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Abstract 

Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the 

legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and 

pathophysiology of RLS are incompletely understood. Here, we present a whole-genome sequencing 

and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in three 

population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). 

Genome-wide association analysis identified nine independent risk loci, of which eight had been 

previously reported, and one was a novel risk locus (LMX1B, rs35196838, OR = 1.14, 95% CI = 1.09-

1.19, p-value = 2.2 × 10-9). A genome-wide, gene-based common variant analysis identified GLO1 as an 

additional risk gene (p-value = 8.45 × 10-7). Furthermore, a transcriptome-wide association study also 

identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed 

significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p-value = 5.4 × 

10-7), depression (rg = 0.35, se = 0.06, p-value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p-

value = 4.0 × 10-4). Our study expands the understanding of the genetic architecture of RLS and 

highlights the contributions of common variants to this prevalent neurological disorder. 
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Introduction 

 

Restless legs syndrome (RLS) is a common neurological disease characterized by an irresistible urge to 

move the legs1. Affected individuals exhibit exhaustion and sleepiness, which affect daily activities, 

work productivity, and personal relationships2,3. Studies reported that 5-15% of the European and North 

American populations suffer from RLS4,5, leading to a substantial socio-economic burden. Familial 

aggregation6 and twin studies7 estimate its heritability to be approximately 70%, suggesting a major 

genetic predisposition to RLS. To date, linkage studies in multiplex families have implicated eight 

genomic regions in families with RLS8, and genome-wide association studies (GWASs) have identified 

an additional 22 genetic risk loci (23 independent variants) associated with RLS9,10. Despite this, only 

about 12% of the heritability is explained9, meaning that much remains to be uncovered. Thus far, 

sequencing studies have been done through the targeted gene approach, and no causal variants were 

identified within the risk loci11-13.  

 

To address this gap and to improve our understanding of RLS's genetic architecture, we performed a 

large-scale genomic analysis involving 9,851 cases and 38,957 controls. We identified nine risk loci, of 

which one has not been previously reported, and performed functional annotations of the detected 

signals. We also performed pathway and genetic correlation analyses to gain insights into the underlying 

mechanisms and the relationship between RLS and other traits.  
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Methods 

 

Samples 

A total of 9,851 RLS cases and 38,957 controls of European ancestry recruited by three population-

based biobanks (CARTaGENE, Canadian Longitudinal Study on Aging, and All of Us) across Canada 

and the United States were included in the discovery stage meta-analysis of GWAS. Survey-based 

identification of RLS cases in CARTaGENE and the Canadian Longitudinal Study on Aging was made 

through essential RLS diagnostic questions. The Personal Medical History domain was used to identify 

All of Us cases. Controls were selected amongst the individuals with no neurological diseases 

(Supplementary Table 1). 

 

Whole genome sequencing and quality assessment 

Sequencing was performed by the Genome Centers funded by the All of Us Research Program14,15. All 

centers used the same sequencing protocols that consisted of PCR-free 150 bp, paired-end libraries 

sequenced on the Illumina NovaSeq 6000 platform and processed using DRAGEN v3.4.12 (Illumina) 

software. The GRCh38 reference genome was used for alignment16. Phenotypic data, ancestry features, 

and principal components were annotated using Hail through the All of Us Researcher Workbench17. 

Low-quality variants with a call rate of less than 0.95, multiallelic variants, and variants significantly 

departed from Hardy-Weinberg equilibrium in the control cohort (P ≤ 1.0 × 10-10) were removed. 

Common variants in autosomal chromosomes with a minor allele frequency of higher than 0.005 were 

included in the association test. Sex concordance was part of the All of Us upstream genomic data 

quality control process, and all samples within the released genomic data have passed the sex 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300211doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300211


  
 

  
 

concordance check. Ancestry annotation and relatedness were inferred by the PC-relate method in Hail. 

Duplicate samples and one of the related participant pairs were excluded17. 

 

Genotyping and imputation 

Genotyping data were generated using the Illumina Global Diversity Array for All of Us (1,825,277 

markers/GDA-8 v1.0/12,114 participants), Affymetrix protocol for Canadian Longitudinal Study on 

Aging (794,409 markers/ Axiom 2.0 /29,970 participants), and Illumina Infinium Global Screening 

Array technology for CARTaGENE (700,078 markers/GSAMD-24v1-0_20011747_A1/2,228 

participants). Further cohort and quality control details for the Canadian Longitudinal Study on Aging 

and CARTaGENE data sets are described in Awadella et al.18 and Forgetta et al.19. The same quality 

assessment, filtering, and imputation protocols were applied for all three genotyping cohorts and are 

summarized in Figure 1. Samples were excluded if missingness was higher than 5% or the reported and 

genotypic sex was discordant. KING20 was used to determine pairwise kinship and ancestry 

estimation21. Unrelated participants with European ancestry were kept for subsequent analyses. Quality 

assessment for missingness, sex concordance, Hardy-Weinberg equilibrium, and minor allele frequency 

was conducted using PLINK 2.022. Multiallelic and non-autosomal variants were removed. Variants 

with a genotyping call rate of less than 99%, a minor allele frequency of less than 0.01, showing 

nonrandom missingness between cases and controls (P ≤ 1.0 × 10-4), and variants that significantly 

departed from Hardy-Weinberg equilibrium in the control cohort (P ≤ 1.0 × 10-10) were excluded.  

 

Imputation was carried out using Minimac4 phasing with Eagle v2.4 Trans-Omics for Precision 

Medicine (TopMed) imputation reference panel (hg38) on TopMed Imputation Server23-25. The 

Canadian Longitudinal Study on Aging cohort was previously imputed via the same pipeline using the 
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TopMed imputation reference panel19. After the imputation, variants with a minor allele frequency of 

less than 0.5% and an imputation quality score of less than 0.5 were excluded prior to the association 

test. 

 

Single variant association test and meta-analysis 

We generated principal components in PLINK (version 2.0)22. We used the step function in the R MASS 

package to determine the optimum combination of covariates (age, sex, and principal components) to be 

included in the association tests26 (Supplementary Table 3). We performed a logistic regression analysis 

in PLINK v.2.022 separately in all datasets and meta-analyzed the results using an inverse-variance-

weighted meta-analysis in METAL27. We included only the variants that were present in all datasets in 

the final meta-analysis and set the Bonferroni threshold for genome-wide significance as 5.0�×�10−8. 

For follow-up replication of the significant associations in this study, we used the summary statistics of 

the previous GWAS results by Didriksen et al., which included 10,257 cases and 470,725 controls10.  

The heritability explained by variants tested in our meta-analysis was estimated via LD Score 

Regression v.1.0.1 using the 1000 Genomes Project cohort for linkage disequilibrium and allele 

frequencies. We used MungeSumstats to perform standardization of association statistics28. We 

conducted a conditional analysis in PLINK v.2.0 to identify potential secondary signals in the LMX1B 

and BTBD9 loci that may have been missed in the initial GWAS. The conditional analysis was 

performed by including the index variant at each locus to the covariates of the logistic regression 

analyses.  

 

Genome-wide, gene-based association analyses 
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Gene-based associations with RLS were estimated with SNP2GENE function in FUMA (v.1.5.1)29 using 

the summary statistics from the RLS meta-analysis (n = 9,851 cases and 38,957 controls). First, we 

annotated genes that contain RLS-associated variants. For gene annotations, we included all variants that 

are in linkage disequilibrium (r2 > 0.6) with the genome-wide significant signals (P < 5�×�10-8). We 

used UK Biobank European population as a reference panel to define the linkage disequilibrium 

between variants. Second, we performed a gene-burden analysis using MAGMA (v.1.08)30 implemented 

in FUMA29.  

 

For the rare variant burden test, we utilized WGS data of 1,977 cases and 10,137 controls in the All of 

Us biobank. We annotated potentially disruptive variants using the VEP31 and its plugin, Loss-Of-

Function Transcript Effect Estimator (LOFTEE)32. We performed genome-wide, gene-based SKAT-O 

analysis using RVTEST (v.2.1.0). We incorporated age, sex, PC2, PC3, PC7, and PC10 as covariates 

determined by the R MASS package.  

 

Transcriptome-wide association and fine mapping 

For transcriptomic imputation, we applied FUSION33 (lasso, susie, top1) and S-PrediXcan34 (elastic net, 

mashr). We tested the differential expression of the available gene models in 13 brain tissue panels 

imputed in GTEx version 8 of European samples (Table 3). To account for the large number of 

hypotheses tested, we used a Bonferroni correction p-value of 2.10 ×�10-6 for FUSION 

(α�=�0.05/23,770 genes tested) and a p-value of 3.06 ×�10-6 for S-PrediXcan (α�=�0.05/16,355 

genes tested). We conducted a fine mapping approach using FOCUS (v.0.802)35. We used our summary 

statistics, a multiple-eQTL database containing FUSION GTEx version 8 weights, and the 1000 

Genomes Project dataset as reference LD. FOCUS assigned a posterior probability of causality for each 
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gene. Finally, the genes in the 90%-credible set with a higher posterior probability were prioritized as 

putatively causal. 

 

Regulome-wide association study 

RWAS was conducted using the linear model implemented in MAGMA (v.1.10)36. Enhancer 

annotations for eight brain regions (hippocampus, dorsolateral prefrontal cortex, angular gyrus, anterior 

caudate, cingulate gyrus, inferior temporal lobe, substantial migration, and germinal matrix) were 

downloaded from the psychENCODE consortium (http://resource.psychencode.org/) and updated in 

GRCh38 assembly. 

 

Gene-set enrichment and pathway analysis 

A gene-set enrichment analysis approach was conducted using public datasets containing GO 

(http://geneontology.org) and Reactome (https://reactome.org) pathways in EnrichR37,38. 

 

Genetic correlation 

We assessed the genetic correlation between RLS and the following neurological or neuropsychiatric 

traits of interest with publicly available summary statistics of meta-analysis: Alzheimer’s disease39, 

attention deficit hyperactivity disorder40, depression41, insomnia42, intelligence43, neuroticism44, and 

serum iron and ferritin levels45. We used LD score regression46 with recommended LD scores from the 

1000 Genomes Project. A Bonferroni correction p-value of 0.00625 (α�= 0.05/8 traits testes) was 

defined for the significance threshold. 
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Results 

 

Genome-wide inferences 

We performed a meta-analysis of GWAS in a total of 9,851 RLS cases and 38,957 controls of European 

ancestry. These samples included the ‘All of Us’ whole-genome sequencing cohort (1,977 cases and 

10,137 controls), the ‘All of Us’ genotyping cohort (1,973 cases and 11,523 controls), the Canadian 

Longitudinal Study on Aging (4,980 cases and 15,990 controls)47, and CARTaGENE (921 cases and 

1,307 controls) (Figure 1, Supplementary Table 1). After imputation, quality assessment, and filtering, 

we performed a GWAS of RLS based on 7,510,495 variants. The estimated sample-size-adjusted 

genome-wide inflation factor (λ1,000) was 1.0036, indicating minimum residual population structure and 

confounding.  

 

We identified nine genetic loci that achieved genome-wide significance. Eight of these loci have been 

previously reported, and one was novel (Table 1). Annotation of the significant variants is provided in 

Supplementary Table 2. The index variant at this novel RLS-locus was close to the gene LMX1B on 

chromosome 9q33.3 (rs35196838, p-value = 2.2 × 10-9, OR = 1.14, 95% CI = 1.09–1.19). A conditional 

analysis did not reveal a secondary signal at this locus (see Supplementary Figure 1 for the regional 

association and conditional association plots). We replicated the LMX1B (rs35196838) variant in an 

independent cohort of 10,257 cases and 470,725 controls (rs35196838, p-value = 2.6 × 10-5, OR = 1.10, 

95% CI = 1.05–1.14) (Table 1).    

 

Variants in eight known RLS loci exceeded genome-wide significance in our discovery meta-analysis. 

Nine out of seventeen previously reported risk variants were replicated at Bonferroni significance (p-
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value�<�0.05/17 variants = 2.94 × 10-3) (Supplementary Table 4). The variant-based heritability was 

estimated to be 10.17%, whereas the nine significant loci explained 2.16% of the phenotype (21% of the 

total SNP heritability).  

 

The TOX3 locus (16q12.1) identified in our RLS meta-analysis is also significantly associated with 

Parkinson’s disease risk (rs3104783, p-value = 1.29 × 10-12, OR = 1.07, 95% CI = 1.05–1.09)48. 

However, the direction of the association of this variant in RLS and Parkinson’s disease is different49. 

To further explore the involvement of TOX3 variants in these two diseases, we created a beta-beta plot 

and identified a negative correlation coefficient of -0.95 and a Pearson correlation R2 of 0.91 

(Supplementary Figure 2).  

 

Gene-burden analysis 

To identify genes with variants driving the risk of RLS, we performed a gene-based association analysis 

using the results of the GWAS meta-analysis using MAGMA (v.1.08)30, as implemented in FUMA29. 

We found six significant gene-level associations that achieved genome-wide significance (< 0.05/18,623 

protein-coding genes tested = 2.69 ×�10−6). The strongest of these signals was BTBD9 (p-value = 3.79 

×�10-17), followed by TOX3 (p-value = 5.77 ×�10-13), both of which are well-established RLS risk 

loci9,50,51. In addition to these GWAS risk genes, we showed that GLO1, near the BTBD9 locus, was 

significantly associated with RLS (p-value = 8.45 × 10-7) (Figure 2b). A conditional analysis showed 

only one signal near BTBD9 and GLO1 (see Supplementary Figure 1c for the regional association plot 

and Supplementary Figure 1d for the conditional association analysis). 
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We also employed a rare variant burden test to investigate the contribution of rare variants in RLS. 

Following quality control of sequencing data and annotations, 21,335 genes were tested for rare variant 

burden in 1,977 cases and 10,137 controls. We subset the rare variants (MAF < 0.005) into high-

confidence (such as stop gain or loss, frameshifts, and splice donor or acceptors) and moderate groups 

(such as missense, inframe insertions, or deletions) based on their calculated variant consequences by 

VEP31. Considering the possible regulatory role of intronic variants, we also conducted the burden test 

to a group of all rare intragenic variants regardless of their annotation. Our gene-based burden tests did 

not identify enrichment for rare intragenic single nucleotide variants. 

 

Transcriptome-wide association study identifies new genes associated with RLS.  

We sought to integrate expression quantitative trait locus (eQTL) analyses using publicly available 

transcriptomic data with summary-level GWAS results. To do so, we used two transcriptomic 

imputation approaches, FUSION33 and S-PrediXcan34, and tested the differential expression of these 

gene models in 13 brain tissues (Table 3). We identified 21 associations for seven genes at the 

transcriptome-wide significant level (Figure 2c), of which four were not identified in the previous 

transcriptome-wide association study (TWAS) for RLS: GLO1 (6p21), ELFN1 (7p22.3), UBASH3B 

(11q24.1), and CAPNS1 (19q13)52. Consistent with previous findings, the expression of three known 

RLS genes, MEIS1, SKOR1, and MAP2K5, were also associated with RLS52-54. A fine-mapping analysis 

using the ‘Fine mapping Of CaUsal gene Sets’ (FOCUS) software (v.0.802)35 prioritized SKOR1, 

PTPRD-AS1, PRMT6, STEAP2, and GTPBP10 as putative candidate genes for RLS with posterior 

probabilities of 0.69, 0.13, 0.06, 0.06, and 0.02, respectively (Supplementary Table 6). 
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Regulatory regions are associated with RLS. 

We performed a regulome-wide association study (RWAS) using MAGMA36 to identify tissue-specific 

enhancer and promoter regions associated with RLS. After multiple test corrections for the number of 

regulatory regions tested in each tissue, we identified significant enrichments of the regulatory regions 

in MEIS1, BTBD9, GLO1, PTPRD, MAP2K5, CASC16, and TOX3 (See Table 4 for the most significant 

enrichment for each gene and Supplementary Table 6 for all associations). 

 

Gene-set enrichment and pathway analysis 

We conducted a gene-set enrichment analysis using Reactome (https://reactome.org) and Gene Ontology 

(GO; http://geneontology.org) to identify biological pathways associated with the annotated genes. We 

identified several relevant gene sets including pathways related to neuron differentiation (GO:0030182, 

PTPRD; SALL1; IRX5; IRX6; PBX3; and LMX1B), generation of neurons (GO:0048699, PTPRD; IRX5; 

IRX6; LMX1B; MDGA1) and regulation of myeloid cell differentiation (GO:0045637, PRMT6; MEIS1) 

(Supplementary Table 7). 

 

Genetic correlation 

We calculated the genome-wide genetic correlation between pairs of traits using the LD score regression 

method. After correcting for multiple testing (0.05/7 = 0.007), we identified a significant genetic 

correlation between RLS and neuroticism44 (rg = 0.40, se = 0.08, p-value = 5.4 × 10-7), depression41 (rg = 

0.35, se = 0.06, p-value = 2.17 × 10-8), and intelligence43 (rg = -0.20, se = 0.06, p-value = 4.0 × 10-4) 

(Table 4). 
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Discussion 

 

In the current study, we performed a large GWAS using population-based RLS case-control cohorts that 

had not been previously studied. We identified and replicated a novel genome-wide significant 

association in the chromosome 9q33.3 region near LMX1B. We also replicated the association of eight 

known RLS loci at a genome-wide significant level consistent with prior studies9,10.  

 

LMX1B encodes a homeodomain transcription factor involved in the early specification of midbrain 

dopaminergic neurons and plays a role in neuronal homeostasis in the adult brain55,56. Interestingly, 

Lmx1b has also been shown to have a regulatory role in the autophagic lysosomal degradation pathway 

and intracellular transport functions, where its dysfunction is associated with Parkinson's disease 

pathogenesis57. The altered dopaminergic system is one of the pathological elements in RLS as well, and 

the implication of LMX1B in RLS suggests an overlap between RLS and Parkinson’s disease in terms of 

their pathogenesis. Moreover, TOX3 locus (16q12.1), one of the first identified risk factors for RLS, was 

also shown to be significantly associated with Parkinson’s disease48. Together with the previous reports, 

our findings corroborate the involvement of common molecular mechanisms, and further investigations 

would help unravel the precise pathways through these common genetic risk factors in RLS and 

Parkinson’s disease.  

 

In addition to a variant-based analysis, we explored the collective effects of common genetic markers 

within genes as well as integrated transcriptomic data to identify differentially expressed genes in RLS. 

Our gene-based approaches identified significant associations for several genes, including well-

established RLS risk loci such as MEIS1, SKOR1, MAP2K5, and TOX3. Furthermore, previous 
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identification of MEIS1 protein binding sites within SKOR1 promoter regions and the regulatory effect 

of MEIS1 on SKOR1 expression has prompted our investigation into other regulatory elements that may 

be associated with the risk of RLS54. Interestingly, we identified significant associations of enhancers 

within the known RLS risk genes, including MEIS1, BTBD9, GLO1, PTPRD, MAP2K5, CASC16, and 

TOX3. These results highlighted the potential implication of non-coding regulatory regions in RLS.  

 

Both TWAS and MAGMA analyses identified GLO1, located near the BTBD9 locus, which was 

previously suggested as an RLS risk gene but had not been replicated yet11,58,59. Notably, our TWAS 

detected a significant association of GLO1 in 13 gene models in 9 tissues. GLO1 encodes a major 

catabolic enzyme, glyoxalase-1, which is involved in the detoxification of methylglyoxal60; thus, its 

inhibition results in the accumulation of reactive carbonyl compounds61,62. Considering the implication 

of methylglyoxal in Parkinson’s disease-like phenotypes63 as well as its role in Alzheimer’s disease 

pathogenesis64, our results pinpoint methylglyoxal as a potential therapeutic target for RLS.  

 

Our TWAS showed that increased expression of ELFN1 (in cis with 7p22.3 locus) is associated with 

RLS. ELFN1 has relevant implications in the brain65,66 and is associated with several neuropsychiatric 

and neurodevelopmental disorders, including intellectual disability, attention deficit hyperactivity 

disorder, and epilepsy66-68. Elfn1 protein has been shown to play a role in the modulation of synaptic 

transmission through its trans interaction with the metabotropic glutamate receptors69, which serve as 

therapeutic targets for several neurological diseases, including Alzheimer’s disease, epilepsy, and 

Parkinson’s disease70-72. Therefore, ELFN1 may be a promising gene target for functional follow-up in 

RLS. TWAS also identified two previously unreported genes that are not in cis with any of the GWAS 

risk loci identified, UBASH3B and CAPSN1. Although trans-eQTLs could be relevant for many complex 
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diseases, their effect is weaker, and this low statistical power yields low replication rates73,74. Therefore, 

association of these genes should be interpreted with caution. Overall, this integration of transcriptomic 

information provides additional evidence for the involvement of the associated genes in RLS and 

expands our understanding of the molecular mechanisms underlying the disorder. 

 

Our study has limitations. The limited availability of non-European samples hindered our ability to carry 

out comprehensive analyses involving multiple ancestral groups. In addition, cases and controls were 

selected based on self-report, which may result in diagnostic errors. Nevertheless, the replication of 

previous findings and overall consistency among the three cohorts used in this study suggested that 

population-based biobanks are able to capture the pertinent genetic patterns. 

 

Data availability 

The GWAS summary statistics generated in this study have been deposited NHGRI-EBI GWAS Catalog 

at https://www.ebi.ac.uk/gwas/ (accession IDs GCSTXXXXX). Data are available from the Canadian 

Longitudinal Study on Aging (www.clsa-elcv.ca) for researchers who meet the criteria for access to de-

identified CLSA data. 
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Table 1. Genome-wide association study results. P-values and the odds ratios were identified through a meta-analysis of the summary statistics (9,851 RLS 
cases and 38,957 controls). The variant with the lowest p-value is listed for each of the nine loci. The Bonferroni threshold for genome-wide significance was 
defined as 5.0�×�10−8. Genes that are in close proximity to the top variants or identified by post-GWAS analyses are listed. Chr, chromosome; EA, effect allele; 
OA, other allele; *novel GWAS variant; †prioritized by TWAS or fine mapping. 
 
Discovery meta-analysis Follow up analysis (Didriksen et al.) Joint stage meta-analysis 

Chr:position 
(hg38) 

Alleles  
(OA, EA) 

Gene(s) OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value 

1:106,650,227 G, A PRMT6† 1.12 (1.08–1.15) 1.50 × 10-11 1.15 (1.11–1.18) 1.90 × 10-17 1.13 (1.11–1.16) 3.14 × 10-27 

2:66,523,432 G, T MEIS1† 1.66 (1.56–1.76) 2.36 × 10-56 1.89 (1.89–2.00) 4.50 × 10-100 1.77 (1.70–1.85) 4.50 × 10-152 

6:38,476,264 A, G BTBD9, GLO1† 0.81 (0.78–0.84) 2.11 × 10-31 0.77 (0.74–0.80) 1.55 × 10-50 0.77 (0.79–0.81) 2.02 × 10-79 

7:1,340,813 C, G UNCX, ELFN1† 0.90 (0.87–0.93) 2.16 × 10-9 0.90 (0.87–0.93) 9.50 × 10-10 0.90 (0.88–0.92) 1.17 × 10-17 

7:88,682,938 A, G 
ZNF804B, 
STEAP2† 

1.15 (1.10–1.21) 3.13 × 10-9 1.13 (1.08–1.18) 1.69 × 10-7 1.14 (1.10–1.18) 3.20 × 10-15 

9:8,822,069 G, A 
PTPRD, PTPRD-
AS1† 

0.91 (0.88–0.94) 3.36 × 10-8 0.92 (0.89–0.95) 9.05 × 10-8 0.92 (0.90–0.94) 1.60 × 10-14 

9:126,755,162* C, A LMX1B 1.14 (1.09–1.19) 2.20 × 10-9 1.10 (1.05 –1.14) 2.60 × 10-5 1.12 (1.08 –1.15) 6.41 × 10-13 

15:67,816,234 C, T 
SKOR1†, 
MAP2K5† 

0.86 (0.83–0.89) 1.04 × 10-16 0.83 (0.80–0.86) 2.02 × 10-28 0.84 (0.82–0.87) 8.73 × 10-43 

16:52,610,538 A, C TOX3 0.86 (0.83–0.89) 1.18 × 10-19 0.82 (0.80–0.85) 5.88 × 10-34 0.84 (0.82–0.86) 4.41 × 10-51 
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Table 2. Gene-based association test results. Genome-wide gene-based test was done using MAGMA based on the meta-analysis of GWAS discovery cohorts 
(9,851 RLS cases and 38,957 controls). Bonferroni threshold for genome-wide significance was defined as 2.69�×�10−6. The chromosomal position is shown 
according to hg38. 
Chr Start Stop Gene p-value 

2 66,660,584 66,801,001 MEIS1 1.27 × 10-12 

6 38,136,227 38,607,924 BTBD9 3.79 × 10-17  

6 38,643,701 38,670,917 GLO1 8.45 × 10-7 

15 68,112,042 68,126,899 SKOR1 6.37 × 10-12 

15 67,835,047 68,099,461 MAP2K5 3.84 × 10-10 

16 52,471,917 52,581,714 TOX3 5.77 × 10-13 
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Table 3. Transcriptome-wide association study results. TWAS was performed using FUSION and S-PrediXcan based on the meta-analysis of GWAS discovery 
cohorts (9,851 RLS cases and 38,957 controls). Bonferroni correction threshold was defined as 2.10�×�10−6 for FUSION and 3.06�×�10−6 for S-PrediXcan. The 
chromosomal positions are shown according to hg38.  
 

Tissue Gene Chr Start End Model 
TWAS 
Z-score 

TWAS p-value Software 

cortex MEIS1 2 66,433,452 66,573,869 elastic net 4.67 3.05 × 10-6 S-PrediXcan 

caudate (basal ganglia) GLO1 6 38,703,140 38,703,141 susie -5.51 3.68 × 10-8 FUSION 

cerebellar hemisphere GLO1 6 38,703,140 38,703,141 lasso -5.15 2.64 × 10-7 FUSION 

anterior cingulate cortex GLO1 6 38,703,140 38,703,141 mashr -5.54 3.01 × 10-8 S-PrediXcan 

caudate (basal ganglia) GLO1 6 38,703,140 38,703,141 mashr -4.84 1.28 × 10-6 S-PrediXcan 

caudate (basal ganglia) GLO1 6 38,703,140 38,703,141 elastic net -4.81 1.49 × 10-6 S-PrediXcan 

cerebellar hemisphere GLO1 6 38,703,140 38,703,141 elastic net -5.33 9.97 × 10-8 S-PrediXcan 

hippocampus GLO1 6 38,703,140 38,703,141 mashr -5.40 6.75 × 10-8 S-PrediXcan 

hypothalamus GLO1 6 38,703,140 38,703,141 mashr -5.39 6.94 × 10-8 S-PrediXcan 

nucleus accumbens GLO1 6 38,703,140 38,703,141 elastic net -5.50 3.76 × 10-8 S-PrediXcan 

nucleus accumbens GLO1 6 38,703,140 38,703,141 mashr -5.40 6.59 × 10-8 S-PrediXcan 

pituitary GLO1 6 38,703,140 38,703,141 elastic net -4.69 2.69 × 10-6 S-PrediXcan 

putamen (basal ganglia) GLO1 6 38,703,140 38,703,141 elastic net -4.67 2.97 × 10-6 S-PrediXcan 

substantia nigra GLO1 6 38,703,140 38,703,141 mashr -5.31 1.10 × 10-7 S-PrediXcan 

hippocampus ELFN1 7 1,688,118 1,688,119 lasso 5.01 5.55 × 10-7 FUSION 

spinal cord UBASH3B 11 122,655,675 122,814,473 mashr -4.75 2.07 × 10-6 S-PrediXcan 

anterior cingulate cortex MAP2K5 15 67,542,708 67,542,709 lasso -5.99 2.12 × 10-9 FUSION 

amygdala SKOR1 15 67,819,703 67,819,704 lasso 6.03 1.62 × 10-9 FUSION 

frontal cortex SKOR1 15 67,819,703 67,819,704 lasso 5.68 1.37 × 10-8 FUSION 

hippocampus SKOR1 15 67,819,703 67,819,704 mashr 6.29 3.17 × 10-10 S-PrediXcan 

putamen (basal ganglia) CAPNS1 19 36,139,574 36,139,575 susie -5.69 1.27 × 10-8 FUSION 
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Table 4. Regulome-wide association study. RWAS was performed using MAGMA based on the meta-analysis of GWAS discovery cohorts (9,851 RLS cases 
and 38,957 controls). The chromosomal positions are shown according to hg38. 
 

Tissue Chr Start Stop Z p-value Gene 

Brain dorsotemporal prefrontal cortex 2 66536368 66537368 7.76 4.11 × 10-15 MEIS1 

Brain inferior temporal lobe 6 38374324 38375324 8.74 1.13 × 10-18 BTBD9 

Brain hippocampus middle 6 38701324 38702324 5.40 3.40 × 10-8 GLO1 

Brain angular gyrus 9 8820900 8821900 5.06 2.05 × 10-7 PTPRD 

Brain substantia nigra 15 67802662 67803662 8.19 1.28 × 10-16 MAP2K5 

Brain anterior caudate 16 52592188 52593188 8.91 2.66 × 10-19 CASC16 

Brain germinal matrix 16 52524888 52525888 5.48 2.15 × 10-8 TOX3 
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Table 5. Genetic correlation analysis. The genome-wide genetic correlation was calculated using the LD score regression. rG refers to the genetic correlation 
between two traits, and SE is the standard error of the genetic correlation. Bonferroni correction threshold was defined as 0.00625 (α�= 0.05/8). 
 

Trait rG SE p-value 

Neuroticism 0.40 0.08 5.4 × 10-7 

Depression 0.35 0.06 2.17 × 10-8 

Intelligence -0.20 0.006 4.0 × 10-4 

Alzheimer's disease -0.13 0.1 0.18 

Serum iron -0.09 0.07 0.20 

Serum ferritin -0.04 0.05 0.37 

Insomnia 0.03 0.04 0.55 

Attention deficit hyperactivity disorder 0.03 0.05 0.56 
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Figure 1. Workflow of the study.  
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Figure 2. a. Manhattan plot for the RLS GWAS discovery cohort (n = 9,851 cases and 38,957 con
λ1000= 1.004), b. gene-based common variant analysis using MAGMA (Bonferroni correction thre
= 2.69�×�10−6), and c. gene-based transcriptome-wide association study results. Bonferroni thresh
was set as 2.10 ×�10-6 for FUSION and 3.06 ×�10-6 for S-PrediXcan. Significant genes were lab
green (FUSION) and orange (S-PrediXcan). 

controls; 
hreshold 
eshold 
labeled 
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Supplementary information 
 
Supplementary Table 1. Demographic characteristics of study samples in GWAS discovery cohort. Diagnostic questions† in surveys and the 
Personal Medical History* domain were used to identify cases. 
 

Dataset 
Cases 
(% 
females) 

Controls 
(% females) 

Mean age, 
cases/controls 

Population RLS identifier questions 

All of Us 
WGS* 

1,977 
(74%) 

10,137 
(75%) 

 62 (± 14), 62 (± 
15)  

United States Has a doctor or health care provider ever told you that you have or had 
any of the following brain and nervous system conditions? (Restless 
legs syndrome) 

All of Us 
GDA* 

1,973 
(73%) 

11,523 
(70%) 

62 (± 14), 62 (± 
15) 

CARTaGENE† 
921 
(67%) 

13,07 (60%) 
56 (± 8), 56 (± 
8) 

Quebec 
(Canada) 

Do you have restless legs syndrome? 

Generally, your discomforts are worse…at rest/during activity/no 
difference/prefer not to answer/do not know 

Generally, your discomforts are relieved by… walking or 
movement/immobility or relaxation/prefer not to answer/do not know 

Generally, your discomforts are worse…  in the morning/in the 
afternoon/evening, bedtime, night/no difference/prefer not to answer/do 
not know 

Canadian 
Longitudinal 
Study on 

Aging† 

4,980 
(60%) 

15,990 
(47%) 

63 (± 10), 63 (± 
10) 

Canada 
Do you have, or have you sometimes experienced, a recurrent need or 
urge to move your legs while sitting or lying down? 

Total number 9,851 38,957     
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Supplementary Table 2. Gene mapping in the RLS risk regions. Annotation was performed in FUMA (v.1.5.1). It is provided as an Excel file. 
Supplementary Table 3. Adjusted covariates in the logistic regression test. Covariates were selected using the MASS stepwise function. PC, 
principal component. 

Dataset List of the covariates 
CARTaGENE sex, age, PC1, PC2, PC4, PC7, PC10 

Canadian Longitudinal Study on Aging sex, age, PC2, PC6 

All of Us sex, age, PC3, PC8, PC9, PC10 

All of Us WGS sex, age, PC2, PC3, PC7, PC10 
 
Supplementary Table 4. Replication of other known RLS risk variants in our meta-analysis.  
 
Chr Position (hg38) EA/OA Closest gene(s) Direction OR P 

2 3,986,856 G/A DCDC2C ++++ 1.08 (1.05–1.12) 3.03 × 10-6 

2 158,343,323 T/C CCDC148 ---- 0.93 (0.90–0.97) 3.14 × 10-4 

2 189,584,800 T/A SLC40A1 ---- 0.96 (0.93–0.99) 0.016 

2 67,842,758 A/C C1D NA NA NA 

3 3,406,460 T/A CRBN ---- 0.94 (0.90–0.97) 3.69 × 10-4 

3 130,816,723 G/A ATP2C1 ++++ 1.07 (1.04–1.11) 6.25 × 10-5 

5 171,001,975 T/C RANBP17 NA NA NA 

6 37,522,755 G/A CCDC167 ++++ 1.09 (1.05–1.14) 1.75 × 10-5 

9 9,290,311 T/C PTPRD, PTPRD-AS1 ---- 0.95 (0.91–0.98) 1.76 × 10-3 

11 8,313,948 A/G LMO1 NA NA NA 

13 72,274,018 T/G DACH1 ++++ 1.07 (1.03–1.11) 6.40 × 10-4 

15 47,068,169 T/G SEMA6D ---- 0.90 (0.85–0.95) 2.01 × 10-4 

15 35,916,797 T/A DPH6 ---- 0.90 (0.84–0.96) 3.01 × 10-3 

17 48,695,414 A/G PRAC1 ++++ 1.04 (1.00–1.08) 0.08 

18 44,290,278 T/C SETBP1 ++++ 1.05 (1.01–1.09) 0.01 

18 59,943,413 T/C PMAIP1 NA NA NA 
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20 64,164,052 G/A MYT1 ---- 0.91 (0.88–0.94) 1.17 × 10-7 

Supplementary Table 5. Causal posterior probabilities for genes in 90%-credible sets for restless legs syndrome transcriptome-wide association 
study signals. PIP, posterior inclusion probability. 
 

Gene Region 
Number of genes 
in the region Proxy tissue Method PIP 

PRMT6 1:105545220-107867043 16 spinal cord lasso 0.06 

STEAP2 7:88195689-91032469 35 spinal cord susie 0.06 

GTPBP10 7:88195689-91032469 35 nucleus accumbens lasso 0.02 

PTPRD-AS1 9:8456299-9166403 7 spinal cord susie 0.13 

SKOR1 15:66802429-68725660 30 nucleus accumbens susie 0.69 
 
 
Supplementary Table 6. Regulome-wide association study (RWAS) results. RWAS was done using MAGMA (v.1.06). Bonferroni correction 
threshold for each tissue was defined based on the number of enhancers tested. It is provided as an Excel file. 
 
Supplementary Table 7. Gene sets and pathways identified by EnrichR using GO biological process and Reactome pathway datasets.  
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Supplementary Figure 1. a. LocusZoom plot for chr9:126755162:C:A, b. Conditional analysis at the LMX1B locus (before and after conditioning
LocusZoom plot for chr6:38476264:A:G, d. Conditional analysis at the BTBD9/GLO1 locus (before and after conditioning). 

 

ing), c. 
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Supplementary Figure 2. Beta-beta plot for TOX3 variants in the RLS meta-analysis and Parkinson’s disease meta-analysis. We comp
effect of the TOX3 variants (P < 1 × 10-4) identified in our discovery meta-analysis with the recent Parkinson’s disease GWAS by Nalls et al. [r
For the top significant variant in Parkinson’s disease (16:52602330:C:A, hg38), we included the beta value from the meta-analysis, whereas, f
rest of the variants, we included summary statistics without 23andMe datasets. A negative correlation was found between the effects of TOX3
variants in RLS and PD (The correlation coefficient is -0.95, and the Pearson correlation R2 is 91).  
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