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ABSTRACT  
 
Objectives: Phenotyping is a core task in observational health research utilizing electronic 

health records (EHRs). Developing an accurate algorithm typically demands substantial input 

from domain experts, involving extensive literature review and evidence synthesis. This 

burdensome process limits scalability and delays knowledge discovery. We investigate the 

potential for leveraging large language models (LLMs) to enhance the efficiency of EHR 

phenotyping by generating drafts of high-quality algorithms. 

 

Materials and Methods: We prompted four LLMs—ChatGPT-4, ChatGPT-3.5, Claude 2, and 

Bard—in October 2023, asking them to generate executable phenotyping algorithms in the form 

of SQL queries adhering to a common data model for three clinical phenotypes (i.e., type 2 

diabetes mellitus, dementia, and hypothyroidism). Three phenotyping experts evaluated the 

returned algorithms across several critical metrics. We further implemented the top-rated 

algorithms from each LLM and compared them against clinician-validated phenotyping 

algorithms from the Electronic Medical Records and Genomics (eMERGE) network. 

 

Results: ChatGPT-4 and ChatGPT-3.5 exhibited significantly higher overall expert evaluation 

scores in instruction following, algorithmic logic, and SQL executability, when compared to 

Claude 2 and Bard. Although ChatGPT-4 and ChatGPT-3.5 effectively identified relevant clinical 

concepts, they exhibited immature capability in organizing phenotyping criteria with the proper 

logic, leading to phenotyping algorithms that were either excessively restrictive (with low recall) 

or overly broad (with low positive predictive values). 

 

Conclusion: Both ChatGPT versions 3.5 and 4 demonstrate the capability to enhance EHR 

phenotyping efficiency by drafting algorithms of reasonable quality. However, the optimal 

performance of these algorithms necessitates the involvement of domain experts. 
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INTRODUCTION 
 
Electronic health record (EHR) phenotyping, which involves creating algorithms to identify and 

correctly classify a patient’s observable characteristics by integrating complex clinical data, has 

become pivotal in observational health research1. Developing EHR phenotypes is an intricate 

and labor-intensive process that demands extensive expertise in both the clinical and 

informatics domains2,3. While phenotyping includes the identification of individuals with specific 

characteristics, it also necessitates the selection of suitable controls for meaningful comparisons 

with the identified cases4.  

 

Rule-based computable phenotyping algorithms rely on clinical experts to select specialized 

criteria (e.g., diagnosis codes, medications, and laboratory values) likely to define a phenotype 

of interest. These algorithms are tested and tailored for more precise phenotype identification, 

resulting in better performance compared to general high-throughput methods5-8. However, the 

iterative nature of this process often requires substantial literature review and discussions with 

clinical experts to generate a single phenotyping algorithm, thereby limiting the scalability of this 

approach in practice2. Furthermore, implementation of phenotyping algorithms by secondary 

sites requires additional informatics expertise, manual effort, and time to adapt the existing code 

to different databases and EHR systems.  

 

Recently, large language models (LLMs) have demonstrated effectiveness in information 

extraction and summarization9, indicating a potential benefit in phenotyping by reducing the time 

required for literature review and synthesis during the phenotype generation process. In this 

preliminary report, we investigate the novel application of LLMs for generating computable 

phenotyping algorithms to assess whether such tools can effectively expedite EHR phenotype 

development. We appraised four LLMs—ChatGPT-410, ChatGPT-3.511, Claude 212, and PaLM 

2-powered Bard13—to generate phenotyping algorithms for three clinical phenotypes—type 2 

diabetes mellitus (T2DM), dementia, and hypothyroidism. We subsequently implemented the 

top-rated algorithms as adjudicated by phenotyping experts using multiple critical metrics from 

each LLM and compared them against the clinician-validated phenotyping algorithms from the 

Electronic Medical Records and Genomics (eMERGE) network14,15. 
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METHODS 
 
We selected four LLMs in their default configurations to test their phenotyping algorithm 

generation capacity for three common clinical phenotypes. These LLMs were: ChatGPT-4 (by 

OpenAI)10, ChatGPT-3.5 (by OpenAI)11, Claude 2 (by Anthropic)12, and Bard (by Google, 

powered by PaLM 2)13. These models were chosen because of their widespread use, easy 

accessibility, extensive evaluation, robust computational capabilities, and proficiency in handling

and generating lengthy texts—qualities crucial for sustainably supporting phenotyping tasks16. 

 

This pilot study specifically focused on three clinical phenotypes: T2DM17,18, dementia19, and 

hypothyroidism20,21. We chose these phenotypes because they have existing algorithms that 

have undergone extensive validation processes and demonstrated highly accurate and 

consistent performances with well-documented results. Data collection via web-based 

interactions with the LLMs occurred in October 2023, with subsequent data analysis completed 

in November 2023. This study was approved by the institutional review boards at Vanderbilt 

University Medical Center (IRB #: 201434). 

 

Figure 1 illustrates an overview of the study pipeline, which was comprised of two main 

components—prompting (steps 1-3, highlighted in pink) and evaluating (steps 4-9, highlighted in 

blue) LLMs. 

 
 

Figure 1. An architectural overview of the study pipeline. 
 
Prompting large language models to generate phenotyping algorithms 

g 

 in 
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We prompted the LLMs to generate executable SQL queries to identify phenotype cases from 

structured EHR data organized according to the Observational Medical Outcomes Partnership 

(OMOP) Common Data Model (CDM), a standard EHR data framework that enables efficient 

data analysis and sharing across institutions. To achieve this, we designed two distinct 

prompting strategies, hereafter termed α-prompting and β-prompting. 

 

The α-prompting strategy (steps 1 and 2 in Figure 1) had two steps. The first step focused on 

obtaining a pseudocode version of the phenotyping algorithm (referred to as a pseudo-

phenotyping algorithm), which emphasized identifying and integrating critical phenotyping 

criteria, as well as determining the strategy for combining these criteria. We utilized the chain-of-

thought (CoT) prompting strategy24, an effective method for directing LLMs through a series of 

reasoning steps to resolve complex problems like humans. Specifically, we framed our 

instruction to guide reasoning as follows: “Let’s think step by step: 1. List the critical criteria to 

consider. 2. Determine how these criteria should be combined. 3. Derive the final algorithm” 

(Supplemental Table 1). Additionally, multiple detailed instructions were specified so that the 

produced pseudo-phenotyping algorithm adhered to the OMOP concepts, including diagnosis 

codes (in ICD-9-CM and ICD-10-CM), symptoms, procedures, laboratory tests, and medications 

(both generic and brand names). We also mandated that the pseudo-phenotyping algorithm 

maintain a style consistent with the SQL logic, to facilitate generation of the SQL query in the 

second step.  

 

Using the response of an LLM in the initial step, the second step involved converting the 

pseudo-phenotyping algorithm into an executable SQL query (referred to as an SQL-formatted 

phenotyping algorithm) for implementation in an OMOP CDM-based EHR database for 

subsequent validation (Supplemental Table 1). Due to the probabilistic nature of LLMs, 

variations in the generated phenotyping algorithms are guaranteed. Consequently, we executed 

α-prompting five times independently for each phenotype and for each LLM to account for 

response variability. 

 

The β-prompting strategy (step 3 in Figure 1) was designed to first present the LLM with the five 

SQL-formatted phenotyping algorithms generated from the α-prompting strategy and then 

instruct the LLM to assess the quality of these algorithms and generate an improved one 

(Supplemental Table 1). This strategy, proven to effectively mitigate hallucinations25-27, 
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leverages an LLM’s ability to evaluate scientific texts based on the extensive knowledge 

encoded during model pre-training. As a result, the LLM can produce an updated version of the 

phenotyping algorithm through analytical reflections. We also deployed the CoT strategy in β-

prompting, which involved initially identifying the correct, incorrect, and missing criteria for each 

previously generated algorithm. The β-prompting strategy was executed in an independent 

session of the LLM (distinct from and subsequent to those used for α-prompting) and was 

executed only once. 

 
Evaluating the quality of LLM-generated phenotyping algorithms  
 
We then performed a comprehensive analysis, encompassing both qualitative and quantitative 

assessments, to evaluate the efficacy of the phenotyping algorithms generated by the four 

different LLMs on the three diseases of focus as described above. For the qualitative analysis, 

three experts in EHR phenotyping and clinical medicine (W.Q.W., M.E.G., and V.E.K.) 

independently reviewed and rated the LLM-generated SQL-formatted phenotyping algorithms in 

a blind manner. We further compared the concepts utilized in these algorithms with those found 

in clinician-validated phenotyping algorithms developed by the eMERGE network14,15. For 

quantitative assessment, we implemented the top-rated SQL-formatted phenotyping algorithms 

using EHR data from Vanderbilt University Medical Center (VUMC) and assessed their 

performance against established eMERGE algorithms17-21.  

     

Expert assessment Each of the three experts conducted independent reviews for every SQL-

formatted phenotyping algorithm (4 LLMs, 3 phenotypes, and 2 strategies, for 24 algorithms in 

total). The evaluation focused on three dimensions: 1) adherence to instructions, which 

assessed how well the LLM conformed to predefined formatting rules; 2) the generation of 

proficient phenotyping algorithms based on knowledge, which evaluated the LLM's ability to 

synthesize and organize phenotyping-related information effectively; and 3) presentation in 

executable SQL format, which measured the potential of an LLM to reduce the labor-intensive 

human efforts required for EHR implementation and validation. Detailed guidelines for expert 

evaluation can be found in Supplemental Table 2. Experts assigned categorical scores ("Good 

[3]," "Medium [2]," or "Poor [1]") for each axis based on predefined criteria, providing 

justifications accordingly. Interrater reliability was assessed using the weighted Cohen’s Kappa 

score28. We compared LLMs’ rated scores using the Wilcoxon signed-rank test29 with a 

significance level of 0.05.  
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Comparison of concept coverage with eMERGE phenotyping algorithms This analysis 

provided a comprehensive comparison of the concepts within phenotyping algorithms generated 

by LLMs and established EHR algorithms. We systematically reviewed and compared all the 

concepts employed in the algorithms for diagnoses, laboratory tests, procedures, medications, 

symptoms, and exclusions, and then summarized the noteworthy findings. 

 
Implementation of LLM-generated algorithms and performance evaluation We deployed 

the highest-rated phenotyping algorithms for each phenotype in a research cohort at VUMC 

(n=84,821). This cohort, extensively utilized in phenotyping research, has been a significant 

resource for phenotypic studies30,31. As a benchmark, we implemented three eMERGE 

algorithms updated with current ICD-10-CM codes31 to identify phenotype cases and controls. 

The cases and controls identified by the eMERGE algorithms served as a reference standard to 

assess the effectiveness of the LLM-generated algorithms. In our subsequent analysis, we 

excluded patients not categorized as either case or control by the eMERGE algorithm, as their 

data did not meet the criteria for either situation. Each of the top-rated LLM-generated 

algorithms required some modifications to be executable in a cloud-based platform to securely 

query VUMC's research clinical databases that follow the OMOP CDM. We limited changes to 

technical domain knowledge, as opposed to clinical domain knowledge. For example, we edited 

the database names, but did not edit drug names or ICD codes. 

 

We used the following metrics for evaluation: 1) positive predictive values (PPV), defined as the 

number of cases mutually identified by the eMERGE algorithm and an LLM over the total 

number of identified cases by the LLM; 2) recall, defined as the number of cases mutually 

identified by the eMERGE algorithm and an LLM over the total number of cases identified by the 

eMERGE algorithm; and 3) false positive rate (FPR), defined as the number of patients 

identified as cases by an LLM but identified as controls by the eMERGE algorithm (false 

positives) over the sum of false positives and number of cases identified by the eMERGE 

algorithm.  
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RESULTS 
 
Expert assessments 
 
The average interrater reliability was 0.59 [0.50-0.68], indicating a moderate to substantial 

agreement among experts, considering the categorical nature of the data (rather than 

dichotomous) and the variations in scoring criteria among different experts32.  

 

By mapping the experts’ assessments of “Good”, “Medium”, or “Poor” to numerical scores of 3, 

2, and 1, respectively, ChatGPT-4 (mean [95% confidence interval]: 2.57 [2.40-2.75]) and 

ChatGPT-3.5 (2.43 [2.25-2.60]) exhibited significantly higher overall expert evaluation scores 

than Claude 2 (1.91 [1.68-2.13]) and Bard (1.20 [1.09-1.31]) (Figure 2A). ChatGPT-4 marginally 

outperformed ChatGPT-3.5, though the differences were not statistically significant. Moreover, 

the β-prompting strategy did not significantly differ from the α-prompting, according to experts’ 

evaluation (Figure 2B). Furthermore, experts assigned higher scores to LLMs for their 

effectiveness in generating phenotyping algorithms for T2DM and hypothyroidism compared to 

dementia (Figure 2C). The radar plot shown in Figure 2D displays the average scores for each 

involved LLM across the three axes of evaluation. There are two key findings. First, ChatGPT-4 

and ChatGPT-3.5 were rated consistently better than Claude 2 and Bard in following 

instructions, algorithmic logic, and SQL executability. Second, ChatGPT-4 was considered to be 

on par with ChatGPT-3.5 in its ability to follow instructions and SQL executability, yet it 

surpassed ChatGPT-3.5 in its algorithmic logic. Considering these findings, the remainder of our 

results focused exclusively on ChatGPT-4 and ChatGPT-3.5. 
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Figure 2. A comparative analysis based on expert evaluations focusing on A) four large 
language models, B) two prompting strategies, C) three phenotypes, and D) three 
individual evaluation axes. Numeric scores of 3, 2, and 1 correspond to expert assessments 
of “Good”, “Medium”, and “Poor”, respectively. ***, **, and * denote p<0.001, p<0.01, and 
p<0.05, respectively. ns=not significant. 
 
Comparison with eMERGE phenotyping algorithms 
 
Components Table 1 summarizes the clinical concepts identified by the eMERGE phenotyping 

algorithms and LLM-produced algorithms. A full comparison of concepts can be found in 

Supplemental Table 3. Given that the phenotyping algorithms produced by both ChatGPT-4 and 

ChatGPT-3.5 from the β-prompting strategy were rated similarly to those from the α-prompting 

strategy, we focused further analyses on the β-prompting results.   

 

There are several notable observations. For the T2DM phenotyping algorithm, ChatGPT-4 and 

ChatGPT-3.5 identified relevant diagnosis codes (both ICD-9-CM and ICD-10-CM), lab tests 

(hemoglobin A1c, fasting blood glucose), and two generic medications (metformin and glipizide) 

that were also used in the eMERGE phenotyping algorithm. The eMERGE phenotyping 

algorithm also included medications not identified by either ChatGPT-4 or ChatGPT-3.5 (n=27). 

Only ChatGPT-4 and ChatGPT-3.5 included symptoms; both eMERGE and ChatGPT-4 

provided exclusionary criteria (ICD codes). Notably, the ChatGPT-3.5 model incorrectly included 

ICD-9-CM codes for type 1 diabetes and applied an incorrect cutoff value for fasting blood 

glucose (>6.5 mg/dL instead of >125 mg/dL).  
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For the dementia phenotyping algorithm, ChatGPT-4 and ChatGPT-3.5 included relevant 

diagnosis codes (ICD-9-CM and ICD-10-CM, as well as one ICD-10). While there were several 

overlapping diagnosis codes between each pair of phenotyping algorithms, no diagnosis codes 

were shared across all three algorithms. ChatGPT-4 and ChatGPT-3.5 included symptoms 

potentially related to dementia while the eMERGE algorithm did not. All three phenotyping 

algorithms shared four medications (two generic: donepezil and memantine, and two brand 

names: Aricept and Namenda), although the eMERGE algorithm specified additional 

medications that did not appear in either LLM-generated algorithm (n=7). Only the ChatGPT-4 

phenotyping algorithm included exclusion criteria (e.g., vitamin B12 level).  

 

For the hypothyroidism phenotyping algorithm, ChatGPT-4 and ChatGPT-3.5 identified relevant 

diagnosis codes (both ICD-9-CM and ICD-10-CM), lab tests (thyroid stimulating hormone), and 

medications (generic levothyroxine and brand name Synthroid) used in the eMERGE algorithm. 

Only the eMERGE algorithm used thyroid autoantibodies (e.g., thyroid antiperoxidase). Notably, 

the ChatGPT-4 algorithm specified the largest number of medications (n=15), including 9 

medications that were not included in either the eMERGE algorithm or the ChatGPT-3.5 

algorithm. Once again, only ChatGPT-4 and ChatGPT-3.5 included symptoms. The eMERGE 

algorithm included 113 exclusions, including 18 ICD codes, 79 CPT codes, and 16 medications, 

while ChatGPT-4 and ChatGPT-3.5 specified only 2 and 0 exclusions, respectively. 

 
 
Table 1. Shared and unshared concepts from the eMERGE, ChatGPT-4, and ChatGPT-3.5 
phenotyping algorithms for T2DM, dementia, and hypothyroidism. Darker blue shading 
represents a relatively higher count of unshared concepts when comparing the algorithms. 
Orange shading represents inaccurate concepts or laboratory cutoffs.  

Type 2 diabetes mellitus 

Concept Shared 
Unshared concept count  

(example) 

Algorithm All eMERGE ChatGPT-4 (β) ChatGPT-3.5 (β) 

Diagnoses 250.*0, 250.*2, E11.* 
2 

(O24.11) 
0 

31a
 

(250.01) 
Lab tests or 
procedures 

HgbA1cb, Fasting BGc
 

1 Lab 
 (Random BG >200)d

 

1 Lab 
 (Oral GTT >200)d

 

1 Lab 
(BMI ≥25)d

 

Medications Metformin, Glipizide 
34 

(Exenatide)d
 

7 
(Glucophage) 

1 
(Sitagliptin) 

Symptoms None 0 
3 

(Polyuria) 
3 

(Polydipsia) 
Exclusion by 

Type 
None 

9 ICD 
(250.*1) 

3 ICD 
(250.*3) 

0 

Dementia 

Concept Shared Unshared concept count  
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(example) 

Algorithm All eMERGE ChatGPT-4 (β) ChatGPT-3.5 (β) 

Diagnoses None 
45 

(290.0)d
 

6 20 

Lab tests or 
procedures 

None 0 
4 Procedures 

 (MMSE)d
 

3 Procedures 
(MRI scan)d

 

Medications 
Donepezil, Aricept, 

Memantine, Namenda 
11 

(Cognex)d
 

4 
(Galantamine) 

0 

Symptoms None 0 
3 

(Impaired reasoning)d
 

5 
(Cognitive impairment)d

 

Exclusion by 
Type 

None 0 
3 Labs 

(B12 level)d
 

0 

Hypothyroidism 

Concept Shared 
Unshared concept count  

(example) 

Algorithm All eMERGE ChatGPT-4 (β) ChatGPT-3.5 (β) 

Diagnoses 244.9, E03.8, E03.9 
18  

(244)d
 

7 
(244.1)d

 

6 
(E03.5)d

 

Lab tests or 
procedures 

TSHe
 

4 Labs  
(Anti-TPO)d

 

1 Lab 
(Serum free thyroxine) 

0 

Medications Levothyroxine, Synthroid 
9 

(Liothyronine)d
 

15 
(Amiodarone)d,f

 
0 

Symptoms None 0 
8 

(Hair loss)d
 

8 
(Constipation)d

 

Exclusion by 
Type 

None 

18 ICD 
(193*)d

 

79 CPT 
(60240)d

 

16 Medications 
(Amiodarone)d

 

2 Proceduresg
 

(Thyroid surgery) 
 

0 

Abbreviations: BG, blood glucose; BMI, body mass index; CPT, Current Procedural Terminology; GTT, glucose tolerance test; 
HgbA1c, hemoglobin A1c; ICD, International Classification of Diseases; MMSE, Mini-Mental State Exam; MRI, magnetic resonance 
imaging; TPO, thyroperoxidase. 
 

 
Implementation and evaluation in VUMC Along with the eMERGE algorithms, we successfully 

deployed all algorithms generated by ChatGPT-4 and ChatGPT-3.5 from the β-prompting 

strategy except the T2DM algorithm generated by ChatGPT-3.5 (Table 2). The failure of this 

phenotyping algorithm stemmed from its restrictive logic which accumulated LEFT JOINs across 

various tables, including the Person, Condition_Occurrence, Measurement, Drug_Exposure, 

and Observation tables. The algorithm required a LEFT JOIN on a list of people who had a 

record of symptoms in the Observation table (Polyuria, Polydipsia, Unexplained weight loss) 

and had a value of zero in the “value_as_concept_id” column. A value of zero did not exist for 

these symptoms, therefore the algorithm could not identify any individuals who met this criterion 

for T2DM.  

 

The case (and control) prevalences for the eMERGE algorithms in our population were 10.9% 

(28.0%), 3.5% (91.5%), and 2.4% (30.4%) for T2DM, dementia, and hypothyroidism, 
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respectively. The ChatGPT-4 generated dementia algorithm achieved the highest PPV of 96.3% 

at the expense of a low recall (24.4%). This result was primarily attributable to the relatively 

restrictive inclusion criteria, which required medication prescription coupled with the co-

occurrence of either diagnosis codes, symptoms, or cognitive assessment tests or procedures. 

The ChatGPT-4 generated algorithms for T2DM and hypothyroidism, as well as the ChatGPT-

3.5 generated algorithm for hypothyroidism, achieved high recall but at the cost of lower PPV. In 

contrast, the ChatGPT-3.5 generated algorithm for dementia achieved balanced PPV and recall.  

 
Table 2. Performance of the phenotyping algorithms generated by ChatGPT-4 and 
ChatGPT-3.5 from the β-prompting strategy when applied to VUMC data, as measured 
against clinician-validated algorithms for the eMERGE phenotype cases and controls. 

Disease eMERGE ChatGPT-4 ChatGPT-3.5 

 True 
cases 

True 
controls TP FP PPV Recall FPR TP FP PPV Recall FPR 

T2DM 9,293 23,754 8,978 578 53.3% 96.6% 2.4% 0 0 - 0.0% 0.0% 

Dementia 2,985 77,575 729 11 96.3% 24.4% 0.01% 2,388 583 71.4% 80.0% 7.5% 

Hypo-
thyroidism 2,030 25,760 2,029 258 9.6% 99.9% 1.0% 2,029 1,065 10.7% 99.9% 4.1% 

TP=true positive; FP=false positive; FDR=false discovery rate; T2DM=type 2 diabetes mellitus. 
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DISCUSSION 
 
EHR phenotyping is a critical area of modern observational clinical research, yet it commonly 

demands substantial resources. In this study, we explored the effectiveness of LLMs in creating 

preliminary versions of computable phenotyping algorithms, with the ultimate goal of 

streamlining the EHR phenotyping process.  

 

Not all LLMs we tested were well-suited for phenotyping. ChatGPT-4 and ChatGPT-3.5 

significantly outperformed both Claude 2 and Bard in their ability to generate executable and 

accurately SQL-formatted phenotyping algorithms. One of the reasons for this discrepancy was 

Claude 2's tendency to represent concepts using numerical concept codes, without specifying 

what clinical criteria these concept codes were intended to capture. Five of the algorithms 

generated by Bard did not follow the OMOP CDM. Four of these algorithms referenced columns 

that do not exist in the OMOP CDM. These corresponded to “patient_id” for both prompting 

strategies of dementia, “observation_fact” and “measurement_fact” for the α-prompting 

strategies of T2DM, and “occurrence_age” for the β-prompting strategy of T2DM. Additionally, 

two of the algorithms searched for concepts in the wrong tables. The α-prompting algorithm for 

dementia attempted to use the “person” table to extract all concepts, including diagnosis codes 

and medications, which would not be found in this table, whereas the β-prompting algorithm for 

hypothyroidism looked for signs and symptoms in the Measurement table. Given the poor 

performance of the phenotyping algorithms generated by Claude 2 and Bard, we focused the 

remaining analysis on phenotyping algorithms generated by ChatGPT-4 and ChatGPT-3.5.  

 

Both ChatGPT models were able to follow instructions and identify relevant concepts for the 

three selected phenotypes. The phenotyping algorithms generated by these models contained 

reasonably accurate diagnosis codes, related lab tests, and key medications. The concepts 

identified largely overlapped with the ones used by domain experts. We found that ChatGPT-4 

generally demonstrated slightly superior performance compared to ChatGPT-3.5 by identifying 

more medications and providing more appropriate thresholds for lab values (Table 1). Moreover, 

the ChatGPT-generated algorithms were able to identify additional potentially useful criteria, 

including a variety of symptoms and clinical signs for each phenotype, which have not usually 

been incorporated in any eMERGE algorithms.  
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ChatGPT generated phenotyping algorithms with incorrect criteria that needed manual 

corrections to ensure their functionality. For example, both ChatGPT-4 and ChatGPT-3.5 

erroneously considered the ICD-10 code F00 as a relevant diagnosis code for dementia, 

whereas our prompts specifically required ICD-10-CM codes. Additionally, ChatGPT 

occasionally selected inappropriately broad ICD-9-CM codes, such as 250* for T2DM, 

inadvertently encompassing diagnoses related to other types of diabetes. Also, ChatGPT 

missed some key ICD codes and medications. For example, while the query correctly identified 

patients with ICD-10-CM code G30 as dementia cases, ChatGPT overlooked patients with more 

specific codes such as G30.0, G30.1, G30.8, and G30.9. The ChatGPT algorithms generally 

generated a shorter list of medications compared to their corresponding eMERGE algorithms, 

with the exception of the ChatGPT-4 algorithm for hypothyroidism. In this case, ChatGPT-4 

interpreted the hypothyroidism phenotype more broadly to include not only endogenous causes 

of hypothyroidism (as in the eMERGE algorithm) but also exogenous causes (not included in 

the eMERGE algorithm). As a result, the medications specified by the ChatGPT-4 

hypothyroidism algorithm included both drugs used for treatment of hypothyroidism and drugs 

with potential to cause hypothyroidism (i.e., lithium, amiodarone, Lithobid, Cordarone, 

Nexterone, Pacerone). Moreover, certain thresholds set for lab values were inaccurate, such as 

“fasting blood glucose ≥6.5” for T2DM.  

 

As noted above, compared to the eMERGE algorithms, ChatGPT introduced some new 

concepts, including signs and symptoms such as fatigue, cold intolerance, and weight gain. 

Many of these concepts are infrequently used by domain experts in algorithm generation due to 

their low specificity. Including these low-specificity concepts might not substantially enhance the 

recall of the algorithms and could potentially diminish the algorithm’s PPV. Despite this, 

ChatGPT showed promise in identifying noteworthy concepts, such as the Mini-Mental State 

Examination and Montreal Cognitive Assessment for dementia. 

 

Finally, the LLMs exhibited immature capability in organizing phenotyping criteria with the 

proper logic. The SQL queries generated by ChatGPT were predominantly characterized by a 

single logical operator (AND or OR), resulting in phenotyping algorithms that were either 

excessively restrictive or overly broad.  

 

 
Limitations and future work 
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Several limitations need to be highlighted as potential opportunities for future improvement. First, 

this pilot study was limited in scope and did not investigate all the possible tools, options, and 

capabilities of the LLMs listed here. We are reporting initial observations from using the most 

basic and widely accessible version of these LLMs, i.e., the chat box interface with default 

settings available through the websites of each of the LLMs. Using an API would allow for 

selection of additional parameters, which may affect performance. Second, as a pilot study, this 

research focused on prompting LLMs to generate algorithms for identifying phenotype cases. 

The capability of LLMs in generating algorithms to identify controls also needs to be evaluated. 

Third, we tested solely on proprietary models and their default configurations. It is important to 

assess both proprietary models and the leading open-source models (e.g., Llama 2), especially 

when they are enhanced with fine-tuning capabilities and knowledge integration. Fourth, our 

design of prompts did not consider the further optimization of the execution efficiency of the 

SQL queries. Consequently, LLMs often produced SQL queries with suboptimal query 

structures, leading to slow execution in our database and additional human efforts to refine the 

query. Fifth, this study only considered phenotypes for three common diseases. Phenotyping 

rare diseases may present different challenges particularly when there is limited relevant online 

content for a particular disease. Sixth, the consistency of responses generated by ChatGPT 

varies over time, warranting consideration for potential future investigations. New LLMs are 

being rapidly deployed, and our future efforts will involve exploring alternative advanced models, 

such as ResearchGPT and Google Gemini. Additionally, we will be delving into more refined 

control and customization in the generation process through prompt engineering to achieve 

desired performance levels. 
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CONCLUSION 
 
ChatGPT models are capable of producing phenotyping algorithm drafts that align with a 

standard CDM and can be executed with reasonable modifications. These models excel in 

identifying relevant clinical concepts that can serve as valuable initial components for defining 

phenotypes. Nevertheless, LLM-generated phenotyping algorithms still necessitate manual 

modifications using clinical and informatics knowledge. 
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FIGURE LEGENDS 
 
Figure 1. An architectural overview of the study pipeline. 
 
Figure 2. A comparative analysis based on expert evaluations focusing on A) four large 
language models, B) two prompting strategies, C) three phenotypes, and D) three 
individual evaluation axes. Numeric scores of 3, 2, and 1 correspond to expert assessments 
of “Good”, “Medium”, and “Poor”, respectively. ***, **, and * denote p<0.001, p<0.01, and 
p<0.05, respectively. ns=not significant. 
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