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ABSTRACT  
 
Objectives: Phenotyping is a core task in observational health research utilizing electronic 

health records (EHRs). Developing an accurate algorithm demands substantial input from 

domain experts, involving extensive literature review and evidence synthesis. This burdensome 

process limits scalability and delays knowledge discovery. We investigate the potential for 

leveraging large language models (LLMs) to enhance the efficiency of EHR phenotyping by 

generating high-quality algorithm drafts. 

 

Materials and Methods: We prompted four LLMs—GPT-4 and GPT-3.5 of ChatGPT, Claude 2, 

and Bard—in October 2023, asking them to generate executable phenotyping algorithms in the 

form of SQL queries adhering to a common data model (CDM) for three phenotypes (i.e., type 2 

diabetes mellitus, dementia, and hypothyroidism). Three phenotyping experts evaluated the 

returned algorithms across several critical metrics. We further implemented the top-rated 

algorithms and compared them against clinician-validated phenotyping algorithms from the 

Electronic Medical Records and Genomics (eMERGE) network. 

 

Results: GPT-4 and GPT-3.5 exhibited significantly higher overall expert evaluation scores in 

instruction following, algorithmic logic, and SQL executability, when compared to Claude 2 and 

Bard. Although GPT-4 and GPT-3.5 effectively identified relevant clinical concepts, they 

exhibited immature capability in organizing phenotyping criteria with the proper logic, leading to 

phenotyping algorithms that were either excessively restrictive (with low recall) or overly broad 

(with low positive predictive values). 

 

Conclusion: GPT versions 3.5 and 4 are capable of drafting phenotyping algorithms by 

identifying relevant clinical criteria aligned with a CDM. However, expertise in informatics and 

clinical experience is still required to assess and further refine generated algorithms. 
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INTRODUCTION 
 
Electronic health record (EHR) phenotyping, which involves creating algorithms to identify and 

correctly classify a patient’s observable characteristics by integrating complex clinical data, has 

become pivotal in observational health research1. Developing EHR phenotypes is an intricate 

and labor-intensive process that demands extensive expertise in both the clinical and 

informatics domains2,3. While phenotyping includes the identification of individuals with specific 

characteristics, it also necessitates the selection of suitable controls for meaningful comparisons 

with the identified cases4.  

 

Rule-based computable phenotyping algorithms rely on clinical experts to select specialized 

criteria (e.g., diagnosis codes, medications, and laboratory values) likely to define a phenotype 

of interest. When subjected to detailed refinement and thorough validation, these algorithms 

often exhibit enhanced performance compared to high-throughput methods, which typically 

employ machine learning or data mining-based approaches to provide automated and rapid 

categorization of numerous disease phenotypes.5-8 However, the iterative nature of this process 

often requires substantial literature review and discussions with clinical experts to generate a 

single phenotyping algorithm, thereby limiting the scalability of this approach in practice2. 

Furthermore, implementation of phenotyping algorithms by secondary sites requires additional 

informatics expertise, manual effort, and time to adapt the existing code to different databases 

and EHR systems. 

 

Recently, large language models (LLMs) have demonstrated effectiveness in information 

extraction and summarization9, indicating a potential benefit in phenotyping by reducing the time 

required for literature review and synthesis during the phenotype generation process. Previous 

studies investigating the application of LLMs to phenotyping tasks have primarily evaluated the 

ability of LLMs to extract phenotypic information from unstructured clinical notes10. For example, 

Alsentzer et al. found that the open source LLM Flan-T5 could effectively extract concepts from 

discharge summaries to create a postpartum hemorrhage phenotype11. In this preliminary report, 

we investigate the novel application of LLMs for generating computable phenotyping algorithms 

to assess whether such tools can effectively expedite the development of EHR phenotypes 

based on structured data. We appraised four LLMs—GPT-4 (powering ChatGPT)12, GPT-3.5 

(powering ChatGPT)13, Claude 214, and PaLM 2-powered Bard15—to generate phenotyping 

algorithms for three clinical phenotypes—type 2 diabetes mellitus (T2DM), dementia, and 
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hypothyroidism. We subsequently implemented the top-rated algorithms as adjudicated by 

phenotyping experts using multiple critical metrics from each LLM and compared them against 

the clinician-validated phenotyping algorithms from the Electronic Medical Records and 

Genomics (eMERGE) network16,17. 
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METHODS 
 
We selected four LLMs in their default configurations to test their phenotyping algorithm 

generation capacity for three common clinical phenotypes. These LLMs were: 1) GPT-4 and 2) 

GPT-3.5 (both powering ChatGPT by OpenAI)12,13, 3) Claude 2 (developed by Anthropic)14, and 

4) Bard (created by Google and based on PaLM 2)15. These models were chosen because of 

their widespread use, easy accessibility, extensive evaluation, robust computational capabilities, 

and proficiency in handling and generating lengthy texts—qualities crucial for sustainably 

supporting phenotyping tasks. 

 

This pilot study specifically focused on three clinical phenotypes: T2DM18,19, dementia20, and 

hypothyroidism21,22. We chose these phenotypes because they have existing algorithms that 

have undergone extensive validation processes and demonstrated highly accurate and 

consistent performances with well-documented results. Data collection via web-based 

interactions with the LLMs occurred in October 2023, with subsequent data analysis completed 

in November 2023. This study was approved by the institutional review boards at Vanderbilt 

University Medical Center (IRB #: 201434). 

 

Figure 1 illustrates an overview of the study pipeline, which was comprised of two main 

components—prompting (steps 1-3, highlighted in pink) and evaluating (steps 4-9, highlighted in 

blue) LLMs. 

 

Figure 1. An architectural overview of the study pipeline. 
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Prompting large language models to generate phenotyping algorithms 
 
We prompted the LLMs to generate executable SQL queries to identify phenotype cases from 

structured EHR data organized according to the Observational Medical Outcomes Partnership 

(OMOP) Common Data Model (CDM), a standard EHR data framework that enables efficient 

data analysis and sharing across institutions23,24. There are multiple methods to search for 

concepts in an OMOP database, including specifying “concept_code”, “concept_name”, or 

“concept_id”. In this study, we focused on using ICD codes as concept codes for diagnosis 

concepts and using concept names for non-diagnosis concepts. This design was based on our 

observations that LLMs were 1) able to generate ICD diagnosis codes that are relevant to the 

target phenotype; 2) less likely to identify meaningful non-diagnosis concepts using 

“concept_code” compared to using “concept_name”; and 3) unable to generate 

applicable“concept_id” in general. The variability in the capacity of LLMs to identify relevant 

concepts through different methods can be attributed to discrepancies in the amount of 

information they have encountered about these methods to during pretraining. 

 

We designed two distinct prompting strategies, hereafter termed α-prompting and β-prompting. 

The α-prompting strategy (steps 1 and 2 in Figure 1) had two steps. The first step focused on 

obtaining a pseudocode version of the phenotyping algorithm (referred to as a pseudo-

phenotyping algorithm), which emphasized identifying and integrating critical phenotyping 

criteria, as well as determining the strategy for combining these criteria. We utilized the chain-of-

thought (CoT) prompting strategy25, an effective method for directing LLMs through a series of 

reasoning steps to resolve complex problems like humans. Specifically, we framed our 

instruction to guide reasoning as follows: “Let’s think step by step: 1. List the critical criteria to 

consider. 2. Determine how these criteria should be combined. 3. Derive the final algorithm” 

(Supplemental Table 1). Additionally, multiple detailed instructions were specified so that the 

produced pseudo-phenotyping algorithm adhered to the OMOP concepts, including diagnosis 

codes (in ICD-9-CM and ICD-10-CM), symptoms, procedures, laboratory tests, and medications 

(both generic and brand names). We also mandated that the pseudo-phenotyping algorithm 

maintain a style consistent with the SQL logic, to facilitate generation of the SQL query in the 

second step. 

 

Using the response of an LLM in the initial step, the second step involved converting the 

pseudo-phenotyping algorithm into an executable SQL query (referred to as an SQL-formatted 
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phenotyping algorithm) for implementation in an OMOP CDM-based EHR database for 

subsequent validation (Supplemental Table 1). Due to the probabilistic nature of LLMs, 

variations in the generated phenotyping algorithms are guaranteed. Consequently, we executed 

α-prompting five times independently for each phenotype and for each LLM to account for 

response variability. 

 

The β-prompting strategy (step 3 in Figure 1) was designed to first present the LLM with the five 

SQL-formatted phenotyping algorithms generated from the α-prompting strategy and then 

instruct the LLM to assess the quality of these algorithms and generate an improved one 

(Supplemental Table 1). This strategy, proven to effectively mitigate hallucinations26-28 (i.e., in 

the context of EHR phenotyping, generating column names that do not follow OMOP CDM or 

producing concept names, concept IDs, or even logics that are irrelevant to the target 

phenotype), leverages an LLM’s ability to evaluate scientific texts based on the extensive 

knowledge encoded during model pre-training. As a result, the LLM can produce an updated 

version of the phenotyping algorithm through analytical reflections. We also deployed the CoT 

strategy in β-prompting, which involved initially identifying the correct, incorrect, and missing 

criteria for each previously generated algorithm. The β-prompting strategy was executed in an 

independent session of the LLM (distinct from and subsequent to those used for α-prompting) 

and was executed only once. 

 
Evaluating the quality of LLM-generated phenotyping algorithms  
 
We then performed a comprehensive analysis, encompassing both qualitative and quantitative 

assessments, to evaluate the efficacy of the phenotyping algorithms generated by the four 

different LLMs on the three diseases of focus as described above. For the qualitative analysis, 

three experts (W.Q.W., M.E.G., and V.E.K.) in EHR phenotyping and clinical medicine, each 

with significant experience in clinical and informatics research, independently reviewed and 

rated the LLM-generated SQL-formatted phenotyping algorithms in a blind manner. All experts 

had authored numerous papers related to clinical phenotyping. We further compared the 

concepts utilized in these algorithms with those found in clinician-validated phenotyping 

algorithms developed by the eMERGE network16,17. The algorithms selected18-22 were developed 

among large patient populations, validated across multiple research centers, and widely 

recognized for their reliability. Specifically for dementia, the chosen eMERGE algorithm 

excludes mild cognitive impairment codes and does not filter out delirium diagnoses, reflecting 

the reality that dementia patients may also present with delirium. For quantitative assessment, 
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we implemented the top-rated SQL-formatted phenotyping algorithms using EHR data from 

Vanderbilt University Medical Center (VUMC) and assessed their performance against 

established eMERGE algorithms18-22.  

     

Expert assessment Each of the three experts conducted independent reviews for every SQL-

formatted phenotyping algorithm (4 LLMs, 3 phenotypes, and 2 strategies, for 24 algorithms in 

total). The evaluation focused on three dimensions: 1) adherence to instructions, which 

assessed how well the LLM conformed to predefined formatting rules; 2) the generation of 

proficient phenotyping algorithms based on knowledge, which evaluated the LLM's ability to 

synthesize and organize phenotyping-related information effectively; and 3) presentation in 

executable SQL format, which measured the potential of an LLM to reduce the labor-intensive 

human efforts required for EHR implementation and validation. Detailed guidelines for expert 

evaluation can be found in Supplemental Table 2. Experts assigned categorical scores ("Good 

[3]," "Medium [2]," or "Poor [1]") for each axis based on predefined criteria, providing 

justifications accordingly. Interrater reliability was assessed using the weighted Cohen’s Kappa 

score29. We compared LLMs’ rated scores using the Wilcoxon signed-rank test30 with a 

significance level of 0.05.  

 
Comparison of concept coverage with eMERGE phenotyping algorithms This analysis 

provided a comprehensive comparison of the concepts within phenotyping algorithms generated 

by LLMs and established EHR algorithms. We systematically reviewed and compared all the 

concepts employed in the algorithms for diagnoses, laboratory tests, procedures, medications, 

symptoms, and exclusions, and then summarized the noteworthy findings. 

 
Implementation of LLM-generated algorithms and performance evaluation We deployed 

the highest-rated phenotyping algorithms for each phenotype in a research cohort at VUMC 

(n=84,821). This cohort, extensively utilized in phenotyping research, has been a significant 

resource for phenotypic studies5,31. We summarized implementation details in Supplemental 

Section S.3, where we list the general edits we made as well as specific changes for each 

implemented algorithm (Supplemental Table 3). As a benchmark, we implemented three 

eMERGE algorithms updated with current ICD-10-CM codes5 to identify phenotype cases and 

controls. The cases and controls identified by the eMERGE algorithms served as a reference 

standard to assess the effectiveness of the LLM-generated algorithms. In our subsequent 

analysis, we excluded patients not categorized as either case or control by the eMERGE 

algorithm, as their data did not meet the criteria for either situation. Each of the top-rated LLM-
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generated algorithms required some modifications to be executable in a cloud-based platform to 

securely query VUMC's research clinical databases that follow the OMOP CDM. We limited 

changes to technical domain knowledge, as opposed to clinical domain knowledge. For 

example, we edited the database names, but did not edit drug names or ICD codes. 

 

We used the following metrics for evaluation: 1) positive predictive values (PPV), defined as the 

number of cases mutually identified by the eMERGE algorithm and an LLM over the total 

number of identified cases by the LLM; 2) recall, defined as the number of cases mutually 

identified by the eMERGE algorithm and an LLM over the total number of cases identified by the 

eMERGE algorithm; and 3) false positive rate (FPR), defined as the number of patients 

identified as cases by an LLM but identified as controls by the eMERGE algorithm (false 

positives) over the sum of false positives and number of cases identified by the eMERGE 

algorithm.  

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 26, 2024. ; https://doi.org/10.1101/2023.12.19.23300230doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300230
http://creativecommons.org/licenses/by-nc/4.0/


RESULTS 
 
Expert assessments 
 
The average interrater reliability was 0.59 [0.50-0.68], indicating a moderate to substantial 

agreement among experts, considering the categorical nature of the data (rather than 

dichotomous) and the variations in scoring criteria among different experts32.  

 

By mapping the experts’ assessments of “Good”, “Medium”, or “Poor” to numerical scores of 3, 

2, and 1, respectively, GPT-4 (mean [95% confidence interval]: 2.57 [2.40-2.75]) and GPT-3.5 

(2.43 [2.25-2.60]) exhibited significantly higher overall expert evaluation scores than Claude 2 

(1.91 [1.68-2.13]) and Bard (1.20 [1.09-1.31]) (Figure 2A). GPT-4 marginally outperformed 

GPT-3.5, though the differences were not statistically significant. Moreover, the β-prompting 

strategy did not significantly differ from the α-prompting, according to experts’ evaluation 

(Figure 2B). Furthermore, experts assigned higher scores to LLMs for their effectiveness in 

generating phenotyping algorithms for T2DM and hypothyroidism compared to dementia 

(Figure 2C). The radar plot shown in Figure 2D displays the average scores for each involved 

LLM across the three axes of evaluation. There are two key findings. First, GPT-4 and GPT-3.5 

were rated consistently rated better than Claude 2 and Bard in following instructions, algorithmic 

logic, and SQL executability. Second, GPT-4 was considered to be on par with GPT-3.5 in its 

ability to follow instructions and SQL executability, yet it surpassed GPT-3.5 in its algorithmic 

logic. Based on these findings, we continued our investigation with GPT-4 and GPT-3.5. 
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Figure 2. A comparative analysis based on expert evaluations focusing on A) four large 
language models, B) two prompting strategies, C) three phenotypes, and D) three 
individual evaluation axes. Numeric scores of 3, 2, and 1 correspond to expert assessments 
of “Good”, “Medium”, and “Poor”, respectively. ***, **, and * denote p<0.001, p<0.01, and 
p<0.05, respectively. ns=not significant. 
 
 
Comparison with eMERGE phenotyping algorithms 
 
Components Table 1 summarizes the clinical concepts identified by the eMERGE phenotyping 

algorithms and LLM-produced algorithms. A full comparison of concepts can be found in 

Supplemental Table 4. Given that the phenotyping algorithms produced by both GPT-4 and 

GPT-3.5 from the β-prompting strategy were rated similarly to those from the α-prompting 

strategy, we focused further analyses on the β-prompting results.   

 

There are several notable observations. For the T2DM phenotyping algorithm, GPT-4 and GPT-

3.5 identified relevant diagnosis codes (both ICD-9-CM and ICD-10-CM), lab tests (hemoglobin 

A1c, fasting blood glucose), and two generic medications (metformin and glipizide) that were 

also used in the eMERGE phenotyping algorithm. The eMERGE phenotyping algorithm also 

included medications not identified by either GPT-4 or GPT-3.5 (n=27). Only GPT-4 and GPT-

3.5 included symptoms; both eMERGE and GPT-4 provided exclusionary criteria (ICD codes). 

Notably, the GPT-3.5 model incorrectly included ICD-9-CM codes for type 1 diabetes and 

applied an incorrect cutoff value for fasting blood glucose (>6.5 mg/dL instead of >125 mg/dL).  
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For the dementia phenotyping algorithm, GPT-4 and GPT-3.5 included relevant diagnosis codes 

(ICD-9-CM and ICD-10-CM, as well as one ICD-10). While there were several overlapping 

diagnosis codes between each pair of phenotyping algorithms, no diagnosis codes were shared 

across all three algorithms. GPT-4 and GPT-3.5 included symptoms potentially related to 

dementia while the eMERGE algorithm did not. All three phenotyping algorithms shared four 

medications (two generic: donepezil and memantine, and two brand names: Aricept and 

Namenda), although the eMERGE algorithm specified additional medications that did not 

appear in either LLM-generated algorithm (n=7). Only the GPT-4 phenotyping algorithm 

included exclusion criteria (e.g., vitamin B12 level).  

 

For the hypothyroidism phenotyping algorithm, GPT-4 and GPT-3.5 identified relevant diagnosis 

codes (both ICD-9-CM and ICD-10-CM), lab tests (thyroid stimulating hormone), and 

medications (generic levothyroxine and brand name Synthroid) used in the eMERGE algorithm. 

Only the eMERGE algorithm used thyroid autoantibodies (e.g., thyroid antiperoxidase). Notably, 

the GPT-4 algorithm specified the largest number of medications (n=15), including 9 

medications that were not included in either the eMERGE algorithm or the GPT-3.5 algorithm. 

Once again, only GPT-4 and GPT-3.5 included symptoms. The eMERGE algorithm included 

113 exclusions, including 18 ICD codes, 79 CPT codes, and 16 medications, while GPT-4 and 

GPT-3.5 specified only 2 and 0 exclusions, respectively. 

 
 
Table 1. Shared and non-shared concepts from the eMERGE, GPT-4 (β-prompting), and 
GPT-3.5 (β-prompting) phenotyping algorithms for T2DM, dementia, and hypothyroidism. 
Darker blue shading represents a relatively higher count of unshared concepts when comparing 
the algorithms. Orange shading represents inaccurate concepts or laboratory cutoffs.  

Type 2 diabetes mellitus 

Concept Shared 
Unshared concept count  

(example) 

Algorithm All eMERGE GPT-4 (β) GPT-3.5 (β) 

Diagnoses 250.*0, 250.*2, E11.* 
2 

(O24.11) 
0 

31a
 

(250.01) 
Lab tests or 
procedures 

HgbA1cb, Fasting BGc
 

1 Lab 
 (Random BG >200)d

 

1 Lab 
 (Oral GTT >200)d

 

1 Lab 
(BMI ≥25)d

 

Medications Metformin, Glipizide 
34 

(Exenatide)d
 

7 
(Glucophage) 

1 
(Sitagliptin) 

Symptoms None 0 
3 

(Polyuria) 
3 

(Polydipsia) 
Exclusion by 

Type 
None 

9 ICD 
(250.*1) 

3 ICD 
(250.*3) 

0 

Dementia 

Concept Shared Unshared concept count  
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(example) 

Algorithm All eMERGE GPT-4 (β) GPT-3.5 (β) 

Diagnoses None 
45 

(290.0)d
 

6 20 

Lab tests or 
procedures 

None 0 
4 Procedures 

 (MMSE)d
 

3 Procedures 
(MRI scan)d

 

Medications 
Donepezil, Aricept, 

Memantine, Namenda 
11 

(Cognex)d
 

4 
(Galantamine) 

0 

Symptoms None 0 
3 

(Impaired reasoning)d
 

5 
(Cognitive impairment)d

 

Exclusion by 
Type 

None 0 
3 Labs 

(B12 level)d
 

0 

Hypothyroidism 

Concept Shared 
Unshared concept count  

(example) 

Algorithm All eMERGE GPT-4 (β) GPT-3.5 (β) 

Diagnoses 244.9, E03.8, E03.9 
18  

(244)d
 

7 
(244.1)d

 

6 
(E03.5)d

 

Lab tests or 
procedures 

TSHe
 

4 Labs  
(Anti-TPO)d

 

1 Lab 
(Serum free thyroxine) 

0 

Medications Levothyroxine, Synthroid 
9 

(Liothyronine)d
 

15 
(Amiodarone)d,f

 
0 

Symptoms None 0 
8 

(Hair loss)d
 

8 
(Constipation)d

 

Exclusion by 
Type 

None 

18 ICD 
(193*)d

 

79 CPT 
(60240)d

 

16 Medications 
(Amiodarone)d

 

2 Proceduresg
 

(Thyroid surgery) 
 

0 

Abbreviations: BG, blood glucose; BMI, body mass index; CPT, Current Procedural Terminology; GTT, glucose tolerance test; 
HgbA1c, hemoglobin A1c; ICD, International Classification of Diseases; MMSE, Mini-Mental State Exam; MRI, magnetic resonance 
imaging; TSH, thyroid simulating hormone; TPO, thyroperoxidase. 
a Inaccurately includes IC9-CM codes for type 1 diabetes mellitus with 250*.  
b All 3 phenotyping algorithms use a HgbA1c cutoff > 6.5  
c eMERGE and ChatGPT-4 use the correct fasting BG > 126 mg/dL and ChatGPT-3.5 incorrectly uses cutoff > 6.5 mg/dL  
d This denotes a unique concept example not used in any other phenotyping algorithm  
e Different TSH cutoffs used by each phenotyping algorithm (eMERGE: > 5, ChatGPT-4: > upper limit of normal; ChatGPT-3.5: 
>4.5)  
f Inaccurately includes amiodarone, which can cause hypothyroidism, as a treatment for hypothyroidism  
g Rather than specifying specific procedure codes, queried the concept table for concepts exactly matching “Thyroid surgery” or 
“Radioactive iodine treatment” (returned 5 procedure codes including 2 SNOMED, 1 Nebraska Lexicon, 1 HemOnc, and 1 MeSH)  

 

 
Implementation and evaluation in VUMC Along with the eMERGE algorithms, we successfully 

deployed all algorithms generated by GPT-4 and GPT-3.5 from the β-prompting strategy except 

the T2DM algorithm generated by GPT-3.5 (Table 2). The failure of this phenotyping algorithm 

stemmed from its restrictive logic which accumulated LEFT JOINs across various tables, 

including the Person, Condition_Occurrence, Measurement, Drug_Exposure, and Observation 

tables. The algorithm required a LEFT JOIN on a list of people who had a record of symptoms in 

the Observation table (Polyuria, Polydipsia, Unexplained weight loss) and had a value of zero in 

the “value_as_concept_id” column. A value of zero did not exist for these symptoms, therefore 

the algorithm could not identify any individuals who met this criterion for T2DM.  
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The case (and control) prevalences for the eMERGE algorithms in our population were 10.9% 

(28.0%), 3.5% (91.5%), and 2.4% (30.4%) for T2DM, dementia, and hypothyroidism, 

respectively. The GPT-4 generated dementia algorithm achieved the highest PPV of 96.3% at 

the expense of a low recall (24.4%). This result was primarily attributable to the relatively 

restrictive inclusion criteria, which required medication prescription coupled with the co-

occurrence of either diagnosis codes, symptoms, or cognitive assessment tests or procedures. 

The GPT-4 generated algorithms for T2DM and hypothyroidism, as well as the GPT-3.5 

generated algorithm for hypothyroidism, achieved high recall but at the cost of lower PPV. In 

contrast, the GPT-3.5 generated algorithm for dementia achieved balanced PPV and recall.  

 
 
Table 2. Performance of the phenotyping algorithms generated by GPT-4 and GPT-3.5 
from the β-prompting strategy when applied to VUMC data, as measured against 
clinician-validated algorithms for the eMERGE phenotype cases and controls. 

Disease eMERGE GPT-4 GPT-3.5 

 True 
cases 

True 
controls TP FP PPV Recall FPR TP FP PPV Recall FPR 

T2DM 9,293 23,754 8,978 578 53.3% 96.6% 2.4% 0 0 - 0.0% 0.0% 

Dementia 2,985 77,575 729 11 96.3% 24.4% 0.01% 2,388 583 71.4% 80.0% 7.5% 

Hypo-
thyroidism 2,030 25,760 2,029 258 9.6% 99.9% 1.0% 2,029 1,065 10.7% 99.9% 4.1% 

TP=true positive; FP=false positive; FDR=false discovery rate; T2DM=type 2 diabetes mellitus. 
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DISCUSSION 
 
EHR phenotyping is a critical area of modern observational clinical research, yet it commonly 

demands substantial resources. In this study, we explored the effectiveness of LLMs in creating 

preliminary versions of computable phenotyping algorithms, with the ultimate goal of 

streamlining the EHR phenotyping process.  

 

Not all LLMs we tested were well-suited for phenotyping. GPT-4 and GPT-3.5 significantly 

outperformed both Claude 2 and Bard in their ability to generate executable and accurately 

SQL-formatted phenotyping algorithms. One of the reasons for this discrepancy was Claude 2's 

tendency to represent concepts using numerical concept codes, without specifying what clinical 

criteria these concept codes were intended to capture. Five of the algorithms generated by Bard 

did not follow the OMOP CDM. Four of these algorithms referenced columns that did not exist in 

the OMOP CDM. These corresponded to “patient_id” for both prompting strategies of dementia, 

“observation_fact” and “measurement_fact” for the α-prompting strategies of T2DM, and 

“occurrence_age” for the β-prompting strategy of T2DM. Additionally, two of the algorithms 

searched for concepts in the wrong tables. The α-prompting algorithm for dementia attempted to 

use the “person” table to extract all concepts, including diagnosis codes and medications, which 

would not be found in this table, whereas the β-prompting algorithm for hypothyroidism looked 

for signs and symptoms in the Measurement table. We consider these behaviors to be indicative 

of LLM hallucinations in the context of EHR phenotyping. Given the poor performance of the 

phenotyping algorithms generated by Claude 2 and Bard, we focused the remaining analysis on 

phenotyping algorithms generated by GPT-4 and GPT-3.5.  

 

Both GPT models were able to follow instructions and identify relevant concepts for the three 

selected phenotypes. The phenotyping algorithms generated by these models contained 

reasonably accurate diagnosis codes, related lab tests, and key medications. The concepts 

identified largely overlapped with the ones used by domain experts. We found that GPT-4 

generally demonstrated slightly superior performance compared to GPT-3.5 by identifying more 

medications and providing more appropriate thresholds for lab values (Table 1). Moreover, the 

GPT-4 and GPT-3.5 generated algorithms were able to identify additional potentially useful 

criteria, including a variety of symptoms and clinical signs for each phenotype, which have not 

usually been incorporated in any eMERGE algorithms.  
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Despite the merits of GPT-4 and GPT-3.5, they produced phenotyping algorithms containing 

incorrect criteria. For example, both GPT-4 and GPT-3.5 erroneously considered the ICD-10 

code F00 as a relevant diagnosis code for dementia, whereas our prompts specifically required 

ICD-10-CM codes. Additionally, GPT-3.5 occasionally selected inappropriately broad ICD-9-CM 

codes, such as 250* for T2DM, inadvertently encompassing diagnoses related to other types of 

diabetes. Also, both GPT models missed some key ICD codes and medications. For example, 

while the query correctly identified patients with ICD-10-CM code G30 as dementia cases, they 

overlooked patients with more specific codes such as G30.0, G30.1, G30.8, and G30.9. The 

algorithms produced by both GPT models generally generated a shorter list of medications 

compared to their corresponding eMERGE algorithms, with the exception of the GPT-4 

produced algorithm for hypothyroidism. In this case, GPT-4 interpreted the hypothyroidism 

phenotype more broadly to include not only endogenous causes of hypothyroidism (as in the 

eMERGE algorithm) but also exogenous causes (not included in the eMERGE algorithm). As a 

result, the medications specified by the GPT-4 hypothyroidism algorithm included both drugs 

used for treatment of hypothyroidism and drugs with potential to cause hypothyroidism (i.e., 

lithium, amiodarone, Lithobid, Cordarone, Nexterone, Pacerone). Moreover, certain thresholds 

set for lab values were inaccurate, such as “fasting blood glucose ≥6.5” for T2DM.  

 

As noted above, compared to the eMERGE algorithms, both GPT-4 and GPT-3.5 introduced 

some new concepts, including signs and symptoms such as fatigue, cold intolerance, and 

weight gain. Many of these concepts are infrequently used by domain experts in algorithm 

generation due to their low specificity. Including these low-specificity concepts might not 

substantially enhance the recall of the algorithms and could potentially diminish the algorithm’s 

PPV. Despite this, they showed promise in identifying noteworthy concepts, such as the Mini-

Mental State Examination and Montreal Cognitive Assessment for dementia. 

 

Finally, the evaluated LLMs exhibited immature capability in organizing phenotyping criteria with 

the proper logic. The SQL queries generated by GPT-4 and GPT-3.5 were predominantly 

characterized by a single logical operator (AND or OR), resulting in phenotyping algorithms that 

were either excessively restrictive or overly broad.  

 

Collectively, our findings highlight that LLMs have the potential to produce helpful preliminary 

phenotyping algorithms by identifying relevant clinical concepts and criteria. As a result, we 

believe they have the potential to accelerate the creation of EHR-based phenotypes; however, 
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clinical phenotyping expertise, familiarity with EHR data models, and SQL programming skills 

remain critical for assessing and subsequently enhancing the efficacy of LLM-produced 

algorithms. At present, LLMs fall short of creating ready-to-use algorithms without revision. 

Therefore, incorporating a human-in-the-loop approach is necessary at this stage to ensure the 

algorithms’ practical applicability and accuracy. Still, this preliminary step would allow for a shift 

from traditional approaches where domain experts independently conduct comprehensive 

literature review and evidence synthesis—a process that is both time-intensive and 

challenging—to a more efficient and manageable model, where the domain experts’ role 

evolves to assessing and refining algorithms generated by LLMs. 

 
Limitations and future work 
 
Several limitations need to be highlighted as potential opportunities for future improvement. First, 

this pilot study was limited in scope and did not investigate all the possible tools, options, and 

capabilities of the LLMs listed here. Additionally, we did not fully explore the improvements, if 

any, of different prompt-engineering strategies, in-context learning, or fine-tuning. We are 

reporting initial observations from using the most basic and widely accessible version of these 

LLMs, i.e., the chat box interface with default settings available through the websites of each of 

the LLMs. Using an API would allow for selection of additional parameters, which may affect 

performance. Second, as a pilot study, this research focused on prompting LLMs to generate 

algorithms for identifying phenotype cases. The capability of LLMs in generating algorithms to 

identify controls also needs to be evaluated. Third, we tested solely on proprietary models and 

their default configurations. It is important to assess both proprietary models and the leading 

open-source models (e.g., Llama 2), especially when they are enhanced with fine-tuning 

capabilities and knowledge integration. Fourth, our design of prompts did not consider 

optimizing for execution efficiency of the SQL queries. Consequently, LLMs often produced SQL 

queries with suboptimal query structures. Fifth, this study only considered phenotypes for three 

common diseases. Phenotyping rare diseases may present different challenges particularly 

when there is limited relevant online content for a particular disease. Sixth, there is a chance 

that the phenotyping algorithms produced by LLMs might include clinical concepts that are not 

universally adopted by the OMOP databases of all healthcare organizations. As a result, this 

could lead to uncertainty in the algorithms’ effectiveness in patient identification in such 

situations. Nevertheless, we believe this issue can be addressed through a human-in-the-loop 

approach, which involves initially determining the concepts that are either not implemented or 

included, followed by re-prompting the LLMs to fine-tune the algorithm to exclude these 
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concepts. Seventh, the consistency of responses generated by proprietary LLMs varies over 

time, warranting consideration for potential future investigations. New LLMs are being rapidly 

deployed, and our future efforts will involve exploring alternative advanced models, such as 

ResearchGPT33 and Google Gemini34. Additionally, we will be delving into more refined control 

and customization in the generation process through prompt engineering to achieve desired 

performance levels. 
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CONCLUSION 
 
GPT-4 and GPT-3.5 of ChatGPT are capable of producing phenotyping algorithm drafts that 

align with a standard CDM. These models can reasonably identify relevant clinical inclusion and 

exclusion criteria that can be used in an initial draft phenotype algorithm. Nevertheless, 

expertise in informatics and clinical experience is still required to assess and further refine LLM-

generated phenotyping algorithms for improving EHR phenotyping accuracy. 
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FIGURE LEGENDS 
 
Figure 1. An architectural overview of the study pipeline. 
 
Figure 2. A comparative analysis based on expert evaluations focusing on A) four large 
language models, B) two prompting strategies, C) three phenotypes, and D) three 
individual evaluation axes. Numeric scores of 3, 2, and 1 correspond to expert assessments 
of “Good”, “Medium”, and “Poor”, respectively. ***, **, and * denote p<0.001, p<0.01, and 
p<0.05, respectively. ns=not significant. 
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