. doi:10.1371/journal.pone.0055060
508 509 510	10.	Alkire S, Meinzen-Dick R, Peterman A, Quisumbing A, Seymour G, Vaz A. The Women's Empowerment in Agriculture Index. World Development. 2013;52: 71–91. doi:10.1016/J.WORLDDEV.2013.06.007
511 512	11.	Greig A, Peacock D, Jewkes R, Msimang S. Gender and AIDS: time to act. AIDS (London, England). 2008;22 Suppl 2. doi:10.1097/01.aids.0000327435.28538.18
513 514 515	12.	Ghanotakis E, Peacock D, Wilcher R. The importance of addressing gender inequality in efforts to end vertical transmission of HIV. Journal of the International AIDS Society. 2012;15. doi:10.7448/IAS.15.4.17385

It is made available under a CC-BY 4.0 International license .

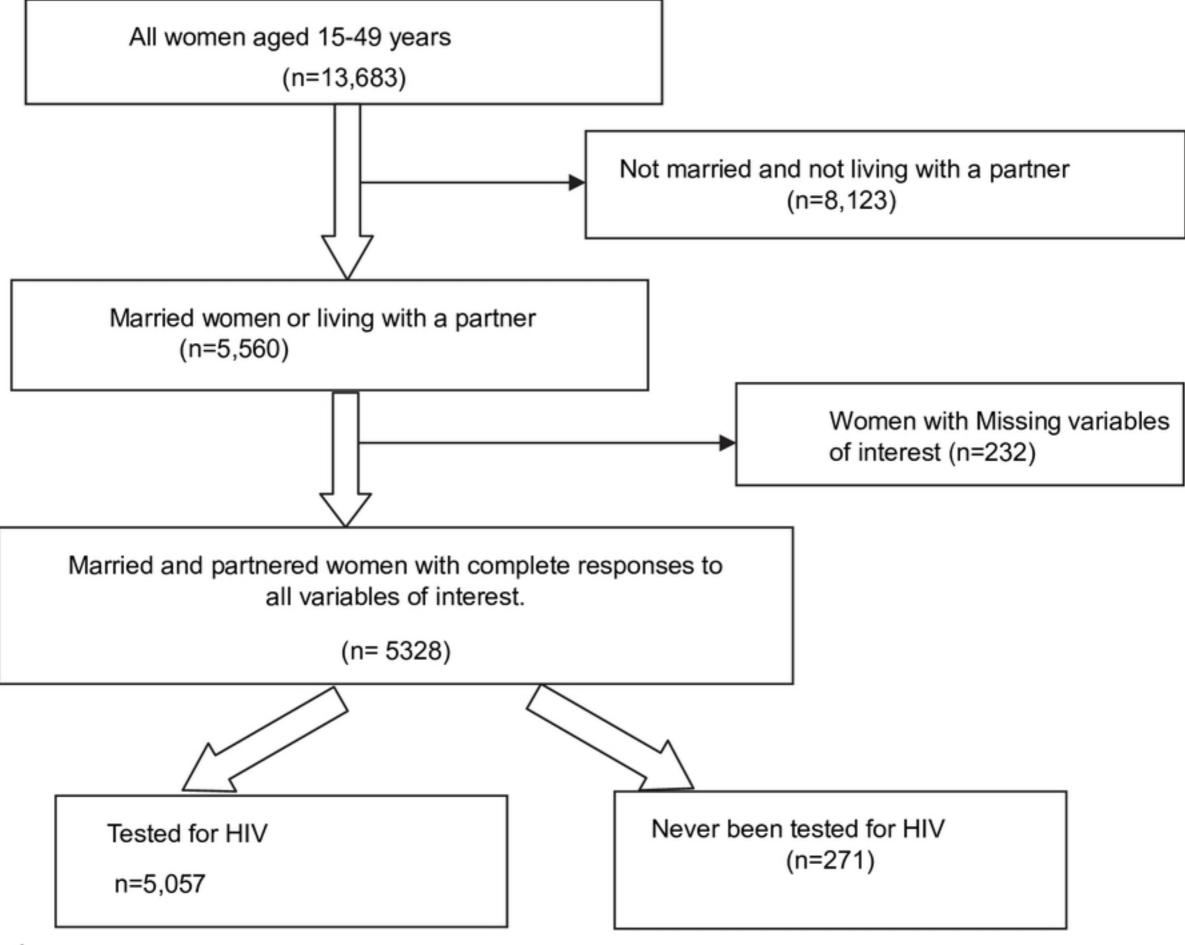
516 517 518	13.	Butts SA, Parmley LE, Alcaide ML, Rodriguez VJ, Kayukwa A, Chitalu N, et al. Let us fight and support one another: Adolescent girls and young women on contributors and solutions to HIV risk in Zambia. International Journal of Women's Health. 2017;9: 727–737. doi:10.2147/IJWH.S142232
519	14.	UNAIDS. THE GAP REPORT. 2014.
520 521	15.	Bashemera DR, Nhembo MJ, Benedict G. The Role of Women's Empowerment in Influencing HIV Testing [WP101]. 2013.
522	16.	ZDHS. 2018 Zambia Demographic and Health Survey. 2018. Available: www.zamstats.gov.zm
523 524 525	17.	Chisenga T, Chihana M, Chishimba P, Chitembo L, Mulenga L, Silumesii A, et al. Maintaining HIV testing and treatment services in Zambia during COVID-19: a story of success and resilience. Global Health Action. 2023;16. doi:10.1080/16549716.2023.2175992
526 527 528	18.	Kelley AL, Karita E, Sullivan PS, Katangulia F, Chomba E, Carael M, et al. Knowledge and Perceptions of Couples' Voluntary Counseling and Testing in Urban Rwanda and Zambia: A Cross- Sectional Household Survey. PLOS ONE. 2011;6: e19573. doi:10.1371/JOURNAL.PONE.0019573
529 530 531	19.	Fylkesnes K, Siziya S. A randomized trial on acceptability of voluntary HIV counselling and testing. Tropical Medicine and International Health. 2004. pp. 566–572. doi:10.1111/j.1365- 3156.2004.01231.x
532 533 534	20.	Gari S, Malungo JRS, Martin-Hilber A, Musheke M, Schindler C, Merten S. HIV Testing and Tolerance to Gender Based Violence: A Cross-Sectional Study in Zambia. PLOS ONE. 2013;8: e71922. doi:10.1371/JOURNAL.PONE.0071922
535 536 537	21.	Merten S, Ntalasha H, Musheke M. Non-Uptake of HIV Testing in Children at Risk in Two Urban and Rural Settings in Zambia: A Mixed-Methods Study. PLOS ONE. 2016;11: e0155510. doi:10.1371/JOURNAL.PONE.0155510
538 539 540	22.	Musheke M, Merten S, Bond V. Why do marital partners of people living with HIV not test for HIV? A qualitative study in Lusaka, Zambia. BMC Public Health. 2016;16: 1–13. doi:10.1186/S12889- 016-3396-Z/FIGURES/1
541 542	23.	UN WOMEN. REPUBLIC OF ZAMBIA Progress Report on the Implementation of the Beijing Declaration and Platform for Action. 2019. Available: www.gender.gov.zm
543 544	24.	UN WOMEN. REPUBLIC OF ZAMBIA Progress Report on the Implementation of the Beijing Declaration and Platform for Action. 2019. Available: www.gender.gov.zm
545	25.	UNDP. 2023 Gender Social Norms Index. 2023.
546 547 548	26.	Asaolu IO, Alaofè H, Gunn JKL, Adu AK, Monroy AJ, Ehiri JE, et al. Measuring women's empowerment in Sub-Saharan Africa: Exploratory and Confirmatory Factor Analyses of the demographic and health surveys. Frontiers in Psychology. 2018;9. doi:10.3389/fpsyg.2018.00994
549 550	27.	Heckert J, Fabic MS. Improving Data Concerning Women's Empowerment in Sub-Saharan Africa. Family Planning. 2013. Available: https://www.jstor.org/stable/23654761

551 552 553	28.	Bishop D, Bowman K. Still learning: a critical reflection on three years of measuring women's empowerment in Oxfam. Gender and Development. 2014;22: 253–269. doi:10.1080/13552074.2014.920993
554 555 556	29.	Ewerling F, Lynch JW, Victora CG, van Eerdewijk A, Tyszler M, Barros AJD. The SWPER index for women's empowerment in Africa: development and validation of an index based on survey data. The Lancet Global Health. 2017;5: e916–e923. doi:10.1016/S2214-109X(17)30292-9
557 558 559	30.	Ewerling F, Raj A, Victora CG, Hellwig F, Coll CV, Barros AJ. SWPER Global: A survey-based women's empowerment index expanded from Africa to all low- and middle-income countries. Journal of Global Health. 2020;10. doi:10.7189/JOGH.10.020434
560 561	31.	ZamStats. 2022 CENSUS OF POPULATION AND HOUSING PRELIMINARY REPORT REPUBLIC OF ZAMBIA. 2022. Available: www.zamstats.gov.zm
562 563 564	32.	Higgins JA, Hoffman S, Dworkin SL. Rethinking gender, heterosexual men, and women's vulnerability to HIV/AIDS. American Journal of Public Health. 2010. pp. 435–445. doi:10.2105/AJPH.2009.159723
565 566	33.	UNICEF. HIV/AIDS UNICEF Zambia. 2023 [cited 18 Sep 2023]. Available: https://www.unicef.org/zambia/hivaids
567 568 569	34.	Wathuta J. Gender inequality dynamics in the prevention of a heterosexual HIV epidemic in sub- Saharan Africa. http://dx.doi.org/102989/1608590620161150310. 2016;15: 55–66. doi:10.2989/16085906.2016.1150310
570 571 572	35.	Singh SK, Vishwakarma D, Sharma B, Sharma SK. Inequalities in women's empowerment and prevalence of HIV in India. International Journal Of Community Medicine And Public Health. 2020;7: 3069. doi:10.18203/2394-6040.ijcmph20203380
573 574 575	36.	Richardson ET, Collins SE, Kung T, Jones JH, Tram KH, Boggiano VL, et al. Gender inequality and HIV transmission: A global analysis. Journal of the International AIDS Society. 2014;17. doi:10.7448/IAS.17.1.19035
576 577 578 579	37.	Zambia Surpasses UNAIDS HIV Treatment and Viral Suppression Targets and On Track to Surpass HIV Status Awareness - U.S. Embassy in Zambia. [cited 8 Dec 2023]. Available: https://zm.usembassy.gov/zambia-surpasses-unaids-hiv-treatment-and-viral-suppression-targets- and-on-track-to-surpass-hiv-status-awareness/
580 581 582	38.	Makasa M, Fylkesnes K, Sandøy IF. Risk factors, healthcare-seeking and sexual behaviour among patients with genital ulcers in Zambia. BMC Public Health. 2012;12. doi:10.1186/1471-2458-12- 407
583 584 585 586	39.	Show KL, Shewade HD, Kyaw KWY, Wai KT, Hone S, Oo HN. HIV testing among general population with sexually transmitted infection: Findings from myanmar demographic and health survey (2015-16). Journal of Epidemiology and Global Health. Atlantis Press International; 2020. pp. 82– 85. doi:10.2991/JEGH.K.191206.002

It is made available under a CC-BY 4.0 International license .

587 588 589	40.	Worku Dagnew G, Belachew Asresie M, Abeje Fekadu G. Factors associated with sexually transmitted infections among sexually active men in Ethiopia. Further analysis of 2016 Ethiopian demographic and health survey data. PLoS ONE. 2020;15. doi:10.1371/journal.pone.0232793
590 591 592 593 594	41.	Huda MN, Ahmed MU, Uddin MB, Hasan MK, Uddin J, Dune TM. Prevalence and Demographic, Socioeconomic, and Behavioral Risk Factors of Self-Reported Symptoms of Sexually Transmitted Infections (STIs) among Ever-Married Women: Evidence from Nationally Representative Surveys in Bangladesh. International Journal of Environmental Research and Public Health. 2022;19. doi:10.3390/ijerph19031906
595 596 597 598	42.	A survey-based women's empowerment index to be used in all low-and middle-income country surveys: the SWPER goes global How to calculate the SWPER for a specific survey. 2020 [cited 7 Dec 2023]. Available: https://www.dropbox.com/sh/cw6e2th24l4ausa/AAC792VQx3CL7CuIdLwTxKiWa?dl=0
599 600	43.	DHS. Guide to DHS Statistics DHS-7. 2023 [cited 9 Nov 2023]. Available: https://dhsprogram.com/data/Guide-to-DHS-Statistics/Analyzing_DHS_Data.htm
601 602 603	44.	Musheke M, Bond V, Merten S. Couple experiences of provider-initiated couple HIV testing in an antenatal clinic in Lusaka, Zambia: Lessons for policy and practice. BMC Health Serv Res. 2013;13. doi:10.1186/1472-6963-13-97
604 605 606	45.	Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS (London, England). 2009;23: 525–530. doi:10.1097/QAD.0B013E328322FFAC
607 608 609	46.	Farquhar C, Kiarie JN, Richardson BA, Kabura MN, John FN, Nduati RW, et al. Antenatal Couple Counseling Increases Uptake of Interventions to Prevent HIV-1 Transmission. Journal of Acquired Immune Deficiency Syndromes (1999). 2004;37: 1620. doi:10.1097/00126334-200412150-00016
610 611 612 613	47.	Smurzynski M, Wu K, Benson CA, Bosch RJ, Collier AC, Koletar SL. Relationship between CD4+ T- cell counts/HIV-1 RNA plasma viral load and AIDS defining events among persons followed in the ACTG Longitudinal Linked Randomized Trials (ALLRT) study. Journal of acquired immune deficiency syndromes (1999). 2010;55: 117. doi:10.1097/QAI.0B013E3181E8C129
614 615 616	48.	Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet (London, England). 2009;373: 48–57. doi:10.1016/S0140-6736(08)61697-9
617 618 619 620	49.	Schierl T, Tanaka LF, Klug SJ, Winkler AS, Stelzle D. The Association of Women's Empowerment with HIV-Related Indicators: A Pooled Analysis of Demographic and Health Surveys in Sub-Saharan Africa. Journal of Epidemiology and Global Health. 2023;13: 816–824. doi:10.1007/S44197-023- 00153-W/FIGURES/2
621 622 623	50.	Etudo O, Metheny N, Stephenson R, Kalokhe AS. Intimate partner violence is linked to less HIV testing uptake among high-risk, HIV-negative women in Atlanta. AIDS Care. 2017;29: 953–956. doi:10.1080/09540121.2016.1271936

It is made available under a CC-BY 4.0 International license .


624 625 626 627	51.	Loeliger KB, Marcus R, Wickersham JA, Pillai V, Kamarulzaman A, Altice FL. The Syndemic of HIV, HIV-related Risk and Multiple Co-morbidities Among Women Who Use Drugs in Malaysia: Important Targets for Intervention. Addictive behaviors. 2016;53: 31. doi:10.1016/J.ADDBEH.2015.09.013
628 629 630	52.	Mohammed BH, Johnston JM, Harwell JI, Yi H, Tsang KWK, Haidar JA. Intimate partner violence and utilization of maternal health care services in Addis Ababa, Ethiopia. BMC Health Services Research. 2017;17. doi:10.1186/S12913-017-2121-7
631 632	53.	Dude AM. Spousal intimate partner violence is associated with HIV and other STIs among married rwandan women. AIDS and Behavior. 2011;15: 142–152. doi:10.1007/S10461-009-9526-1
633 634 635	54.	Dunkle KL, Decker MR. Gender-Based Violence and HIV: Reviewing the Evidence for Links and Causal Pathways in the General Population and High-risk Groups. American Journal of Reproductive Immunology. 2013;69: 20–26. doi:10.1111/AJI.12039
636 637	55.	Rigby SW, Johnson LF. The relationship between intimate partner violence and HIV: A model- based evaluation. Infectious Disease Modelling. 2017;2: 71–89. doi:10.1016/J.IDM.2017.02.002
638 639 640	56.	Li Y, Marshall CM, Rees HC, Nunez A, Ezeanolue EE, Ehiris JE. Intimate partner violence and HIV infection among women: a systematic review and meta-analysis. Journal of the International AIDS Society. 2014;17. doi:10.7448/IAS.17.1.18845
641 642 643 644	57.	McCall-Hosenfeld JS, Chuang CH, Weisman CS. Prospective association of intimate partner violence with receipt of clinical preventive services in women of reproductive age. Women's health issues : official publication of the Jacobs Institute of Women's Health. 2013;23. doi:10.1016/J.WHI.2012.12.006
645 646 647	58.	Brown MJ, Weitzen S, Lapane KL. Association between intimate partner violence and preventive screening among women. Journal of women's health (2002). 2013;22: 947–952. doi:10.1089/JWH.2012.4222
648 649 650 651	59.	Rountree MA, Chen L, Bagwell M. HIV-Testing Rates and Testing Locations Among Women Who Have Experienced Intimate Partner Violence: Data From the Centers for Disease Control Behavioral Risk Factor Surveillance System, 2006. Violence against women. 2016;22: 399–414. doi:10.1177/1077801215603487
652 653 654 655	60.	Tucker JS, Wenzel SL, Elliott MN, Hambarsoomian K, Golinelli D. Patterns and correlates of HIV testing among sheltered and low-income housed women in Los Angeles County. Journal of acquired immune deficiency syndromes (1999). 2003;34: 415–422. doi:10.1097/00126334-200312010-00009
656 657 658	61.	Nelson KA, Ferrance JL, Masho SW. Intimate partner violence, consenting to HIV testing and HIV status among Zambian women. International journal of STD & AIDS. 2016;27: 832–839. doi:10.1177/0956462415596299
659 660 661	62.	Satyanarayana VA, Chandra PS, Vaddiparti K, Benegal V, Cottler LB. Factors influencing consent to HIV testing among wives of heavy drinkers in an urban slum in India. AIDS care. 2009;21: 615–621. doi:10.1080/09540120802385603

It is made available under a CC-BY 4.0 International license .

662 663 664	63.	Nikolova SP, Small E, Mengo C. Components of resilience in gender: a comparative analysis of HIV outcomes in Kenya. International journal of STD & AIDS. 2015;26: 483–495. doi:10.1177/0956462414545796
665 666 667	64.	Kiarie JN, Farquhar C, Richardson BA, Kabura MN, John FN, Nduati RW, et al. Domestic violence and prevention of mother-to-child transmission of HIV-1. AIDS (London, England). 2006;20: 1763– 1769. doi:10.1097/01.AIDS.0000242823.51754.0C
668 669 670 671	65.	Lyons CE, Grosso A, Drame FM, Ketende S, Diouf D, Ba I, et al. Physical and Sexual Violence Affecting Female Sex Workers in Abidjan, Côte d'Ivoire: Prevalence, and the Relationship with the Work Environment, HIV, and Access to Health Services. Journal of acquired immune deficiency syndromes (1999). 2017;75: 9–17. doi:10.1097/QAI.00000000001310
672 673 674	66.	Leddy AM, Weiss E, Yam E, Pulerwitz J. Gender-based violence and engagement in biomedical HIV prevention, care and treatment: a scoping review. BMC Public Health. 2019;19. doi:10.1186/S12889-019-7192-4
675 676 677	67.	Awopegba OE, Kalu A, Ahinkorah BO, Seidu AA, Ajayi AI. Prenatal care coverage and correlates of HIV testing in sub-Saharan Africa: Insight from demographic and health surveys of 16 countries. PLOS ONE. 2020;15: e0242001. doi:10.1371/JOURNAL.PONE.0242001
678 679 680	68.	Worku MG, Tesema GA, Teshale AB. Prevalence and associated factors of HIV testing among reproductive-age women in eastern Africa: multilevel analysis of demographic and health surveys. BMC public health. 2021;21. doi:10.1186/S12889-021-11292-9
681 682 683 684	69.	Deynu M, Agyemang K, Anokye N. Factors Associated with HIV Testing among Reproductive Women Aged 15–49 Years in the Gambia: Analysis of the 2019–2020 Gambian Demographic and Health Survey. International Journal of Environmental Research and Public Health. 2022;19. doi:10.3390/IJERPH19084860
685 686 687	70.	Bekele YA, Fekadu GA. Factors associated with HIV testing among young females; further analysis of the 2016 Ethiopian demographic and health survey data. PLOS ONE. 2020;15: e0228783. doi:10.1371/JOURNAL.PONE.0228783
688 689	71.	Ejigu Y, Tadesse B. HIV testing during pregnancy for prevention of mother-to-child transmission of HIV in Ethiopia. PLoS ONE. 2018;13. doi:10.1371/JOURNAL.PONE.0201886
690 691 692	72.	Oginni A, Obianwu O, Adebajo S. Socio-demographic Factors Associated with Uptake of HIV Counseling and Testing (HCT) among Nigerian Youth. AIDS Research and Human Retroviruses. 2014;30: A113–A113. doi:10.1089/AID.2014.5216.ABSTRACT
693 694 695	73.	Mahande MJ, Phimemon RN, Ramadhani HO. Factors associated with changes in uptake of HIV testing among young women (aged 15-24) in Tanzania from 2003 to 2012. Infectious Diseases of Poverty. 2016;5: 1–12. doi:10.1186/S40249-016-0180-3/TABLES/5
696 697 698 699	74.	Steele LS, Dewa CS, Lin E, Lee KLK. Education Level, Income Level and Mental Health Services Use in Canada: Associations and Policy Implications. Healthcare Policy. 2007;3: 96. doi:10.12927/hcpol.2007.19177

It is made available under a CC-BY 4.0 International license .

700

Figure