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Abstract (150 words) 25 

Type 1 diabetes (T1D) requires new preventive measures and interventions. Circulating proteins 26 

are promising biomarkers and drug targets. Leveraging genome-wide association studies 27 

(GWASs) of T1D (18,942 cases and 501,638 controls) and circulating protein abundances 28 

(10,708 individuals), the associations between 1,565 circulating proteins and T1D risk were 29 

assessed through Mendelian randomization, followed by multiple sensitivity and colocalization 30 

analyses, examinations of horizontal pleiotropy, and replications. Genetically increased 31 

circulating abundances of CTSH, IL27RA, SIRPG, and PGM1 were associated with an increased 32 

risk of T1D, consistently replicated in other cohorts. Bulk tissue and single-cell gene expression 33 

profiles revealed strong enrichment of CTSH, IL27RA, and SIRPG in immune system-related 34 

tissues, and PGM1 in muscle and liver tissues. Among immune cells, CTSH was enriched in B 35 

cells and myeloid cells, while SIRPG was enriched in T cells and natural killer cells. These 36 

proteins warrant exploration as T1D biomarkers or drug targets in relevant tissues. 37 

 38 
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Introduction 40 

Type 1 diabetes is an autoimmune disease characterized by the destruction of pancreatic � 41 

cells 
1-6

, which are responsible for producing insulin. Although traditionally considered a disease 42 

of children and adolescents, type 1 diabetes can be diagnosed at any age and can affect a 43 

significant proportion of the global population 
3-5

. Despite continuing efforts to develop risk 44 

predictors 
7-9

, few effective preventive measures for type 1 diabetes have been implemented in 45 

public health practice. Following diagnosis, preserving residual � cell function and delaying type 46 

1 diabetes-associated autoimmunity present challenges due to the multifactorial and 47 

heterogeneous nature of the disease 
3-5, 10

. Consequently, there is an urgent need for new 48 

biomarkers and drug targets for type 1 diabetes. 49 

 50 

Circulating molecules participate in various biological processes and play essential roles 51 

encompassing immune responses, signaling cascades, and regulatory mechanisms 
11-14

. These 52 

molecules may be promising biomarkers or drug targets because their abundances are 53 

measurable and possibly modifiable. Autoantibodies to insulin, glutamic acid decarboxylase, 54 

islet antigen-2, zinc transporter 8, and other circulating proteins have emerged as markers for 55 

characterizing type 1 diabetes 
10, 15, 16

. Yet, establishing the causal roles of novel proteins is 56 

difficult. The feasibility of conducting randomized controlled trials for these proteins remains 57 

limited. Meanwhile, observational studies can encounter several pitfalls, including uncontrolled 58 

confounding factors as well as reverse causation. 59 

 60 

Mendelian randomization (MR) is an instrumental variable framework that can effectively 61 

mitigate biases arising from confounding and reverse causation 
17, 18

. MR employs genetic 62 

variants as instruments for a risk factor (i.e. a circulating protein), and evaluates the potential 63 

causal effect of the risk factor on a disease outcome. MR relies on three core instrumental 64 

variable assumptions 
17, 18

. First, a genetic instrument should strongly predict the risk factor, 65 

known as the relevance assumption. Second, the genetic instrument should not be associated 66 

with confounders of the risk factor-disease outcome relationship, known as the independence 67 

assumption. Third, the genetic instrument should not act on the disease outcome through 68 

alternative pathways other than the instrumented risk factor, known as the no horizontal 69 

pleiotropy assumption. Recent large-scale proteo-genomic studies have identified ideal genetic 70 

instruments for circulating protein abundances, which are lead variants in cis-protein 71 

quantitative trait loci (cis-pQTLs) 
11-13

. These genetic variants are unlikely to be associated with 72 

confounders that influence the risk factor-disease outcome association, because of the 73 

randomization at conception. Moreover, their proximity to protein-coding genes suggests a 74 

direct influence on protein abundances, thereby reducing the risk of horizontal pleiotropy. 75 

Previous studies have implemented MR to investigate potential causal effects of circulating 76 

protein abundances on the risks of several complex diseases 
19-22

. 77 

 78 

While cis-pQTL-facilitated MR can pinpoint target proteins, it is important to note that 79 

circulating proteins originate from various sources 
11-13

. These include but are not limited to 80 

endocrine cell secretion, cellular turnover and apoptosis, immune and inflammatory response, 81 

and diet and nutrition. To further understand the underpinning disease mechanisms and open 82 
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new avenues for diagnostic and therapeutic advancements, it is crucial to identify candidate 83 

tissues and cell types where the target proteins are primarily produced. 84 

 85 

In this study, we conducted integrative proteogenomic analyses to systematically identify 86 

potential biomarkers and drug targets for type 1 diabetes. We first capitalized on genetic 87 

associations from large-scale genome-wide association studies (GWASs) to conduct MR, in 88 

order to assess the associations between circulating protein abundances and type 1 diabetes 89 

risk. We then prioritized target proteins through multiple sensitivity and colocalization analyses, 90 

examinations of horizontal pleiotropy, and replications. Furthermore, we identified candidate 91 

tissues and cell types through enrichment analyses, utilizing both bulk tissue and single-cell 92 

gene expression profiles. Our findings underscore circulating proteins that exhibit a potential 93 

causal effect on the risk of type 1 diabetes. 94 

 95 

Results 96 

Target protein prioritization through Mendelian randomization 97 

An overview of this study is presented in Figure 1. After identification of cis-genetic instruments 98 

and data harmonization, associations between circulating abundances of 1,565 proteins and 99 

type 1 diabetes risk were assessed using MR. MR analyses of 135 (8.6%) proteins utilized LD 100 

proxies of cis-genetic instruments (Methods). Details of genetic instruments are provided in 101 

Supplementary Table S1.  102 

 103 

A total of 12 associations between circulating protein abundances and type 1 diabetes risk 104 

reached the Bonferroni-corrected significance threshold (p-value < 3.2x10
-5

; Figure 2 and 105 

Supplementary Figure S1), excluding proteins whose coding genes map to the MHC region. 106 

These significant associations had a minimal F-statistic of 46.6, indicating a low risk of weak 107 

instrument bias. Full summary statistics of MR analyses are provided in Supplementary Table 108 

S2. 109 

 110 

Of these 12 proteins, circulating abundances of CTSH, ANXA2, and CCL25 were instrumented 111 

using three cis-genetic instruments. Results of sensitivity analyses using weighted median, 112 

penalized weighted median, weighted mode, and MR-Egger methods were highly consistent 113 

with those obtained using the inverse variance weighted method (Supplementary Table S3). 114 

MR-Egger intercepts largely overlapped with the null, suggesting a low risk of directional 115 

horizontal pleiotropy (Supplementary Table S3). 116 

 117 

Colocalization evidence, horizontal pleiotropy assessment, and replication 118 

Colocalization analyses and horizontal pleiotropy assessment were performed to verify MR 119 

assumptions for these 12 proteins (Methods). Strong (PP.H4 > 80%) or suggestive (PP.H4 > 50%) 120 

evidence of colocalization between circulating protein abundance and type 1 diabetes risk was 121 

observed for CTSH, RHOC, IL27RA, ANXA2, SIRPG, CCL25, and PGM1. Conversely, colocalization 122 

evidence was limited for EBI3-IL27 complex, IL15RA, ERBB3, WARS, and ALDH2 (Figures 2 and 3, 123 

Supplementary Figure S2, and Supplementary Table S4). 124 

 125 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.19.23300201doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300201


 5

Among these target proteins supported by colocalization evidence, the genetic instruments of 126 

both RHOC and ANXA2 were predicted to have stronger functional connections to neighboring 127 

genes (i.e. ICE2 and ST7L, respectively) other than their respective coding genes, as indicated by 128 

V2G scores (Methods and Supplementary Table S5). In addition, the genetic instruments of 129 

RHOC, ANXA2, SIRPG, and CCL25 have been associated with the expression or splicing of other 130 

neighboring genes, which introduces an elevated risk of horizontal pleiotropy. In contrast, the 131 

genetic instruments of CTSH, IL27RA, and PGM1 demonstrated the strongest functional 132 

connection to their respective coding genes, were not associated with the expression, splicing, 133 

or translation of other neighboring genes, and had not been associated with other known risk 134 

factors of type 1 diabetes in the Open Target database, thereby mitigating the risk of horizontal 135 

pleiotropy (Figures 2 and Supplementary Tables S5 and S6). 136 

 137 

Seven significant associations supported by colocalization evidence were re-evaluated when cis-138 

genetic instruments could be identified in the deCODE study or the UKB-PPP study, or when the 139 

associations could be assessed based on the type 1 diabetes GWAS meta-analysis by Robertson 140 

et al (Methods, Figure 2, and Supplementary Table S7). Six of the seven associations were 141 

replicated using these additional resources with a consistent effect direction and a similar 142 

magnitude of effect as obtained in the primary analyses (Supplementary Table S8). However, 143 

based on the cis-genetic instrument identified in the UKB-PPP study, a one standard deviation 144 

increase in genetically predicted circulating abundance of CCL25 was not associated with the 145 

risk of type 1 diabetes (odds ratio, OR = 1.01; 95% CI: 0.96-1.05; p-value = 0.82; Supplementary 146 

Table S8). 147 

 148 

Following these assessments, we prioritized CTSH, IL27RA, SIRPG, and PGM1 as target proteins 149 

(Figures 2 and 3), while cautioning a moderate risk of horizontal pleiotropy affecting the genetic 150 

instrument of circulating SIRPG abundance. Specifically, genetically predicted circulating 151 

abundances of CTSH, IL27RA, SIRPG, and PGM1 were associated with increased odds of 152 

developing type 1 diabetes, with ORs of 1.17 (CTSH; 95%: 1.10-1.24; p-value = 9.3x10
-7

; PP.H4 = 153 

99.6%), 1.13 (IL27RA; 95%: 1.07-1.19; p-value = 2.3x10
-5

; PP.H4 = 92.7%), 1.37 (SIRPG; 95%: 154 

1.26-1.49; p-value = 4.3x10
-13

; PP.H4 = 86.6%), and 1.66 (PGM1; 95%: 1.40-1.96; p-value = 155 

3.9x10
-9

; PP.H4 = 71.3%) per one standard deviation increase, respectively. 156 

 157 

Tissue and immune cell type enrichment of gene expression 158 

For each of the target protein-coding genes, enrichment of gene expression in 54 tissue sites 159 

profiled by the GTEx Consortium was assessed to identify potential candidate tissues (Methods 160 

and Supplementary Table S9). As a result, the expression of CTSH, IL27RA, and SIRPG was 161 

enriched in the whole blood with a tissue-specific enrichment z-score > 10 (Figure 4). 162 

Furthermore, CTSH expression was enriched in Epstein-Barr virus-transformed lymphocytes and 163 

SIRPG expression was enriched in the spleen, while IL27RA expression was enriched in both of 164 

these tissues (Figure 4). In contrast, the expression of PGM1 exhibited enrichment in skeletal 165 

muscle, heart (left ventricle), and liver (Figure 4).  166 

 167 

Whole blood-specific cis-eQTL of CTSH and liver-specific cis-eQTL of PGM1 demonstrated strong 168 

evidence of colocalization with the genetic associations with type 1 diabetes risk, while tissue-169 
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specific cis-eQTLs of IL27RA and SIRPG did not show evidence of colocalization (Supplementary 170 

Figure S3 and Supplementary Table S10). Importantly, the cis-genetic instruments of circulating 171 

abundances of IL27RA and SIRPG were not strongly associated with their mRNA abundances in 172 

these candidate tissues (Supplementary Figure S4). Meanwhile, there was strong evidence of 173 

colocalization between genetic associations with multiple isoforms of CTSH and SIRPG in whole 174 

blood and the genetic associations with the risk of type 1 diabetes (Supplementary Table S11). 175 

These cis-sQTLs also overlapped with cis-pQTLs of CTSH and SIRPG (Supplementary Figure S5), 176 

respectively. 177 

 178 

Given the enrichment of CTSH, IL27RA, and SIRPG expression in immune system-related tissues, 179 

we further examined cell type-specific gene expression based on single-cell transcriptomic 180 

profiling of 329,762 immune cells, consisting of 45 curated cell types (Methods and Figure 5A). 181 

Among these immune cells, it was evident that CTSH expression was enriched in B cells, 182 

excluding pro-B cells and pre-B cells, as well as in myeloid cells (Figure 5B, Supplementary 183 

Figures 6A, Supplementary Figures 7-9, and Supplementary Table S12). On the other hand, 184 

CTSH expression was depleted in T cells, albeit with modest expression observed in effector 185 

memory CD4
+
 T cells (Teffector/EM_CD4) and tissue-resident memory T-helper 1 and T-helper 186 

17 cells (Trm_Th1/Th17). Meanwhile, the expression level of IL27RA was moderate and 187 

relatively consistent across most cell types (Figure 5C, Supplementary Figures 6B, 188 

Supplementary Figures 7-9, and Supplementary Table S12). In contrast, SIRPG expression was 189 

enriched in T cells and natural killer cells, and depleted in B cells and myeloid cells (Figure 5D, 190 

Supplementary Figures 6C, Supplementary Figures 7-9, and Supplementary Table S12). 191 

 192 

Mendelian disorders and incident disease outcomes associated with target proteins 193 

Among the four target proteins, PGM1 was implicated in congenital disorder of glycosylation 194 

type 1t (CDG1T), an autosomal recessive disorder caused by PGM1 deficiency due to 195 

pathogenic homozygous or compound heterozygous mutations affecting the PGM1 gene 196 

(OMIM#614921, Supplementary Table S13). The other target proteins did not have known 197 

implications in Mendelian disorders. 198 

 199 

In the UK Biobank, observational associations between circulating protein abundances and 200 

incident disease outcomes were only available for CTSH. Over 16 years of follow-up, a one 201 

standard deviation increase in circulating CTSH abundance was associated with a 1.14-fold 202 

increased hazard of mortality (95% CI: 1.10-1.17; p-value = 1.7x10
-17

), and interestingly, a 1.16-203 

fold increased hazard of type 2 diabetes based on physician-made diagnosis (95% CI: 1.11-1.21; 204 

p-value = 4.0x10
-12

; Supplementary Figure S10 and Supplementary Table S14). In addition, a 205 

one standard deviation increase in circulating CTSH abundance was associated with elevated 206 

risks of systemic lupus erythematosus (hazard ratio, HR = 1.37; 95% CI: 1.17-1.60; p-value = 207 

1.1x10
-4

), rheumatoid arthritis (HR = 1.18; 95% CI: 1.09-1.27; p-value = 2.7x10
-5

), and chronic 208 

obstructive pulmonary disease (HR = 1.09; 95% CI: 1.05-1.14; p-value = 6.3x10
-5

; 209 

Supplementary Figure S10 and Supplementary Table S14). 210 

 211 

Discussion 212 
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Type 1 diabetes impacts millions of individuals worldwide, causing acute and chronic 213 

complications that profoundly deteriorate the quality of life and increase mortality rates 
1-6

. 214 

Managing type 1 diabetes typically requires insulin injections for glycemic control, resulting in a 215 

significant socioeconomic burden 
23, 24

. There is an urgent need for innovative strategies to 216 

prevent, intervene early, and manage the disease. In this study, we conducted MR-guided 217 

target discovery to systematically examine circulating proteins that may play a crucial role in 218 

the etiology of type 1 diabetes. We also identified candidate tissues and cell types enriched of 219 

target protein-coding gene expression. Our study presents a curated selection of candidate 220 

proteins with the potential as biomarkers or drug targets. 221 

 222 

Our integrative proteogenomic analyses prioritized four target proteins, CTSH, IL27RA, SIRPG, 223 

and PGM1. Increased circulating abundances of these proteins were predicted to increase the 224 

risk of type 1 diabetes. Specifically, CTSH (cathepsin H) is a lysosomal cysteine protease involved 225 

in the degradation of lysosomal proteins 
25, 26

. CTSH in pancreatic islets may affect � cell 226 

survival and insulin secretion by modulating apoptotic signaling pathways and transcription 227 

factors 
27, 28

. The genomic locus within the CTSH gene has previously been associated with the 228 

risk of type 1 diabetes 
29, 30

. In this study, we observed that CTSH expression was enriched in B 229 

cells and myeloid cells, implying a potential role of CTSH in antigen presentation and antibody-230 

mediated immunity. Furthermore, although the genetic risk may be conferred by gene 231 

expression, which may be mediated by DNA methylation 
31

, colocalization between the genetic 232 

associations with multiple isoforms of CTSH in the whole blood and the risk of type 1 diabetes 233 

suggests that alternative splicing of CTSH may contribute to the disease pathogenesis. In the UK 234 

Biobank, increased circulating CTSH abundance was linked to higher mortality and risks of 235 

common autoimmune diseases. Importantly, while the observational association analyses did 236 

not encompass type 1 diabetes as an outcome due to the limited number of cases, increased 237 

circulating CTSH abundance was associated with an increased risk of type 2 diabetes, defined 238 

based on physician-made diagnosis. This suggests the possibility of misdiagnosing type 1 239 

diabetes as type 2 diabetes 
3, 32, 33

 within the adult population of the UK Biobank. Increased 240 

CTSH expression has also been associated with early-onset type 1 diabetes and rapid decline of 241 

� cell function in other cohort studies 
27, 34, 35

. Taken together, our findings strongly encourage 242 

functional follow-up studies to explicate the role of CTSH in type 1 diabetes and to evaluate its 243 

potential as a biomarker or drug target. 244 

 245 

IL27RA (alpha subunit of the interleukin 27 receptor) binds to IL27, a heterodimeric cytokine 246 

composed of IL27p28 and EBI3 subunits 
36, 37

. IL27 has both pro-inflammatory functions by 247 

mediating T-helper 1 cell differentiation and increasing interferon � production 
36-38

, and anti-248 

inflammatory functions by inhibiting pro-inflammatory cytokines in T cells and promoting the 249 

production of anti-inflammatory cytokines 
39-41

. However, due to the lack of colocalization 250 

evidence and potential horizontal pleiotropic effects, we were unable to determine the effect 251 

of IL27. On the other hand, the association between circulating abundance of IL27RA and the 252 

risk of type 1 diabetes was substantiated by multiple lines of evidence. The results of our 253 

enrichment analyses align with the involvement of IL27RA in cell-mediated and antibody-254 

mediated immunity by mediating IL27 signaling in various immune cells 
36

. While the functions 255 

of IL27RA and IL27RA-mediated IL27 signaling in type 1 diabetes remain to be explored, we 256 
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posit that IL27 and IL27RA may regulate both innate and adaptive immune responses that 257 

attack the pancreatic � cells.  258 

 259 

SIRPG (signal-regulatory protein �) is a receptor protein involved in the negative regulation of 260 

receptor tyrosine kinase-coupled signaling processes 
42

. It has been suggested that SIRPG 261 

signaling may play an immunoregulatory role in maintaining peripheral immune tolerance and 262 

preventing autoimmunity 
43

. In line with existing studies, our analyses demonstrated that SIRPG 263 

expression was enriched in T cells and natural killer cells, where blocking of the SIRPG-CD47 264 

interaction has been found to inhibit superantigen-induced T cell proliferation 
42, 44, 45

. These 265 

findings imply the potential significance of investigating SIRPG as a T cell-specific target for type 266 

1 diabetes, although it should be noted that the genetic instrument for circulating SIRPG 267 

abundance was subject to a moderate risk of horizontal pleiotropy due to its associations with 268 

the expression, splicing, or translation of neighboring genes encoding other signal-regulatory 269 

proteins, SIRPB1, SIRPB2, and SIRPD. 270 

 271 

PGM1 (phosphoglucomutase 1) is an enzyme that catalyzes the reversible conversion between 272 

glucose 1-phosphate and glucose 6-phosphate 
46

, which are important intermediates in glucose 273 

metabolism. The Mendelian disorders of PGM1 deficiency can result in congenital disorder of 274 

glycosylation 
47

. Given the crucial functions of insulin in the uptake of glucose into cells and the 275 

regulation of glycogen synthesis and breakdown 
48

, we hypothesize that PGM1 may play a role 276 

in type 1 diabetes by affecting the balance between glycogen storage and glucose utilization, 277 

particularly in muscle and liver tissues. Notably, previous GWASs have suggested that the 278 

PGM1-increasing allele of the genetic instrument, which increases the risk of type 1 diabetes, 279 

may have a marginal protective effect against type 2 diabetes 
49, 50

, although this association 280 

was not genome-wide significant. Elucidating the precise involvement of PGM1 in diabetes 281 

mellitus necessitates further efforts. 282 

 283 

Our study has several strengths. First, we harnessed large-scale GWASs to increase the power 284 

of MR and colocalization analyses. Specifically, we obtained genetic instruments for circulating 285 

protein abundances from a large-scale proteo-genomic study with the highest coverage of the 286 

circulating proteome to date, and conducted target discovery utilizing the largest meta-analysis 287 

of type 1 diabetes GWASs. Notably, the association between circulating SIRPG abundance and 288 

the risk of type 1 diabetes was identified in a previous MR study but was not supported by 289 

colocalization evidence 
10

, which is likely attributable to the smaller sample sizes of GWASs 
51

. 290 

This advantage is also evident when compared to GTEx cis-eQTL-based analyses, which had 291 

much smaller sample sizes and failed to demonstrate colocalization evidence in most of the 292 

candidate tissues. Second, after cis-pQTL-facilitated MR analyses, we subjected the genetic 293 

instruments to rigorous scrutiny, ensuring that the no horizontal pleiotropy assumption was not 294 

violated for prioritized proteins. Third, we bolstered the validity of our findings by replicating 295 

our results using additional resources. Importantly, analyses using the genetic instruments 296 

identified in the UKB-PPP study failed to replicate the association between circulating CCL25 297 

abundance and type 1 diabetes risk, highlighting the potential influence of protein detection 298 

platform and study population. These analyses collectively mitigated the risk of false positive 299 

results. Although deprioritized target proteins, such as IL15RA 
52, 53

 and ERBB3 
54, 55

, have been 300 
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previously linked to the risk of type 1 diabetes in different contexts, substantiating whether 301 

these associations truly denote causal effects requires future efforts. Fourth, based upon MR-302 

prioritized target proteins, we further identified candidate tissues and cell types where the 303 

target protein-coding gene expression was enriched. This characterization yielded valuable 304 

insights into the biological relevance, disease mechanisms, as well as the therapeutic potential 305 

of these target proteins. 306 

 307 

Our study has important limitations. First of all, our findings have not been experimentally 308 

validated, which should be the focus of follow-up studies. Second, our analyses were restricted 309 

to populations predominantly of European ancestry. Given the substantial variability in the 310 

prevalence and strong heterogeneity of type 1 diabetes across different populations in different 311 

countries 
3-5

, it is important to exercise caution when generalizing our findings to populations of 312 

non-European ancestries. Third, it should be noted that all cis-pQTLs used in this study were 313 

identified in middle-aged and older adults, whereas the type 1 diabetes GWASs included 314 

patients who were more likely to develop the disease at a younger age. However, we posit that 315 

the cis-genetic regulation of circulating protein abundances is likely consistent across age 316 

distributions. Nevertheless, we strongly advocate for similar analyses to be conducted across 317 

populations of diverse ancestries and demographic characteristics. Fourth, although existing 318 

protein detection platforms have enabled the measurement of circulating abundances for 319 

nearly 5,000 proteins, the possibility remains that potential target proteins lack valid genetic 320 

instruments. Genetics-guided target discovery based on proteo-genomic studies featuring 321 

increased sample sizes and enhanced coverage of the circulating proteome should be pursued 322 

in the future. Last but not least, due to the strong variability and highly intricate LD structure of 323 

the MHC region, we did not prioritize MHC gene-coded proteins, despite significant associations 324 

identified through MR. Considering the well-established role of the MHC region in the 325 

pathogenesis and progression of type 1 diabetes, future efforts should be dedicated to 326 

elucidating the functional impacts of these proteins. 327 

 328 

In conclusion, through integrative proteogenomic analyses, we identified significant 329 

associations between circulating protein abundances and the risk of type 1 diabetes, which 330 

further suggested possible causal effects of CTSH, IL27RA, SIRPG, and PGM1. The roles of CTSH, 331 

IL27RA, and SIRPG in the immune system are underscored, with enrichment of CTSH expression 332 

in B cells and myeloid cells, and SIRPG expression in T cells and natural killer cells. In contrast, 333 

PGM1 may influence the risk of type 1 diabetes through its impact on glucose metabolism, 334 

particularly in muscle and liver tissues. Exploration of these target proteins as biomarkers or 335 

viable candidates for drug targeting strategies while considering the candidate tissues and cell 336 

types should be warranted in the context of type 1 diabetes. 337 

 338 

  339 
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Online Methods 340 

Genome-wide association study of circulating protein abundances 341 

Genetic associations with circulating protein abundances were assessed in the Fenland study 342 

based on 10,708 unrelated European ancestry individuals 
12

. Details of this study have been 343 

described previously 
12, 56

. Abundances of 4,775 proteins and protein complexes from plasma 344 

samples were measured using the SomaLogic SomaScan v4 assay, which includes 4,979 distinct 345 

SOMAmer reagents. GWAS was conducted for each SOMAmer protein target, referred to as 346 

“protein” hereinafter. The circulating abundances underwent rank-based inverse normal 347 

transformation after regressing out the effects of age, sex, test site, and the first ten genetic 348 

principal components 
12

. Conditional and joint (COJO) analyses 
57

 were performed to identify 349 

conditionally independent lead variants with a p-value < 1.0x10
-11

, which represented the 350 

Bonferroni-corrected genome-wide significance threshold. Cis-pQTL variants were defined for 351 

each protein as conditionally independent lead variants located within 500 kb away from the 352 

gene body of the protein-coding gene.  353 

 354 

Genome-wide association study of type 1 diabetes 355 

Genetic associations with type 1 diabetes risk were assessed in a meta-analysis of GWASs by 356 

Chiou et al. including up to 18,942 patients and 501,638 controls predominantly of European 357 

ancestry from nine cohorts 
58

. Details of the participating cohorts and the meta-analysis have 358 

been described previously 
58

. There was no known overlap between participants of the Fenland 359 

study and participants of this meta-analysis. 360 

 361 

Mendelian randomization and sensitivity analyses 362 

Two-sample MR was performed based on GWAS summary statistics to test associations 363 

between the genetically predicted circulating abundance of each protein and type 1 diabetes 364 

risk. Cis-pQTL variants identified in the Fenland study were used as genetic instruments. Trans-365 

genetic variants distal to the protein-coding genes likely act on other genes, thus to mitigate 366 

the risk of horizontal pleiotropy, they were not used. If a cis-pQTL variant was unavailable in the 367 

type 1 diabetes GWAS summary statistics, we attempted to identify a proxy as the genetic 368 

instrument using the LDlink R package 
59

. The proxy should be in high linkage disequilibrium (LD; 369 

r
2
 > 0.8) with the cis-pQTL variant based on the LD reference panel consisting of non-Finnish 370 

European ancestry populations in the 1000 Genomes Project phase 3 
60

. GWAS summary 371 

statistics for genetic instruments were harmonized with forward strand alleles inferred using 372 

allele frequency information. Palindromic variants with high minor allele frequency (MAF > 0.42) 373 

were discarded to avoid allele mismatches. 374 

 375 

Wald ratio estimates were derived for proteins with only one cis-genetic instrument, while 376 

inverse variance weighted estimates were derived for proteins with two or more cis-genetic 377 

instruments 
61, 62

. Associations with a p-value < 3.2x10
-5

 were considered significant, 378 

representing the Bonferroni-corrected significance threshold to account for 1,565 tests. This 379 

significance threshold may be overly conservative due to possible correlation and functional 380 

relevance between proteins, but should effectively control the false positive rate. 381 

 382 
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For significant associations where the protein abundances were instrumented using three or 383 

more cis-genetic instruments, we conducted sensitivity analyses using the weighted median, 384 

penalized weighted median, weighted mode, and MR-Egger methods 
61-64

. An association was 385 

considered robust to invalid instruments if these different methods yielded estimates with a 386 

consistent effect direction and magnitude. A significant MR-Egger intercept (p-value < 0.05) 387 

would indicate existence of directional horizontal pleiotropy 
64

. Furthermore, we calculated the 388 

F-statistic for each test, where an F-statistic < 10 would indicate a risk of weak instrument bias 389 
65

. MR analyses were conducted using the TwoSampleMR R package version 0.5.6 
66

. 390 

 391 

Colocalization analyses 392 

While most genetic instruments are typically not associated with confounders of the exposure-393 

outcome relationship, MR may be confounded by LD, where two genetic variants separately 394 

influence the exposure and the outcome through different mechanisms but are correlated with 395 

each other through LD 
67

. Colocalization analyses have been widely used to assess whether the 396 

exposure and the outcome share the same causal genetic variants, in order to guard against 397 

such confounding effects 
67

.  398 

 399 

For significant associations, we performed colocalization analyses using PWCoCo 
16

, leveraging 400 

GWAS summary statistics of all variants located within 500 kb away from the cis-genetic 401 

instruments, and an LD reference panel constructed using 5,000 randomly selected unrelated 402 

European ancestry individuals from the UK Biobank 
68

. PWCoCo builds upon the classical 403 

algorithm coloc 
69

, but allows for multiple causal variants in the same genomic region through 404 

an implementation of COJO analyses for the exposure and the outcome separately, and 405 

pairwise colocalization analyses of conditionally independent signals 
16, 57

. We used default 406 

priors of PWCoCo, i.e. p1 (prior probability of the exposure having a causal variant) = p2 (prior 407 

probability of the outcome having a causal variant) = 1.0x10
-4

, and p12 (prior probability of the 408 

exposure and the outcome sharing the same causal variant) = 1.0x10
-5

. A colocalization 409 

probability (PP.H4) > 80% was considered strong evidence of colocalization, while a PP.H4 > 50% 410 

was considered suggestive evidence of colocalization. We excluded proteins whose coding 411 

genes map to the major histocompatibility complex (MHC) region due to the strong variability 412 

and highly intricate LD structure. 413 

 414 

Annotation of genetic instruments and phenome-wide association study 415 

To further evaluate potential horizontal pleiotropic effects, we obtained variant-to-gene (V2G) 416 

annotations 
70

 and phenome-wide associations from publicly available GWASs in Open Targets 417 
71, 72

 (retrieved July 1, 2023) for each genetic instrument. Specifically, the V2G scores were 418 

derived from a machine learning model trained to distinguish true causal genes from 419 

neighboring genes in the same genomic region 
70

. Therefore, the V2G scores can be a 420 

quantitative measure of the functional connection between a variant and a gene.  421 

 422 

We considered a genetic instrument to be subject to a high risk of horizontal pleiotropy if the 423 

gene with the highest V2G score paired with this variant was not the target protein-coding gene. 424 

Furthermore, a genetic variant was considered to be subject to a moderate risk of horizontal 425 

pleiotropy if it had been associated with the expression, splicing, or translation of one or more 426 
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genes in proximity other than the target protein-coding gene. Additionally, variants 427 

demonstrating associations with other established risk factors of type 1 diabetes were also 428 

considered to have a moderate risk of horizontal pleiotropy. 429 

 430 

Replication of findings 431 

Significant associations that were supported by strong or suggestive colocalization evidence 432 

were replicated in two ways. First, we repeated MR analyses for these proteins using cis-genetic 433 

instruments identified in the deCODE study 
13

 and the UK Biobank Pharma Proteomics Project 434 

(UKB-PPP) study 
73

. The deCODE study measured circulating plasma abundances of 4,907 435 

SOMAmer protein targets in 35,559 individuals from Iceland, employing the same SomaLogic 436 

SomaScan v4 assay as in the Fenland study 
13

. However, the genetic architecture underlying 437 

circulating protein abundances and LD structures in the Icelandic population may differ from 438 

those in other European ancestry populations due to extensive genetic drift 
74

. On the other 439 

hand, the UKB-PPP study measured plasma circulating abundances of 2,923 protein analytes 440 

using the Olink Explore 1536 platform 
73

. The discovery of pQTLs were conducted based on 441 

35,571 European ancestry individuals. This cohort overlapped with participants in the meta-442 

analysis of type 1 diabetes GWASs by Chiou et al 
58

. 443 

 444 

Second, we repeated MR analyses for these proteins leveraging a different meta-analysis of 445 

type 1 diabetes GWASs by Robertson et al. 
75

, using cis-genetic instruments identified in the 446 

Fenland study. This meta-analysis comprised up to 16,159 patients, 25,386 controls, and 6,143 447 

trio families with an affected offspring and both parents, including 7,117 participants of non-448 

European (African, East Asian, or admixed) ancestries 
75

. Although participants in this meta-449 

analysis partially overlapped with those in the primary analysis by Chiou et al. 
58

, genotyping in 450 

this study by Robertson et al. was conducted using the Illumina ImmunoChip, which provided 451 

dense coverage in 188 immune-relevant genomic regions, but sparse coverage in other regions 452 
75

. 453 

 454 

Quantification of tissue-specific gene expression  455 

We investigated the tissue specificity of prioritized proteins leveraging gene expression profiles 456 

from the Genotype-Tissue Expression (GTEx) project version 8 
76

. Following previous studies 
77, 

457 
78

, we quantified the enrichment of gene expression in each of the 54 non-diseased tissue sites 458 

across approximately 1,000 individuals. Specifically, we first retained genes that were detected 459 

in at least 20% of the samples with at least 5 read counts. We performed per-tissue trimmed 460 

mean of M-values (TMM) normalization using the edgeR R package 
79

. Then, we calculated the 461 

median TMM value across individuals for each gene in each tissue. Subsequently, within each 462 

tissue, we standardized the across-individual median TMM values, using the median and the 463 

median absolute deviation across genes. Finally, for each gene, the tissue-specific enrichment z-464 

scores were calculated by standardizing the within-tissue standardized across-individual median 465 

TMM values, using the median and the median absolute deviation across tissues. Tissues with 466 

an enrichment z-score > 10 were considered to be enriched of expression of the corresponding 467 

gene. 468 

 469 

Genetic effects on tissue-specific gene expression 470 
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Next, in each tissue that demonstrated enrichment of gene expression, we tested colocalization 471 

of the genetic associations with gene expression and splicing patterns and the risk of type 1 472 

diabetes for each target protein-coding gene. Genetic associations with mRNA abundances and 473 

isoform abundances were obtained respectively from the cis-expression and cis-splicing 474 

quantitative trait loci (eQTL and sQTL) analyses conducted by the GTEx Consortium 
76

. 475 

Colocalization analyses were performed using PWCoCo with default priors as described above 
16

. 476 

 477 

Single-cell gene expression profiling 478 

Since tissues that play a significant role in the immune system were implicated, we further 479 

investigated whether target protein-coding genes were enriched in specific immune cell types. 480 

We obtained single-cell gene expression profiles from a cross-tissue analysis that included high-481 

quality 329,762 immune cells from 12 donors 
80

. Details of this study, including sample 482 

collection, single-cell RNA sequencing and paired VDJ sequencing for T cell and B cell receptors, 483 

and data processing, have been described previously 
80

. In this study, manual curation was 484 

conducted after automated annotation, using existing cell type-specific gene expression 485 

signatures to identify 45 cell types. These cell types were classified as: B cell compartment, T 486 

cell compartment (predominantly T cells and natural killer cells), and myeloid compartment 487 

(predominantly macrophages, monocytes, and dendritic cells) 
80

. We evaluated the normalized 488 

gene expression level of each target protein-coding gene in each cell and compared the 489 

distribution of gene expression levels between different cell types. 490 

 491 

Clinically relevant variants affecting target protein-coding genes 492 

To assess whether the prioritized proteins may be associated with other human diseases, we 493 

queried the ClinVar database (June 9
th

, 2023) 
81

 to identify Mendelian disorders that are caused 494 

by variants affecting the target protein-coding genes. Mendelian disorder-causing variants must 495 

be pathogenic or likely pathogenic variants with at least one submitter providing assertion 496 

criteria, which should not have conflicting interpretations.  497 

 498 

Observational associations with incident disease outcomes in the UK Biobank 499 

Finally, we obtained observational association test statistics from a recent study to evaluate 500 

whether measured circulating protein abundances could predict future disease outcomes in the 501 

UK Biobank over 16 years of follow-up 
82

. The associations between each protein and mortality 502 

and 23 incident morbidities were estimated using Cox proportional hazards models, based on 503 

49,234 individuals predominantly of European ancestry, adjusted for the fixed effects of age 504 

and sex, or for age only in the case of sex-specific diseases 
82

. 505 

  506 
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Outcome – type 1 diabetes
Chiou et al. GWAS
N = 18,942 cases & 501,638 controls

Exposure – circulating protein abundances
Fenland study
cis-pQTL for 1,565 proteins

Mendelian randomization Tissue-specific gene expression 
49 GTEx tissues

Cell type-specific gene expression
329,762 immune cells

?

Assessment of colocalization
Evaluation of possible bias due to LD

Annotation and PheWAS
Evaluation of horizontal pleiotropy

Replication of findings
Instruments for targets: deCODE study & UKB-PPP study
Summary statistics for outcome: Robertson et al. GWAS

Data harmonization Target protein discovery and verification Target tissue & cell type identification

Figure 1. Overview of study. Mendelian randomization (MR) was conducted leveraging genome-wide association
studies (GWASs) of circulating protein abundances in the Fenland study as well as a meta-analysis of type 1 diabetes
GWASs. Colocalization analyses and evaluation of horizontal pleiotropy through annotation and phenome-wide
association study (PheWAS) were conducted to verify MR assumptions. Significant associations were replicated using
other proteomic studies and another meta-analysis of type 1 diabetes GWASs. Gene expression enrichment analyses
were conducted to identify potential candidate tissues and cell types.
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Figure 2. Target protein prioritization. Associations between circulating protein abundances and type 1 diabetes risk
that withstood Bonferroni correction of multiple testing are illustrated. Target proteins are ordered by posterior
probability of colocalization (Supplementary Table S4). A posterior probability of colocalization > 80% was considered
strong evidence of colocalization, while a posterior probability of colocalization > 50% was considered suggestive
evidence of colocalization. Risk of horizontal pleiotropy was assessed using V2G scores for quantifying functional
connections between genetic instruments and target protein-coding genes, as well as phenome-wide associations
for exploring potential pleiotropic pathways (Methods). Associations supported by strong or suggestive
colocalization evidence were replicated using additional resources (Methods). Blank space indicates that no genetic
instrument or proxy was identified to replicate the association. Target proteins were prioritized based on strong or
suggestive colocalization evidence, the absence of a high risk of horizontal pleiotropy, and the consistent replication
of associations with the risk of type 1 diabetes.
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Figure 3. Colocalization of genetic associations with circulating abundances of prioritized target proteins and the risk
of type 1 diabetes. The lead cis-genetic instruments are indicated. Genetic variants located in a ±500kb window
centered around each genetic instrument are plotted with their significance in respective studies, and colored by the
magnitude of correlation (linkage disequilibrium, LD r2) with the corresponding instrument. For each target protein,
the posterior probability of colocalization (PP.H4) and the posterior probability of co-existence of two distinct causal
variants (PP.H3) are indicated. The UCSC known gene tracks are presented, with gene models colored by their
respective strands.
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Figure 4. Quantification of tissue-specific gene expression. Gene expression profiles were obtained from the
Genotype-Tissue Expression (GTEx) project version 8 across 54 tissue sites. Gene expression levels were normalized
to account for between- and within-sample variation (Methods). For each gene, the enrichment z-scores represent
standardized median gene expression levels across all tissues. Red dashed line indicates an arbitrary threshold, z-
score > 10, for determining significance of enrichment.
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A

B C D

Figure 5. Single-cell gene expression profiles of CTSH, IL27RA, and SIRPG in immune cells. (A) Visualization of 329,762
immune cells based on Uniform Manifold Approximation and Projection (UMAP) of their transcriptomes. Cells are
colored by manually curated cell types. Red colors: B cell compartment; Green colors: myeloid compartment; Purple
colors: miscellaneous cell types; Blue colors: T cell compartment. Descriptions of cell types are available in
Supplementary Table S11. Normalized gene expression levels of (B) CTSH, (C) IL27RA, and (D) SIRPG are visualized.
UMAP coordinates, cell type annotations, and normalized gene expression levels were obtained from the Single Cell
Portal (https://singlecell.broadinstitute.org/single_cell) under the accession ID SCP1845.
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