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Abstract

Malaria remains a global health problem despite the many attempts to control and eradicate
it. There is an urgent need to understand the current transmission dynamics of malaria and to
determine the interventions necessary to control malaria. In this paper, we seek to develop a
fit-for-purpose mathematical model to assess the interventions needed to control malaria in an
endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread
of malaria in the presence of interventions. A sensitivity analysis of the model is performed to
determine the relative impact of the model parameters on disease transmission. We explore how
existing variations in the recruitment and management of intervention strategies affect malaria
transmission. Results obtained from the study imply that the discontinuation of existing inter-
ventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions
is imperative for malaria elimination and eradication. In a scenario study aimed at assessing
the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized
individual measures, our findings indicate that increased LLINs utilization and extended IRS cov-
erage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria
prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our
study demonstrates the impact of localized preventive measures in mitigating the spread of malaria
when compared to the absence of interventions.

malaria, intervention programs, mathematical modelling, sensitivity analysis

1 Introduction

Malaria remains a global health concern that threatens the lives of many children and adults each year.
It has proven to be a persistent problem due to the highly adaptive nature of the Plasmodium spp.
parasites and the female Anopheles mosquito vector [1, 2]. Over the past two decades, substantial
headway has been made in reducing the global burden of malaria [3, 4]. These reductions are the
result of political commitment, increased funding, and the wide-scale deployment of effective malaria
control interventions targeting both the human host and the mosquito vector. However, in recent
years progress has stalled and has even reversed in regions with moderate to high transmission. This
rebound is particularly concerning for the most prevalent malaria parasite, Plasmodium falciparum,
which is responsible for the majority of malaria-related deaths globally [5, 6]. To make matters worse,
the COVID-19 pandemic demonstrated how even short-term disruptions in routine malaria interven-
tions can impede progress in achieving elimination in malaria-endemic countries [7, 8].

Current malaria control strategies (or measures) include interventions that target the vector popula-
tion and antimalarial therapeutic measures that target the human host population. Vector control
strategies such as insecticide treated nets (ITNs)/long-lasting insecticidal nets (LLINs) and indoor
residual spraying (IRS) with insecticides are key elements of current malaria control programs due to
their effectiveness at interrupting transmission by reducing the population size of the mosquito vector
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[9]. Despite their historical success, these measures have drawbacks such as limited coverage (i.e.,
only target indoor transmission), being costly to implement and maintain, and potentially leading to
the development of insecticide resistance in mosquitoes [10, 11, 12]. Therapeutic strategies, includ-
ing the treatment of symptomatic infections with artemisinin-based combination therapy (ACTs) and
targeted chemotherapy programs (e.g., intermittent preventive treatment (IPT) and seasonal malaria
chemoprevention (SMC)) seek to reduce the number of infected human hosts, thereby reducing malaria
morbidity and mortality, as well as onward transmission [9]. Unfortunately, these therapeutic measures
have drawbacks like drug resistance and side effects, limiting long-term reliability [13, 14]. Given the
limited budget available for malaria control, it becomes essential to optimize the allocation of resources
and select interventions that provide the most significant impact. Thus, if malaria is to be eliminated
in an endemic area, there is a need to adopt several strategic interventions simultaneously to avert
both outdoor and indoor malaria transmission, and to curtail transmissions from the infectious human
reservoir [12]. Mathematical modeling can help determine effective malaria interventions by providing
valuable insights into complex disease dynamics and guiding decision-makers in the selection and im-
plementation of the most cost-effective intervention strategies.

Mathematical modelling is effective in helping to tackle many epidemiological problems such as identify-
ing disease determinants and controlling disease spread [15, 16]. Additionally, mathematical modelling
has proven useful in the evaluation of malaria control programs and in assessing the transmission dy-
namics of infectious diseases amidst interventions [17, 18, 19]. In the study of malaria transmission,
the SHEHIHRH −SMEMIM model has been used widely as a simple yet practical approach to under-
standing the transmission patterns of malaria (and other vector-host infections), adding significantly
to our knowledge of malaria [20, 21, 22, 23, 24, 25, 26]. For instance, Chitnis et al. and Osman et al.
employed the SHEHIHRH − SMEMIM model to examine the transmission dynamics of malaria in a
human population [22, 25, 27]. They found that the rate of infection parameters in both humans and
mosquitoes are the most influential parameters on the basic reproduction number, R0 [25, 27]. Fol-
lowing the results obtained, the authors recommended reducing malaria prevalence with antimalarial
treatment and reducing contact rates with IRS and ITNs/LLINs. Osman et al. also emphasised the
importance of future research focusing on assessing the impact of interventions and conducting disease
control analysis with the SHEHIHRH −SMEMIM model and to date, a notable research gap remains
in this space [25].

In this paper, we employ an extension of the SHEHIHRH − SMEMIM model to consider the impact
of interventions targeting the vector, such as IRS and ITNs/LLINs on the spread of malaria, specif-
ically focusing on the transmission of P. falciparum, while factoring into the model the transmission
characteristics of partial immune individuals. These are individuals who have acquired some level of
protection after repeated exposure to malaria parasites but have not developed full immunity that
would completely prevent infection. We assume that when these partially immune individuals become
infected, they remain asymptomatic but can still transmit the malaria parasite, thus contributing to
the continued transmission of malaria. This paper is structured as follows; in Section 2, a deterministic
transmission model with separate transmission routes for non-immune and partially immune individu-
als is constructed. We formulate the basic reproduction number of the model and conduct a sensitivity
analysis on the model parameters in Sections 3.1 and 3.2. In Section 4, we assess the impact of in-
tervention strategies or measures on malaria transmission. Finally, we provide recommendations for
improving malaria control programs, based on our results and discuss the implications of our findings
in Section 5.

2 Model Formulation

Building on the disease transmission models of Yang et al. and Osman et al., we develop a malaria
transmission model that takes into account transmission from both partial and non-immune infectious
humans [17, 25]. We extend the SHEHIHRH − SMEMIM model by splitting the susceptible and
exposed human classes into two sub-classes each as similarly done by ul Rehman et al. [28], to
capture the transmission properties of both non-immune and partially immune individuals. The human
population therefore has six compartments, see Figure 1;

• SH1: non-immune, uninfected individuals susceptible to symptomatic infection,
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• SH2: partially immune, uninfected individuals, susceptible to re-infection (asymptomatic),

• EH1: non-immune individuals in latent phase of symptomatic infection,

• EH2: partially immune individuals in latent phase of asymptomatic infection,

• IH : symptomatic infectious individuals,

• AH : asymptomatic infectious individuals.

We divide the mosquito population into (SM ) susceptible, (EM ) exposed and (IM ) infected mosquitoes.

We consider the impact of intervention strategies to provide valuable insights and evidence that can
guide decision-making in reducing malaria transmission [17, 18]. We define intervention programs or
strategies as measures that aim to lower the prevalence of malaria in an endemic region. To optimize
the level of intervention programs needed for the elimination of malaria, we explore the effect of in-
tervention programs (P ) on the transmission of malaria. See Figure 1 for a schematic of the model
structure. In the model formulation, we incorporate a constant influx of interventions with rate η.
The influx of interventions is also influenced by the number of symptomatic infectious cases (IH) at
a rate of ξ and the interventions decrease at rate κ. We assume that the availability and usage of
intervention programs, P , affect disease trends by modulating the transmission rate.

The model in Figure 1, governed by the system of ODEs in Equation (1), can be used to assess the
intervention programs necessary for the elimination of malaria in a geographic setting:

Figure 1: A compartmental diagram of the host-vector model. The red dash-dotted lines represent
transmission from infectious humans to susceptible mosquitoes, the red dashed lines represent trans-
mission from infectious mosquitoes to susceptible humans and the blue dotted lines symbolise the effect
of intervention strategies on the transmission of malaria in both host and vector populations. Birth
and death rates are not presented in this figure, though they are accounted for in the model. Refer to
Table 1 for the definitions of the parameters of the model.
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dSH1

dt
= ΛH − βH(P )SH1IM − µHSH1 + σ1SH2, (1a)

dSH2

dt
= τIH + σ2AH − βH(P )SH2IM − (µH + σ1)SH2, (1b)

dEH1

dt
= βH(P )SH1IM − (µH + θI)EH1, (1c)

dEH2

dt
= βH(P )SH2IM − (µH + θA)EH2, (1d)

dIH
dt

= θIEH1 − (τ + ν + µH + γ)IH , (1e)

dAH

dt
= γIH + θAEH2 − (µH + σ2)AH , (1f)

dSM

dt
= ΛM − βM (P )SM (IH + χAH)− µMSM , (1g)

dEM

dt
= βM (P )SM (IH + χAH)− (µM + ω)EM , (1h)

dIM
dt

= ωEM − µMIM , (1i)

dP

dt
= η + ξIH − κP. (1j)

The model formulated in Equation (1) describes how susceptible individuals in SH1 have a population
influx rate of ΛH and are exposed to P. falciparum parasites by an infectious adult female mosquito
during blood meals with a frequency-dependent transmission rate of βH(P ), moving individuals from
SH1 into EH1. After a latent phase in EH1, individuals move into the symptomatic infectious class
(IH) where they either self-recover at rate γ and move into the asymptomatic class (AH) or they
are medically treated at rate τ with prescribed drugs such as ACTs [29, 30], and move into the SH2

compartment. The partially immune yet susceptible individuals in the SH2 compartment consist of
treated individuals from the IH class with noninfectious levels of the Plasmodium parasites due to
treatments received, and asymptomatic persons with infection-induced immunity who transition into
this class from the AH class at rate σ2. Individuals here can either move back into SH1 by the loss of
immunity at rate σ1 or move into EH2 by being re-exposed to P. falciparum parasites. From EH2 indi-
viduals become infectious with asymptomatic malaria (AH) at rate θA. The model takes into account
the human natural death rate in each class as µH as well as mortality due to clinical infection at rate ν.

In the mosquito population, susceptible mosquitoes are exposed to the malaria parasites at a frequency-
dependent transmission rate of βM (P ) via transmission from both symptomatic and asymptomatic
infectious humans and exposed mosquitoes become infectious at rate ω. Transmissions from asymp-
tomatic infectious humans are scaled by a factor, χ, such that χ ∈ [0, 1) since asymptomatic humans
infect mosquitoes at a lower rate than symptomatic infectious humans [31, 32, 33].

The intervention class of the model, P , affects the transmission rate functions of the model. Thus, in-
terventions considered here can capture the impact of vector control strategies (IRS and ITNs/LLINs),
intermittent preventive treatment (IPTs) with antimalarials, individual measures (environmental pre-
ventive measures) such as clearing mosquito breeding sites and/or reducing exposure to mosquitoes
(e.g., personal repellents, insect coils and room sprays), and other approaches that can interfere with
malaria transmission [34, 35]. The intervention class modelled here does not consider other malaria
therapeutic measures like ACTs as they affect other aspects of the model.

We further assume that:
(H1) All parameters are non-negative.
(H2) The frequency-dependent transmission rate functions are defined as decreasing functions of the
intervention programs P ;

βH(P ) =
δ

NH

ψH

bP + 1
, βM (P ) =

δ

NH

ψM

cP + 1
,
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where b and c are positive-valued constants, NH is the total human population, (NH = SH1 + SH2 +
EH1 +EH2 + IH +AH), δ is the biting rate, and ψH and ψM are the infection success probabilities in
humans and mosquitoes respectively.
(H3) The transmission rate functions are decreasing functions of P (i.e. β′

∗(P ) < 0) and P takes values
in [0, Pmax] where

Pmax =
η + ξ ΛH

µH

κ
.

3 Model Analysis

3.1 Formulation of Basic Reproduction Number, R0

To better understand the proposed framework, we evaluate the basic reproduction number which quan-
tifies new cases generated near the disease-free equilibrium (DFE). The basic reproduction number is
formulated using the next generation method established by Diekmann et al., and Van den Driessche
and Watmough [36, 37, 38]. Refer to Appendix A for the detailed derivation of the basic reproduction
number of the model.

The basic reproduction number of the model can be formulated as,

R0 =
√
K1 +K2, (2)

where

K1 =
βH( ηκ )

ΛH

µH
βM ( ηκ )

ΛM

µM
θIω

µM (µM + ω)(µH + θI)(τ + ν + µH + γ)
, (3)

K2 =
χβM ( ηκ )

ΛM

µM
βH( ηκ )

ΛH

µH
θIγω

µM (µM + ω)(µH + θI)(τ + ν + µH + γ)(µH + σ2)
. (4)

From Equation (2), we identify two transmission links;

• K1, which represents transmission from individuals in IH , and

• K2, which reflects transmission from self-recovered individuals in AH .

Transmission from infected mosquitoes is accounted for in each transmission pathway. In the absence
of intervention programs (P = 0), the basic reproduction number becomes:

R∗
0 =

√
K∗

1 +K∗
2 , (5)

where

K∗
1 =

βH(0)ΛH

µH
βM (0)ΛM

µM
θIω

µM (µM + ω)(µH + θI)(τ + ν + µH + γ)
, (6)

K∗
2 =

χβM (0)ΛM

µM
βH(0)ΛH

µH
θIγω

µM (µM + ω)(µH + θI)(τ + ν + µH + γ)(µH + σ2)
. (7)

Thus,
R0 ≤ R∗

0, (8)

since the transmission rate functions are decreasing functions of P , reflecting the impact of intervention
programs to reduce the spread of malaria.

We note that R0 does not account for transmission from re-infections, which is due to the fact that
there are no individuals with partial immunity at the DFE.
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Table 1: Definition of the model parameters.

Parameter Description Baseline values References
ΛH influx rate of susceptible humans 0.235 persons/day [39]
ΛM influx rate of susceptible mosquitoes 26.7 mosquitoes/day [39]
δ mosquito biting rate 1/ day [39]

ψH
probability of transmission from infectious
mosquito to susceptible human during bite

0.22 [40, 39]

ψM
probability of transmission from infectious
human to susceptible mosquito during bite

0.24 [40, 39]

µH natural death rate of humans 4.5× 10−5 /day [40, 39]
µM natural death rate of mosquitoes 0.0477 /day [40, 39]

τ
treatment rate of symptomatic infectious
humans

0.08 /day [39]

ω latency rate in mosquitoes 1/9 /day [41, 42]

γ
average untreated symptomatic infection duration
rate in humans

0.08 /day [40, 39]

ν disease induced mortality rate of humans 0.08 /day [40, 39]
χ relative infectiousness of asymptomatic humans 0.8 -
η influx rate of intervention programs 0.3/day -
κ decay rate of intervention programs 0.04/day -

ξ
growth rate of programs stimulated by
symptomatic infections

0.0025/day -

b
constant coefficient of P in the human
transmission rate function

0.5 -

c
constant coefficient of P in the vector
transmission rate function

0.4 -

θI latency rate in non-immune humans 1/15 /day [30]
θA latency rate in partially immune humans 1/20 /day [39]

σ1
immunity waning rate of partially immune
humans

0.01 /day [40, 39]

σ2 recovery rate from asymptomatic infectiousness 0.01 /day [40, 39]

3.2 Sensitivity Analysis on R0

We conduct a sensitivity analysis onR0 to obtain qualitative information on how the model parameters
affect R0 by employing the normalized forward index, ζ of R0 for a parameter k, [43] as

ζR0

k =
∂R0

∂k
· k

R0
.

We compare the sensitivity index of the parameters on R0 and R∗
0 in Equations (2) and (5), and

observe that the normalised forward index, ζ of both R0 and R∗
0 is the same for all parameters except

for b, c, η and κ, which are parameter related to the interventions class P as R∗
0 is formulated in the

absence of intervention strategies. The results obtained are presented in Table 2.
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Table 2: Sensitivity index of the model parameters on R0 and R∗
0.

Parameters Sensitivity index on R0 and R∗
0

δ 1
ψH 0.5
ψM 0.5
ΛM 0.5
ω µM

2(µM+ω) > 0

χ χγ
2(1+χγ) > 0

θI
µH

2(µH+θI)
> 0

γ γ[χ(τ+ν+µH)−1]
2(τ+ν+µH+γ)(1+χγ) > 0

µM − 3µM+2ω
2(µM+ω) < 0

τ − τ
2(τ+ν+µH+γ) < 0

ν − ν
2(τ+ν+µH+γ) < 0

σ2 − σ2

2(1+µH+σ2)
< 0

Interventional Parameters Sensitivity index on R0

κ η[2bcη+(b+c)κ]
2(bη+κ)(cη+κ) > 0

b − bη
2(bη+κ) < 0

c − cη
2(cη+κ) < 0

η −η[2bcη+(b+c)κ]
2(bη+κ)(cη+κ) < 0

Based on Table 2, we deduce that parameters such as the mosquito biting rate (δ), infection success
probabilities (ψH , ψM ) and decay rate of intervention programs (κ), which have positive indices con-
tribute to the initial spread of malaria (in that as the parameter increases, R0 increases). In contrast
the treatment rate of infected persons (τ), interventions recruitment/funding rate (η), and mosquito
death rate (µM ) parameters with negative indices reduce R0. Some model parameters are not included
in Table 2, such as σ1, θA, and ξ, since they do not exert a direct influence on R0, see Equation (2).
Note that we exclude the human birth and death rates from the R0 sensitivity analysis, as these factors
are not directly adjustable in the context of malaria control strategies. The focus is on parameters
that are amenable to intervention, which is more pertinent for policy considerations.

4 Numerical Results

4.1 Local Sensitivity Analysis on R0

We substantiate the parameter sensitivity results in Table 2 by plotting R0 and R∗
0 as a function of

individual parameters in Figure 2. As expected, parameters with positive indices exhibit a positive
impact on both R0 and R∗

0, while conversely, parameters with negative indices have a negative effect.
The difference in impact between R0 and R∗

0 is clear from Figure 2, and indicates that the absence
of intervention programs leads to an increase in the basic reproduction number, which supports the
findings from Equation (8).
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Figure 2: Plots from a local sensitivity (see Equations (2) and (5)) analysis conducted on the model.
In these plots, the blue solid lines illustrate the variations in R0, as individual parameters change,
whereas the red dashed curves illustrate the variations in R∗

0 with respect to the specific parameter
being analyzed, with all other parameters maintained at their baseline values as detailed in Table 1.

4.2 Impact of Variation in Interventions on Malaria

In Figure 3, we present the outcomes of a sensitivity analysis to investigate the combined effect of
changes in η and κ on R0. We observe that the intervention decay rate, κ, has an increasing effect on
R0 whereas the recruitment rate of interventions, η, has an inhibitory effect on R0 which is consistent
with R0 increasing as interventions (P ) increases.
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Figure 3: a. A sensitivity analysis of R0 on the intervention parameters κ and η. The colour bar
represents R0 values ranging from 0 (blue) indicating a negative growth of the disease to 2 (red)
indicating a positive initial disease growth. The subplot a. is derived from the solution to Equation
(2). b. Simulation results comparing the dynamics of infectious human cases from a steady declining
situation (dark blue line), as the recruitment rate of intervention programs is decreased at 100 days
compared to having η = 0 from the start. Four decreasing scenarios of η are considered at 100 days
from η = 2.5 (dark blue line) to η = 0 (dark red line) with κ = 0.17 in all scenarios. Results in subplot
b. are obtained by solving Equation (1) and recording changes in Equations (1e) and (1f) as η varies.

From Figure 3a, we have identified the level of recruitment and decay of intervention measures nec-
essary to prevent malaria outbreaks given the dynamics of transmission in an endemic setting (e.g.
that push R0 < 1). The white region of Figure 3a represents the level required to control initial
malaria transmission, where R0 drops to 1. The blue region represents the region of the parameter
space where malaria is suppressed but achieves a more substantial reduction in R0 than necessary to
suppress outbreaks.

We also perform numerical simulations of the model to investigate how variations in intervention
strategies resulting from decreasing intervention funds and the discontinuation of established strate-
gies affects the number of infectious cases in the human population before and after disease elimination.
Here we classify infectious cases, I, as the sum of symptomatic and asymptomatic infectious humans,
that is, I = IH + AH . We consider a situation where a diminishing trend in malaria cases results in
reduced funds for antimalarial interventions [44, 45]. This behaviour of funding agencies is factored
into the model by reducing the recruitment rate of interventions, η. It is important to clarify that
the concept of funding in this context represents the influx into P , rather than a specific dollar value.
Figure 3b presents the simulation results of the number of infectious humans under different varying
scenarios of η. We observe that as funding for malaria elimination programs decreases, infectious
cases increase. This result was generated under the assumption that when there is a 40% decrease in
infectious cases, stakeholders will consider decreasing funding rates. The scenario where η = 0 after
the initial disease decline, leads to a higher increase in infectious cases, closer to the “no control”
situation with η = 0 from the start. In fact, this scenario with η = 0 after the initial decline will
ultimately hit the same steady state as the “no control” situation. However, maintaining η = 2.5 sees
malaria approach elimination. Thus we can infer from the results of Figure 3b that in order to sustain
a diminishing trend in infectious malaria cases, it is likely necessary to either raise or maintain the
funding rates for intervention recruitment strategies.
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Figure 4: Simulation results exploring how variations in interventions affect infectious trends. a. After-
elimination scenarios on how the management (decay) of intervention strategies can affect infectious
human cases in the first 500 days post-elimination. After elimination, we set η = 0 and consider
four scenarios of κ; κ = 0 (red solid line), κ = 0.1 (blue solid line), κ = 0.3 (blue dashed line) and
κ = 0.5 (blue dotted line). b. The impact of time-varying intervention strategies on malaria-infectious
human cases. The solid black line represents the ideal (baseline) scenario with a constant supply and
decay rate of interventions, the blue line represents results from variations in the recruitment rate of
intervention strategies, η, while the red lines represent simulation results from a corresponding change
in the decay rate of interventions, κ. The changes are chosen such that P , (i.e. P at the DFE) for
each change in η and κ is equal. We consider three scenarios of unsteady intervention strategies from
day 100 and explore further variations in the supply and decay rate of interventions from days 400
and 800. These days are marked by the vertical grey dashed lines. Scenario 1 is marked by the solid
red and blue lines, Scenario 2 by the dashed lines, and Scenario 3 by the dash-dotted lines (specific
details are discussed in the main text). Solution of both subplots a. and b. are obtained by solving
the model system in Equation (1) and recording the specific changes in Equations (1e) and (1f).

To explore the post-elimination prospects of malaria in endemic regions, we conducted numerical ex-
periments using the baseline parameter values in Table 1, setting δ = 3, ψH = 0.5, and ψM = 0.5,
until the time point where the number of infectious individuals, denoted as I, falls below a specified
threshold ϵ. Using the same parameter values and compartmental dynamics observed at that partic-
ular point in time (i.e. we set IH(0) = IH(at elimination) + 1 and maintained the values of all other
compartments), we then introduced a single symptomatic infectious human and varied the decay rate
of the intervention strategies, κ (as per Figure 4a). In reality, malaria elimination is when I = 0, how-
ever in practice we set malaria elimination status at a threshold of ϵ = 0.3 > 0 since we are employing
a continuum model. By varying the value of κ in Figure 4a, we observe an increase in infectious cases
as the decay rates of interventions increases. We thus infer that the discontinuation of intervention
programs after elimination could lead to a reemergence of malaria. Setting κ = 0, however, results in
an unperturbed malaria elimination state even with the introduction of an infectious case as strategies
to control the spread of malaria are still available. Our results suggest that maintenance of established
intervention strategies is, therefore, necessary to maintain elimination status.

In light of the current erratic trends in malaria cases globally, we investigate the dynamics of infectious
cases resulting from a changing supply of funds for malaria intervention programs and the tempera-
mental utilization of interventions by exploring variations in η (∆η) and κ (∆κ) such that P , the P
at the DFE, for each change in η and κ is equal (i.e. P∆η = P∆κ,where P = η

κ ). In each scenario,

a percentage change in P is achieved via a modification of the parameter η or κ. From Figure 4b,
we observe three scenarios (specific details below) of trends in malaria cases resulting from an initial
decrease in P after the baseline scenario at day 100. This is followed by a substantial increase in P
from day 400, aimed at rectifying possible increasing trends of infectious cases. Finally, P is decreased
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after day 800 by a percentage less than the initial decrease at day 100. This is done to incorporate
positive but deficient human behaviour targeted towards malaria elimination into our investigation
of the unsteady trends in malaria cases. We discuss the details of variations considered in all three
scenarios below.

• Scenario 1 (solid lines in red and blue) – After 100 days of the baseline simulation, we decreased
P by 30% and observed similar results for the variations in both κ (red) and η (blue), that
is a general reduction in malaria cases. After day 400, we increase P by 50% and observe
human infectious cases fall closer to elimination levels. With the number of infectious cases
nearing elimination, a subsequent 20% decrease in P at day 800 results in further declines as the
infectious cases present are not enough to cause a rise in cases.

• Scenario 2 (dashed lines in red and blue) – After day 100, we decrease P by 55% which results
in a higher increase in cases for the corresponding change in κ (red) than in η (blue) by day 400.
We then increase P by 75% and observe a similar reduction trend in both η and κ from day 400
to 800. We finally reduce P by 35% after day 800 to observe an increase in both at day 1000.

• Scenario 3 (dash-dotted lines in red and blue) – P is cut by 80% after day 100 which leads to a
substantial rise in malaria cases by day 400. We continue by increasing P by 90% and observe
a sharp decline in malaria cases for the change in η (blue) compared to κ (red) by day 800. We
finally cut P by 50% after day 800 and observe a climb in cases.

In all three scenarios presented in Figure 4b, we show that while the inconsistent supply of funds for
intervention strategies (results for changing η in blue) has a notable impact on infectious cases, the
unsteady maintenance of interventions (results for changing κ in red) has a more pronounced impact
on infection trends.

4.3 IRS, LLINs and Individual Interventions Scenarios

We conduct a scenario study to investigate how IRS, LLINs, and individual (preventive) measures
such as clearing mosquito breeding sites and reducing mosquito exposure [34, 35], affect the patterns
of symptomatic malaria infections. To this effect, the model parameters, η, κ, ξ, b and c, which are
associated with the intervention class were adjusted to reflect the effectiveness of the selected inter-
ventions. Drawing from existing literature, we incorporate into our scenario analysis the intervention’s
implementation, durability and efficiency. Notably, LLINs exhibit an efficiency rate of approximately
77%, decreasing malaria prevalence by about 77%, and have a lifespan of three years [46, 47, 48]. Based
on this information, we set b and c at 0.8 to mimic a similarly high efficacy of LLINs. Note that b and
c are the constant coefficients of P in the human and vector transmission rate functions respectively,
modelled to capture the effect of intervention strategies on the transmission rate functions. We as-
sume a 0.5/day influx rate of LLINs with its usage growing at a rate of 0.08/day/symptomatic case as
stimulated by the number of symptomatic cases (see LLINs column of Table 3). In the study, we also
examine how the extent of LLINs usage (and the duration of IRS coverage) can influence symptomatic
infections. Since the duration of LLINs exceeds the timeline of this study (a year), we model the κ
values of LLINs to majorly capture the extent of LLINs usage. We assume a 90% usage to represent a
high level of usage of bed nets and 40% percent as low usage. This percentage difference was factored
into the choice of κ values since the ratio of P for high usage to P for low usage is 9:4 (refer to LLINs
column of Table 3 (P = η

κ )). IRS, on the other hand, demonstrates high varying efficacy depending
on coverage levels, and a duration ranging from 5 to 8 months contingent upon the specific chemical
employed [49, 50, 51, 52, 53, 54]. In the IRS scenario, we assume a high coverage spraying is done at
the start of the study that on average, decays in 5 months for the short duration case and 8 months
for the long duration case. These durations were translated into the κ values found in the IRS column
of Table 3. The parameters b and c we set at 0.85 to depict a high efficacy rate while η and ξ were set
to 0 in line with the assumption that IRS intervention will not be administered again for the period
of 1 year considered. Conversely, we assume relatively lower efficiency and durability for the localized
individual interventions, see Individual Measures column of Table 3. However, we consider a higher
usage of these individual measures when infectious cases are on the rise, acknowledging the adaptable
nature of human behavior in response to changing disease dynamics [34]. Assuming a yearly recurrent

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.18.23300185doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.18.23300185
http://creativecommons.org/licenses/by-nc-nd/4.0/


implementation of these interventions, we run simulations for 365 days to assess and compare the
effects of these three strategies against the baseline scenario, where no interventions are employed.
In the baseline scenario, we assume that no intervention measures are active during the entire study
period, and we set all related parameters to zero (see No Interventions column of Table 3). In Figure
5, we present a summary of the results of this study and provide the intervention parameter values
utilised in the simulation study in Table 3.

Table 3: Intervention parameter values utilised for the simulation results in Figure 5.

Parameters
No
Interventions

Individual
Measures

IRS LLINs
Long Dura-
tion

Short Dura-
tion

High usage Low usage

η 0/day 0.005/day 0/day 0/day 0.5/day 0.5/day
ξ 0/day 0.001/day 0/day 0/day 0.08/day 0.08/day
κ 0/day 0.15/day 0.018/day 0.03/day 0.2/day 0.45/day
b & c 0 0.4 0.85 0.85 0.8 0.8

Figure 5: Simulation results capturing the impact of IRS, LLINs, and individual preventive measures
on symptomatic infectious humans over a period of 365 days. a. Results comparing the impacts
of individual measures on symptomatic malaria cases with the baseline when no interventions are
implemented. b. Results comparing the impacts of IRS (long and short duration) with the baseline
of no intervention measures on symptomatic infectious cases. c. Results comparing the impacts of
LLINs (high and low usage) with no interventions on symptomatic infectious cases. d.–f. Graphical
representation of the levels of interventions considered in the simulation studies in a.–c. respectively.

Figure 5 captures the impact of IRS, LLINs and individual measures on symptomatic infectious hu-
mans. In Figures 5a. and 5d. we observe that individual preventive measures that exhibit a relatively
low impact amongst the three scenarios, can reduce symptomatic infections during the period of height-
ened disease activity. In an extended timeframe, beyond 365 days, we observe a declining trend in
cases when using these individual measures, which falls below the baseline scenario. In Figures 5b. and
5e., our observations indicate that implementation of IRS leads to a significant reduction in malaria
infection cases, within its designated effective duration. After IRS efficacy wanes there is an upsurge
in the number of infectious cases. Specifically, within the 365 day period the 5-month IRS scenario has
a peak prevalance lower than the peak of the baseline scenario, while in the 8-month IRS scenario has
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an even lower peak. In Figures 5c. and 5f., high usage of LLINs has greater impact on symptomatic
infectious cases. Conversely, the scenario involving low LLINs usage initially demonstrates a decline
in the first 50 days. However, as the number of cases reduces, the utilization of bed nets decreases
further, leading to a resurgence in cases approaching the baseline scenario, as observed in Figures 5c.
and 5f.
Taking into account all the interventions considered in the scenario study, our results suggest that the
extensive utilization of LLINs and IRS within their designated effective durations has the potential
to curb endemic malaria trends effectively. Nonetheless, when LLINs, IRS, and other highly effective
interventions are unavailable, our modelling reveals that implementing individual preventive measures
is better than adopting no interventions in the long run.

5 Discussion

In this paper, an extension of the SEIR − SEI host-vector model is employed to study the impact
of malaria intervention programs. Our work is targeted towards understanding the current trends of
malaria cases in response to malaria interventions as well as assessing the interventions necessary for
malaria control and elimination. The extended model is analysed to formulate the basic reproduction
number, consistent with previous studies [17, 20, 25, 55, 56, 57]. In our assessment of the basic repro-
duction number of the model, we identified two transmission pathways that can assist decision-making
in the prevention of malaria outbreaks, which we termed as K1 and K2 (Equation (2)). K1 represents
transmissions from individuals in the symptomatic infectious human class, IH , whereas K2 considers
transmissions from self-recovered individuals in the asymptomatic infectious human class, AH . Thus
K1 transmissions can be reduced by employing vector control strategies, intermittent preventive treat-
ments of malaria in infants, pregnant people, and children, as well as the RTS,S/AS01 (RTS,S) vaccine
recommended by the WHO for the prevention of P. falciparum malaria in children. K2 transmissions
on the other hand, can be reduced with strategies like mass screening and treatment (MSAT), fo-
cal screening and treatment (FSAT), and mass drug administration (MDA) that typically focuses on
asymptomatic infections as well as through educative campaigns promoting the clinical treatment of
malaria cases with strategies like mass fever treatment (MFT) to reduce the number of symptomatic
infections that go untreated [58, 59, 60, 9].

A sensitivity analysis conducted on the model demonstrates that several parameters such as the
mosquito biting rate (δ), infection success rates (ψH , ψM ) and decay rate of intervention programs
(κ) have a positive influence on R0 whereas parameters like the treatment rate of infected persons
(τ), interventions recruitment rate (η), and mosquito death rate (µM ) have a negative impact on R0.
These results are in consensus with the findings of existing literature [25, 55, 61].

Our study on the impact of variations in preventive intervention strategies shows that reducing funds
for malaria interventions in response to a decline in the number of malaria cases may result in the
resurgence of malaria. These results reflect the current rising trends of malaria cases after the gradual
decline in malaria cases from 2017-2019, as funding for malaria intervention programs was reduced in
order to support the control of COVID-19 outbreaks [62, 63, 64]. Learning from the current malaria
situation, our modelling results suggest that funding for intervention strategies should be maintained
and increased when feasible but not decreased. We also discovered that the maintenance of intervention
programs is necessary to maintain a malaria elimination status. Thus regions that have successfully
eliminated malaria from their settings must endeavour to maintain malaria strategies longer term,
such as detecting and treating new malaria infections among migrants, to prevent the re-emergence of
malaria cases [65, 66]. Results derived from our intervention scenario study reveal that implementing
IRS with an extended effective duration and promoting the extensive utilization of LLINs represent
promising strategies for mitigating symptomatic malaria infections. These findings align with empir-
ical results from previous literature [51, 67, 68, 69]. Additionally, the study illuminates the potential
utility of individual preventive measures, albeit with a relatively low impact. These measures can
be considered either in conjunction with other interventions or as a viable option when more potent
interventions are not available.

Moving forward, an expansion of this work is recommended to calibrate the model to data from a
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malaria endemic setting while inferring parameters for the interventions used in the setting. Factors
such as age structure, seasonality, and migration, which are major determinants of malaria trends in
endemic regions, were not factored in the model and could be considered in future extensions. Ad-
ditionally, the interventions class of the model did not explicitly consider the dynamics of strategies
such as RTS,S vaccine roll-out, the use of larvicides, MSAT, and the development of better healthcare
systems in endemic areas. While these limitations may affect the application of results presented in
the study, the study provides an overview of the transmission characteristics of a typical endemic area
and thus can be adapted to a specific setting by including additional characteristics of that setting
into the model.

Several concerns remain unresolved in relation to the behavioural trends of the Plasmodium parasites
such as their heterogeneity and drug resistance which hinder the elimination of malaria. However,
the results of this study suggest that the continuous maintenance of established intervention strategies
in endemic areas can provide progress towards malaria elimination. While variations in the imple-
mentation of interventions may occur due to economic constraints, it is crucial to foster a culture of
maintenance for malaria elimination and potential eradication. Our findings indicate that achieving
malaria elimination is associated with a high level of utilization and consistent funding of interven-
tions. The work presented in this paper can potentially contribute to developing effective strategies
for malaria control and elimination. By identifying key transmission pathways and emphasizing the
importance of intervention maintenance, our findings can guide decision-makers and stakeholders in
their efforts to combat malaria and improve public health.
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A Model Analysis and Simulation Results

A.1 Basic reproduction number using the next generation method

We start by finding the new infection matrix:

f =


βH(P )SH1IM
βH(P )SH2IM

0
0

βM (P )SM (IH + χAH)
0

 ⇒ F =



∂f1
∂EH1

∂f1
∂EH2

∂f1
∂IH

∂f1
∂AH

∂f1
∂EM

∂f1
∂IM

∂f2
∂EH1

∂f2
∂EH2

∂f2
∂IH

∂f2
∂AH

∂f2
∂EM

∂f2
∂IM

∂f3
∂EH1

∂f3
∂EH2

∂f3
∂IH

∂f3
∂AH

∂f3
∂EM

∂f3
∂IM

∂f4
∂EH1

∂f3
∂EH2

∂f4
∂IH

∂f4
∂AH

∂f4
∂EM

∂f4
∂IM

∂f5
∂EH1

∂f5
∂EH2

∂f5
∂IH

∂f5
∂AH

∂f5
∂EM

∂f5
∂IM

∂f6
∂EH1

∂f6
∂EH2

∂f6
∂IH

∂f6
∂AH

∂f6
∂EM

∂f6
∂IM


,

which gives

F =


0 0 0 0 0 βH(P )SH1

0 0 0 0 0 βH(P )SH2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 βM (P )SM χβM (P )SM 0 0
0 0 0 0 0 0

 .

And the transition matrix:

v =


(µH + θI)EH1

(µH + θA)EH2

−θIEH1 + (τ + ν + µH + γ)IH
−γIH − θAEH2 + (µM + σ2)AH

(µM + ω)EM

−ωEM + µMIM

 ⇒ V =



∂v1

∂EH1

∂v1
∂EH2

∂v1
∂IH

∂v1

∂AH

∂v1

∂EM

∂v1
∂IM

∂v2

∂EH1

∂v2
∂EH2

∂v2
∂IH

∂v2

∂AH

∂v2

∂EM

∂v2
∂IM

∂v3

∂EH1

∂v3
∂EH2

∂v3
∂IH

∂v3

∂AH

∂v3

∂EM

∂v3
∂IM

∂v4

∂EH1

∂v4
∂EH2

∂v4
∂IH

∂v4

∂AH

∂v4

∂EM

∂v4
∂IM

∂v5

∂EH1

∂v5
∂EH2

∂v5
∂IH

∂v5

∂AH

∂v5

∂EM

∂v5
∂IM

∂v6

∂EH1

∂v6
∂EH2

∂v6
∂IH

∂v6

∂AH

∂v6

∂EM

∂v6
∂IM


,

which gives

V =


(µH + θI) 0 0 0 0 0

0 (µH + θA) 0 0 0 0
−θI 0 (τ + ν + µH + γ) 0 0 0
0 −θA −γ (µH + σ2) 0 0
0 0 0 0 (µM + ω) 0
0 0 0 0 −ω µM

 .

We compute R0 by finding the spectral radius, ρ of the matrix product of FV−1 where

FV−1 =



0 0 0 0 βH(P )SH1ω
µM (µM+ω)

βH(P )SH1

µM

0 0 0 0 βH(P )SH2ω
µM (µM+ω)

βH(P )SH2

µM

0 0 0 0
0 0 0 0 0 0

m χβM (P )SMθA
(µH+θA)(µH+σ2)

n χβM (P )SM

(µH+σ2)
0 0

0 0 0 0 0 0


and

m =
βM (P )SMθI(µH + σ2) + χβH(P )SMθIγ

(τ + ν + µH + γ)(µH + σ2)(µH + θI)
,

n =
βM (P )SM (µH + σ2) + χβH(P )SMγ

(τ + ν + µH + γ)(µH + σ2)
.

We consider the model at the disease-free equilibrium (DFE),

Xo = (SH1o , SH2o , EH1o , EH2o , IHo
, AHo

, SMo
, EMo

, IMo
, Po) =

(
ΛH

µH
, 0, 0, 0, 0, 0, ΛM

µM
, 0, 0, ηκ

)
.
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Note that for the DFE, Xo, SH2o = 0 since SH2 represents individuals with partial immunity derived
from an earlier infection. We therefore arrive at:

R0 = ρ(FV−1) =
√
K1 +K2, (9)

where K1 and K2 are defined as;

K1 =
βH( ηκ )

ΛH

µH
βM ( ηκ )

ΛM

µM
θIω

µM (µM + ω)(µH + θI)(τ + ν + µH + γ)
, (10)

K2 =
χβM ( ηκ )

ΛM

µM
βH( ηκ )

ΛH

µH
θIγω

µM (µM + ω)(µH + θI)(τ + ν + µH + γ)(µH + σ2)
. (11)

A.2 Example simulation results of the model

We provide numerical simulations of the model framework utilizing parameter estimates from previous
literature [30, 39, 40, 41] presented in Table 1 to generate graphical representations of the model
dynamics towards the disease-free (DFE) and endemic equilibria (EE). In exploring the model system
at the two equilibria, the basic reproduction number, R0 was set at R0 < 1 and R0 > 1 to depict the
DFE and EE behavioural trends. We present the trends of the system in both the host and vector
populations.

Figure 6: Example model simulation results, showing human and mosquito population dynamics.
a. Example simulation result of the model at R0 = 0.35. b. Simulation result of the model at
R0 = 2.26. The baseline values given in Table 1 are employed as parameter values for the R0 < 1
simulation result, while setting δ = 3, ψH = 0.5 and ψM = 0.5 for the R0 > 1 simulation. The initial
conditions was set at (SH1(0), SH2(0), EH1(0), EH2(0), IH(0), AH(0), SM (0), EM (0), IM (0), P (0)) =
(3000, 2000, 150, 50, 10, 10, 1000, 50, 10, 1).

From our example simulation in Figure 6a, showing the disease-free equilibrium, it is noticed that the
second class of susceptible individuals, SH2, approaches zero like the diseased classes of the human
population as R0 < 1. This behaviour is contrary to the SH1 class that approaches the total human
population size ΛH

µH
. When one reconciles the behaviour with the description of the sub-classes, the

disparity in the behaviours of the two susceptible sub-classes becomes clear; uninfected, non-immune
humans make up the first susceptible class, whereas individuals in the second class are uninfected but
partially immune, having acquired this immunity from a prior infection. Thus by inferring from the
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model diagram, Figure 1, as IH decreases towards the DFE, SH2 will decrease as well.

In Figure 6b, where R0 > 1, we observe a rise in the diseased classes of the model which shows that
an increase in the number of infected mosquitoes has a corresponding effect on the number of infected
humans and vice versa. In the susceptible curves however, there is sharp decline resulting from the
dynamics in the infected compartment, and later an increase as individuals recover and as the model so-
lution progresses towards equilibrium. The ripple effect of infection is supported here by the graphical
results of the diseased and susceptible classes in Figure 6b where an increase or decrease in the dis-
eased classes of mosquitoes has a corresponding effect on the diseased classes of humans and vice versa.
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