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Abstract 
	
Background:	Referred	to	as	the	"silent	killer,"	elevated	blood	pressure	often	goes	
unnoticed	due	to	the	absence	of	apparent	symptoms,	resulting	in	cumulative	harm	
over	time.	While	various	health	conditions	contribute	to	hypertension,	they	
collectively	account	for	a	minority	of	cases.	Chronic	stress	has	been	identified	as	a	
significant	factor	in	increased	blood	pressure,	and	the	heterogeneous	nature	of	
stress	responses	makes	it	challenging	to	identify	specific	deleterious	behaviors	
through	traditional	clinical	interviews.	
Objective:	We	aim	to	leverage	machine	learning	algorithms	for	real-time	
predictions	of	stress-induced	blood	pressure	spikes	using	consumer	wearable	
devices	such	as	FitBit,	providing	actionable	insights	to	both	patients	and	clinicians	
to	improve	diagnostics	and	enable	proactive	health	monitoring.	
Methods:	The	study	proposes	the	development	of	machine	learning	algorithms	to	
analyze	biosignals	obtained	from	these	wearable	devices,	aiming	to	make	real-time	
predictions	about	blood	pressure	spikes.	
Results:	We	have	developed	the	core	study	application,	named	CardioMate.	
CardioMate	will	be	used	to	remind	participants	to	initiate	blood	pressure	readings	
using	an	Omron	HeartGuide	wearable	monitor.	The	project	described	is	supported	
as	a	pilot	project	from	the	Robert	C.	Perry	Fund	of	the	Hawai‘i	Community	
Foundation.	This	protocol	was	approved	by	the	University	of	Hawai‘i	Institutional	
Review	Board	(IRB)	under	protocol	#2023-00130.		
Conclusions:	Personalized	machine	learning	when	applied	to	biosignals	is	a	
promising	approach	to	providing	the	mobile	sensing	backend	support	for	real-time	
digital	health	interventions	for	chronic	stress	and	its	corresponding	symptoms.	
	
Keywords:	stress;	hypertension;	precision	health;	personalized	artificial	
intelligence;	wearables;	ecological	momentary	assessments;	passive	sensing	

Introduction 

How this Research Benefits the People of Hawaiʻi 
	
According	to	the	Department	of	Health	Chronic	Disease	Prevention	&	Health	
Promotion	Division,	one	in	every	3	adults	in	Hawaiʻi	has	been	diagnosed	with	
hypertension1.	Mortality	rates	associated	with	heart	disease	are	particularly	high	for	
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Native	Hawaiians	and	Other	Pacific	Islanders	population,	leading	to	628	deaths	per	
100,000	residents	as	opposed	to	154	deaths	per	100,000	among	Asian	and	167	
deaths	per	100,000	among	White	residents	in	Hawaiʻi	[1].		
	
A	recent	study	conducted	by	researchers	at	the	John	A.	Burns	School	of	Medicine	
found	that	Native	Hawaiians	and	Other	Pacific	Islanders	under	a	physician’s	care	for	
hypertension	experienced	an	18.3	point	drop	in	systolic	blood	pressure	on	average	
when	participating	in	a	12-week	hula	program	[2-3].	This	study	provides	strong	
evidence	that	stress-reducing	interventions	can	reduce	hypertension	in	Native	
Hawaiians.	We	hope	to	build	upon	this	foundational	research	by	leveraging	
consumer	devices	(i.e.,	a	FitBit)	to	detect	moments	of	high	stress	and	to	provide	
just-in-time	interventions	which	are	culturally	grounded.	The	first	step	of	this	long-
term	research	plan	is	to	develop	the	AI	which	will	power	the	digital	intervention,	
and	that	first	step	is	the	focus	of	this	grant	proposal.	

Clinical and Unmet Need 
	
Hypertension	is	an	indirect	cause	of	hundreds	of	thousands	of	annual	deaths	in	the	
United	States	alone	[4].	Known	as	the	“silent	killer”[5],	elevated	blood	pressure	
often	remains	unnoticed	by	affected	individuals	due	to	lack	of	perceptible	
symptoms,	resulting	in	accumulated	harm	over	years.	While	several	causes	of	
hypertension	are	related	to	an	underlying	health	condition	such	as	kidney	disease,	
diabetes,	sleep	apnea,	or	hormone	problems	[6],	health	conditions	and	medications	
combined	only	account	for	roughly	1	in	20	cases	[7].	Chronic	stress	has	been	
repeatedly	documented	to	increase	blood	pressure	[8-10].	
	
Prior	studies	have	found	that	elevated	blood	pressure	often	arises	due	to	a	stressful	
lifestyle,	although	the	effect	of	exact	stressors	varies	drastically	between	individuals.	
Due	to	the	heterogeneous	nature	of	both	the	stress	and	blood	pressure	response	to	a	
multitude	of	lifestyle	decisions,	it	can	be	difficult	if	not	impossible	to	pinpoint	the	
most	deleterious	behaviors	in	a	personalized	manner	using	the	traditional	
mechanism	of	clinical	interviews.	Passive	sensing	technologies	deployed	on	
consumer	devices	have	the	potential	to	disrupt	this	status	quo	in	a	positive	manner.	
By	continuously	monitoring	a	patient’s	lifestyle	in	naturalistic	settings,	digital	
technologies	can	provide	clinicians	and	patients	alike	with	actionable	insights	into	
their	health	trends	with	fine-grained	precision.	
	
We	are	interested	in	the	use	of	wearable	technologies	to	sense	cardiovascular	
signals,	as	they	are	non-invasive	and	are	already	widely	adopted.	We	will	develop	
ML	algorithms	which	analyze	these	biosignals	to	make	real-time	predictions	about	
blood	pressure	spikes.	The	resulting	predictions	could	be	used	to	alert,	in	real	time,	
patients	about	unintentionally	adverse	behaviors	as	well	clinicians	about	the	
frequency	of	such	behaviors.	There	is	a	critical	opportunity	and	need	to	improve	
diagnostics	for	repeat	health	events	to	enable	clinicians	to	monitor	their	patients	
and	forecast	future	issues.	
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Innovation 
	
There	are	countless	situations	in	healthcare	and	biomedicine	where	vast	amounts	of	
unlabeled	data	are	collected	from	a	single	patient	[11].	Annotations	for	the	event	of	
interest	are	frequently	sparsely	dispersed.	The	development	of	predictive	
supervised	machine	learning	(ML)	models	is	infeasible	in	such	circumstances,	as	
classical	approaches	cannot	handle	the	complexity	of	the	data	and	modern	deep	
learning	approaches	require	vast	amounts	of	data	[12].	For	example,	continuous	
readings	from	continuously	worn	glucose	monitors	can	provide	enough	input	data	
to	train	a	model	to	make	a	prediction	about	patient	energy	based	on	glucose,	but	it	is	
impracticable	to	require	users	to	log	their	perceived	energy	at	the	same	sampling	
frequency	as	a	wearable	device.	Similar	situations	arise	from	data	collected	by	
consumer	wearable	health	devices	(e.g.,	smart	watches),	smartphones,	and	other	
devices	which	measure	biological	signals.	
	

	
Figure	1.	We	will	collect	wearable	biosignals	from	a	FitBit	and	use	them	to	predict	
blood	pressure	as	measured	by	an	Omron	HeartGuide	wearable	blood	pressure	
monitor.	We	will	use	personalized	self-supervised	learning	to	enable	prediction	of	
blood	pressure	using	minimal	samples	from	the	end	user.	
	
To	support	AI	development	in	these	situations	where	vast	longitudinal	data	are	
collected	with	minimal	human-provided	annotations,	we	propose	the	development	
of	personalized	ML	models	which	are	trained	solely	on	an	individual’s	unlabeled	
data	to	learn	feature	representations	which	are	specific	to	their	baseline	temporal	
dynamics.	We	will	train	these	models	with	a	novel	dataset	of	FitBit	biosignals	and	
corresponding	blood	pressure	readings	(Figure	1).	We	are	creating	a	novel	method	
and	framework,	which	has	never	been	explored	in	healthcare,	consisting	of	pre-
training	neural	networks	to	learn	the	temporal	dynamics	of	a	patient’s	biosignals.	
This	method	will	enable	powerful	deep	networks	to	be	trained	using	relatively	small	
datasets	which	would	not	be	possible	without	the	self-supervised	approach	
proposed	here.	From	a	usability	standpoint,	patients	will	only	be	required	to	
provide	tens	of	annotations	only	tens	of	times	to	get	a	personalized	predictive	
model.	
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While	we	propose	to	apply	this	new	technological	innovation	towards	the	
prediction	of	cardiac	signals,	multimodal	time-series	personalization	can	be	applied	
to	a	variety	of	other	biology	and	health	problems	where	(1)	multiple	signals	are	
emitted,	(2)	the	baseline	signal	patterns	are	specific	to	each	individual	or	organism,	
and	(3)	it	is	infeasible	to	acquire	the	vast	amounts	of	labels	required	to	train	a	
supervised	deep	learning	model	from	scratch.	Examples	of	future	applications	of	the	
proposed	methodology	include	predictions	stemming	from	Nanopore	signal	data	or	
multielectrode	neuronal	recordings.	This	method	has	the	potential	to	dramatically	
advance	the	field	of	precision	healthcare	by	enabling	reliable	ML	predictions	from	
massive	but	mostly	unlabeled	datasets	which	are	trained	in	a	self-supervised	
manner	on	data	from	a	single	user.	
	
While	this	novel	methodology	could	be	applied	to	myriad	domains	within	health	and	
biology,	a	natural	application	is	the	prediction	of	cardiac	events	from	wearable	
biosignals	data.	We	will	focus	on	high	blood	pressure.		

Dissemination Plan 
	
We	plan	to	disseminate	our	research	findings	through	a	combination	of	(1)	research	
publications	in	journals,	(2)	presentations	at	conferences,	(3)	as	preliminary	data	
for	an	NIH	R01	application,	and	(4)	as	the	basis	of	community-based	participatory	
design	sessions	where	we	iteratively	develop	a	culturally-informed	digital	
intervention	using	the	AI	created	in	this	project.	Target	journals	for	submission	
include	Nature	Digital	Medicine,	Science	Translational	Medicine,	IEEE	Transactions	
on	Affective	Computing,	PLoS	Digital	Medicine,	and	Cell	patterns.	Target	conferences	
include	the	American	Medical	Informatics	Association	(AMIA)	Annual	Symposium,	
the	Pacific	Symposium	on	Biocomputing	(PSB),	and	the	Conference	for	Computer-
Human	Interaction	(CHI).	There	are	several	Notices	Of	Special	Interest	posted	by	the	
NIH	which	would	support	a	large	R01	grant	application	using	the	preliminary	data	
from	this	work.	

Methods 

Specific Aims 
	
We	propose	the	following	Specific	Aims:	
	
Aim	1:	Create	a	novel	dataset	of	wearable	sensor	data	and	corresponding	blood	
pressure	measurements.	
	
Aim	2:	Develop	a	personalized	self-supervised	pre-training	procedure	for	time	
series	data	using	both	contrastive	learning	and	masked	predictions.	
	
Aim	3:	Develop	a	novel	personalized	pre-training	procedure	which	exploits	the	
multimodal	nature	of	wearable	time	series	data.	
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Recruitment 
	
We	will	recruit	40	carefully	selected	participants	with	diagnosed	hypertension	and	
self-reported	stressful	lifestyles	to	each	participate	in	a	4-week	remote	data	
collection	period.	Each	participant	will	wear	an	Omron	HeartGuide	blood	pressure	
wearable	device	and	a	FitBit	Luxe	wearable	watch	during	all	waking	hours	for	at	
least	15	hours	each	day.	Apart	from	wearing	the	devices	and	periodically	syncing	
the	data	to	the	cloud,	participants	will	be	asked	to	follow	their	normal	routine	for	
the	duration	of	the	study.		
	
We	will	recruit	adults	ages	30	to	70	in	the	state	of	Hawaiʻi	who	have	been	diagnosed	
with	hypertension	and	self-identify	as	living	a	high-stress	lifestyle.	Given	the	
diversity	of	the	population	of	Hawaiʻi	[13],	we	aim	for	the	following	demographic	
composition	of	our	participants:	~23%	White,	~37%	Asian,	~11%	Native	Hawaiian	
or	Pacific	Islander,	~7%	Black	or	African	American,	and	of	~22%	two	or	more	races.	
~9.5%	of	the	recruited	population	will	have	Hispanic	or	Latino	ethnicity.	
	
Dr.	Washington	has	a	network	of	clinical	collaborators	at	the	John	A.	Burns	School	of	
Medicine	at	the	University	of	Hawaiʻi	at	Mānoa	who	also	practice	at	local	medical	
centers	such	as	Queen’s	Medical	Center	and	Kaiser	Permanente’s	branch	in	Hawaiʻi.	
I	will	recruit	using	the	following	sources:	(1)	direct	recruitment	from	the	Hawaiʻi	
Pacific	Health	Center,	which	my	collaborators	at	the	University	of	Hawaiʻi	
Department	of	Psychiatry	are	affiliated	with	and	where	they	practice	clinically,	(2)	
via	flyers	and	emails	at	the	clinics	which	the	University	of	Hawaiʻi	Department	of	
Psychiatry	regularly	provides	inpatient	and	outpatient	psychiatric	services	and	
consultation	at:	including	The	Queen’s	Medical	Center,	Kapiʻolani	Medical	Center	for	
Women	and	Children,	and	Hawai‘i	State	Hospital	Community	mental	health	centers	
on	Hawai‘i	Island,	Molokaʻi,	Maui,	Kauaʻi,	and	Lānaʻi,	(3)	advertisements	posted	on	
the	University	of	Hawaiʻi	campus	and	in	public	settings	in	Honolulu,	and	(4)	targeted	
advertisements	posted	to	social	media	websites.	I	will	work	with	Dr.	Guerrero,	the	
chair	of	the	Department	of	Psychiatry	at	the	University	of	Hawaiʻi,	to	ensure	
recruitment	strategies	and	advertisement	of	the	research	program	translates	across	
cultures	and	to	ensure	effective	recruitment	as	well	as	diverse	and	representative	
data.		
	
We	will	exclude	participants	younger	than	30	years	and	older	than	70	years	of	age.	
We	will	require	all	potential	participants	to	remotely	complete	the	Perceived	Stress	
Scale	(PSS),	a	10-item	scale	which	is	the	most	widely	used	psychological	instrument	
for	measuring	the	perception	of	stress	[14].	We	will	exclude	participants	whose	PSS	
score	does	not	exceed	one	standard	deviation	above	the	mean	for	at	least	one	of	
their	demographic	brackets	(age,	gender,	or	race)	as	reported	by	Cohen	et	al	[14].	
We	will	also	ask	participants	to	self-report	their	blood	pressure.	We	will	remotely	
ask	participants	whether	they	are	currently	taking	any	blood	pressure	medication,	
and	we	will	exclude	all	such	participants.	We	will	also	exclude	participants	who	do	
not	own	a	smartphone	with	continuous	network	connectivity.	During	the	in-person	
study	intake,	we	will	measure	blood	pressure	of	potential	study	participants	three	
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times.	We	will	exclude	participants	whose	blood	pressure	does	not	exceed	130/80	
mmHg	for	at	least	one	of	the	measurements,	as	130/80	mmHg	is	the	minimum	
cutoff	for	Stage	1	hypertension.	

Data Collection and Storage 
	
We	will	leverage	the	existing	application	programming	interface	(API)	provided	by	
both	Omron	and	FitBit	to	record	the	user’s	wearable	sensor	readings	and	upload	the	
data	to	the	cloud.	Omron’s	Healthcare	API	offers	access	to	timestamped	blood	
pressure	readings	as	well	as	activity	and	sleep	approximations.	The	FitBit	API	
provides	access	to	sensor	readings	of	heart	rate	(HR),	gyroscope,	accelerometer,	
breathing	rate,	blood	oxygen	levels	(SpO2),	and	skin	temperature	sensor	readings.	
The	data	will	be	managed	on	each	participant’s	smartphone	devices	through	an	
application,	implemented	for	both	iOS	and	Android,	that	we	will	develop.	The	study	
team	will	install	the	application	on	the	user’s	smartphone	and	configure	the	Omron	
and	FitBit	device	during	study	onboarding.	The	smartphone	application	will	
periodically	trigger	a	notification	reminding	the	participant	to	(1)	measure	their	
blood	pressure	with	the	Omron	wearable,	(2)	sync	the	Omron	and	FitBit	data	to	the	
application,	and	(3)	connect	to	a	network	while	the	study	app	is	open	to	allow	the	
data	to	be	uploaded	to	a	centralized	server.	
	
We	will	store	the	curated	data	from	each	participant	on	a	centralized	server	hosted	
on	Amazon	Web	Services	(AWS).	Because	FitBit	is	owned	by	Google,	participants'	
FitBit	data	will	be	uploaded	directly	to	Google's	cloud	servers,	which	utilizes	the	
same	level	of	security	as	other	Google	products	such	as	Gmail.	Access	to	each	
participant's	FitBit	data	on	Google's	cloud	servers	is	implemented	through	OAuth,	
which	provides	clients	with	a	secure	delegated	access	to	server	resources	on	behalf	
of	a	resource	owner	(i.e.,	the	participants	of	this	study).	This	mechanism	is	used	by	
companies	such	as	Amazon,	Google,	Facebook,	Microsoft,	and	Twitter	to	permit	the	
users	to	share	information	about	their	accounts	with	third-party	applications	or	
websites.	In	this	case,	the	"third	party"	is	the	study	team.	The	FitBit	data	and	blood	
pressure	readings	will	be	preprocessed		on	an	Elastic	Cloud	Compute	(EC2)	instance	
on	AWS,	which	is	HIPAA-compliant.	The	EC2	instance	will	store	the	data	onto	
respective	database	tables	using	DynamoDB.	Each	table	will	have	columns	for	the	
child	ID	and	the	timestamp.	We	will	encrypt	all	server-side	data	and	require	secret	
access	keys	for	data	access.	DynamoDB	tables	are	automatically	encrypted	on	the	
server	side.	To	add	an	additional	layer	of	security,	we	will	implement	client-side	
encryption	on	the	mobile	application,	ensuring	encrypted	data	transmission	over	an	
HTTPS	connection	to	move	blood	pressure	data	between	the	devices	and	AWS.	Data	
access	will	require	a	secret	access	key	provided	by	the	AWS	administrators	to	any	
data	analysis	team.	The	data	will	not	be	accessible	without	this	key.	For	further	
security,	we	will	anonymize	all	user	data	on	the	server	side	by	removing	all	PHI	
from	the	DynamoDB	tables.	
	
We	intend	to	release	the	curated	data	(Figure	2)	as	a	publicly	available	dataset	for	
use	in	the	evaluation	of	multimodal	time	series	ML	models.	Such	datasets	exist	for	
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activity	and	emotion	recognition	from	wearable	data,	but	prediction	of	blood	
pressure	from	these	measurements	will	be	a	challenging	task	that	other	researchers	
can	attempt	with	the	release	of	our	dataset.	This	will	be	the	first	publicly	available	
dataset	which	includes	at-home	blood	pressure	measurements	alongside	wearable	
sensors	like	HR,	SpO2,	and	accelerometer	readings.	This	fully	anonymized	dataset	
will	only	be	released	to	researchers	who	sign	a	Data	Use	Agreement	which	will	be	
approved	by	the	University	of	Hawaiʻi	Data	Governance	Office.	

Feasibility 
	
The	most	difficult	aspect	of	this	Aim	will	be	maintaining	participant	engagement	
throughout	the	4-week	study	period.	The	graduate	research	assistant	funded	by	this	
project	will	dedicate	some	time	each	day	towards	running	the	study	and	interfacing	
with	participants.	We	expect	participants	to	open	the	smartphone	application	to	
sync	and	upload	their	data	on	a	daily	basis,	which	is	a	1-minute	time	commitment	
per	day.	
	
While	we	expect	no	trouble	recruiting	40	subjects	for	participant,	we	expect	some	
participants	to	drop	off	during	the	study.	Since	we	will	have	enough	devices	for	5	
concurrent	subjects,	it	will	take	8	months	to	collect	all	data	if	no	participants	drop	
off.	Our	study	timeline	allocates	6	additional	months	of	make-up	time	to	collect	data	
from	new	participants,	accounting	for	>50%	drop-off	rate.	Given	the	remote	nature	
of	the	data	collection	procedures,	we	expect	some	participants	to	drop	off	from	the	
study	prematurely	or	to	not	comply	with	study	processes.	We	will	therefore	
remotely	monitor	the	upload	progress	and	send	an	automated	text	and	email	
notification	to	the	participant	if	the	data	were	not	uploaded	in	a	timely	manner.	If	3	
consecutive	days	of	participant	non-compliance	are	detected,	we	will	contact	the	
participant	for	device	return.	
	

AI Model Training 
	
SSL	is	usually	used	to	pre-train	an	entire	dataset	with	no	explicit	labeling	by	humans	
to	guide	the	supervision	task.	We	propose	to	redesign	the	SSL	paradigm	towards	the	
task	of	model	personalization.	By	pre-training	a	model	only	on	the	vast	amounts	of	
data	curated	from	a	single	individual,	the	weights	of	the	neural	network	will	learn	to	
make	predictions	using	the	inherent	structure	of	each	participant’s	biosignals.	This	
is	essential	because	baseline	HR,	SpO2,	skin	temperature,	and	movement	patterns,	
regardless	of	stress,	will	vary	drastically	across	individuals,	limiting	the	
performance	of	general-purpose	ML	models.		
	
To	train	ML	models	which	predict	blood	pressure	based	on	a	user’s	wearable	
biometrics,	we	will	develop	and	evaluate	a	series	of	both	long	short-term	memory	
(LSTM)	and	Transformer	neural	networks.	The	inputs	to	the	models	will	consist	of	a	
separate	1D	convolutional	backbone	for	each	biometric	modality.	The	convolutional	
features	will	be	fused	upstream	into	a	shared	joint	dense	representation	space	and	
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finally	a	dense	prediction	layer	with	linear	activation	for	regression	prediction.	We	
will	implement	all	models	using	Tensorflow	[15].	
	
We	will	perform	a	series	of	self-supervised	pretraining	tasks	to	allow	the	networks	
to	learn	the	baseline	temporal	dynamics	of	each	individual’s	biosignals.	As	one	pre-
training	task,	we	will	develop	contrastive	learning	methods	to	automatically	learn	
embeddings	which	encode	the	structure	of	the	signal.	For	each	wearable	sensor	
modality,	we	will	run	a	sliding	window	to	isolate	short	time	segments.	We	will	apply	
signal-based	data	augmentation	techniques	to	derive	a	new	signal.	We	will	perform	
contrastive	learning	to	learn	neural	network	embeddings	which	maximize	the	
similarity	between	each	original	segment	and	its	modified	version	while	minimizing	
the	similarity	across	segments	(Figure	3).	
	
We	will	develop	a	modified	version	of	the	SimCLR	algorithm	which	will	be	tuned	for	
the	task	of	personalization	to	a	user’s	wearable	signal	readings.	It	is	often	the	case	
that	biosignals	look	highly	similar,	either	due	to	temporal	locality	or	by	relative	
homogeneity	of	the	individual’s	activity.	To	account	for	this	possibility	of	recurring	
signal	patterns,	we	will	weight	the	attract	and	repel	strength	of	SimCLR	based	on	the	
temporal	distance	between	two	segments	of	a	particular	signal.	We	will	run	grid	
search	to	tune	this	repel	strength.	
	
The	data	augmentation	techniques	that	we	apply	to	the	signals	will	be	domain-
specific,	keeping	in	mind	the	inherent	nature	of	each	sensor.	For	example,	for	
accelerometer	data,	rotations	simulate	different	sensor	placements	and	cropping	is	
used	to	diminish	the	dependency	of	event	locations	[16].	Across	several	modalities,	
sensor	noise	can	be	simulated	through	scaling,	magnitude-warping,	and	jittering	
[16].	We	will	be	careful	to	not	apply	augmentation	strategies	which	might	change	
the	meaning	of	the	underlying	signal.	
	
As	another	pre-training	task,	we	will	perform	generative	pre-training	by	masking	
the	input	signal	and	predicting	the	missing	portion	of	the	signal	using	a	deep	
autoencoder	architecture	(Figure	4).	Pretraining	in	this	manner	will	teach	the	model	
to	understand	the	dynamics	of	each	time	series	signal	independent	of	blood	
pressure	or	any	other	labels.	
	
We	will	train	the	model	on	the	first	60%	of	data	(by	time),	tune	hyperparameters	on	
the	next	20%	of	data,	and	calculate	the	mean	absolute	error	(MAE)	and	mean	
squared	error	(MSE)	on	the	final	20%.	This	evaluation	pattern	mimics	real-world	
use,	where	a	model	will	be	calibrated	by	a	user	prior	to	real-world	deployment.	It	is	
important	to	emphasize	that	we	will	train	and	test	a	separate	personalized	ML	
model	for	each	individual.		
	
We	will	evaluate	the	models	by	comparing	the	performance	with	respect	to	the	
number	of	labeled	examples	used	for	supervised	fine-tuning.	A	plot	of	this	
comparison	will	elucidate	the	number	of	blood	pressure	measurements	required	for	
model	calibration	to	a	single	individual.	We	will	plot	the	MSE	at	10,	20,	30,	40,	50,	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.18.23300060doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.18.23300060
http://creativecommons.org/licenses/by-nc-nd/4.0/


75,	100,	125,	and	150	blood	pressure	annotations,	as	these	are	feasible	amounts	of	
labels	that	might	be	provided	by	a	user	in	real-world	use.	To	ensure	a	robust	
evaluation,	we	will	bootstrap	at	least	20	random	samples	of	blood	pressure	
annotation	subsets	for	each	point	on	the	x-axis	and	will	report	the	mean	and	90%	
confidence	interval.	Just	as	in	the	plain	supervised	learning	condition,	we	will	create	
a	separate	plot	for	each	study	participant,	as	the	ML	portion	of	this	proposal	is	
testing	the	personalization	of	ML	models	rather	than	a	general-purpose	one-size-
fits-all	ML	model	which	is	more	typical	in	ML	evaluations.	
	
We	will	perform	a	similar	style	of	analysis	for	other	clinical	outcomes	using	publicly	
available	datasets	such	as	the	Wearable	Stress	and	Affect	Detection	(WESAD)	[17]	
dataset,	a	multimodal	sensor	dataset	for	stress	detection	of	nurses	in	a	hospital	[18],	
and	K-EmoCon,	a	multimodal	sensor	dataset	for	continuous	emotion	recognition	in	
naturalistic	conversations	[19].	Each	of	these	datasets,	as	well	as	several	other	
publicly	available	datasets,	contains	several	hours	of	multimodal	biosignal	data	that	
overlap	with	the	signals	that	we	propose	to	collect,	such	as	skin	temperature,	
accelerometer	streams,	and	heart	rate.	These	datasets	also	include	timestamped	
annotations	of	endpoints	that	are	likely	to	be	correlated	with	blood	pressure,	
including	self-perceived	stress.	
	
In	prior	work	by	other	researchers,	SSL	pre-training	approaches	have	repeatedly	
demonstrated	improved	performance	over	pure	supervised	learning	in	a	variety	of	
contexts	[20-23].	Our	preliminary	data	(see	Results	section	below)	support	that	self-
supervised	pre-training	on	data	solely	from	each	individual	results	in	improved	
models	over	pure	supervised	learning.		While	unlikely	given	our	preliminary	data	
and	prior	SSL	publications,	it	is	possible	that	minimal	performance	gains	will	be	
observed	when	applying	the	SSL	strategies	in	a	personalized	manner.	In	such	cases,	
the	negative	result	would	be	a	noteworthy	finding	due	to	prior	successes	of	SSL.	

Results 
	
We	have	developed	a	smartphone	application,	CardioMate,	that	will	prompt	
participants	to	measure	their	BP	and	log	their	stress	(Figure	2).	The	application	
comprises	two	primary	screens:	Account	and	Home.	The	Account	screen	features	
user	details,	a	star	reward	system	for	active	participation	in	the	study,	and	options	
to	link	two	wearable	devices	(Fitbit	and	Omron	Heartguide)	for	data	
synchronization	with	our	secure,	encrypted	database.	The	Home	screen	is	divided	
into	six	sections,	including	Questionnaire,	Messages,	Feedback,	Records,	Blood	
Pressure	Readings,	and	App	Instructions.	Additionally,	the	CardioMate	app	includes	
an	administrative	area	for	study	managers	to	view	participant	statistics	and	initiate	
personalized	chats,	complete	with	alarm	and	notification	functions.	
	
Our	initial	sets	of	published	experiments	have	demonstrated	promise	for	
personalized	SSL	of	stress	but	with	some	caveats.	Our	experiments	on	the	WESAD	
dataset	demonstrated	that	deep	learning	model	performance	improves	drastically	
when	using	self-supervised	personalization	when	compared	to	personalization	
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without	SSL	when	there	are	a	small	number	of	labeled	data	points	for	supervision	
[24].	This	effect	diminishes	with	increasing	amounts	of	labeled	data	[25-26],	
aligning	with	prior	work	that	demonstrates	that	SSL	is	only	beneficial	under	low-
label	settings.	We	have	also	tried	these	methods	on	a	particularly	challenging	
dataset:	a	multimodal	sensor	dataset	for	stress	detection	of	nurses	in	a	hospital	[18].	
This	dataset	consists	of	wearable	biosignals	measured	from	nurses	who	wore	
Empatica	E4	wristbands	while	conducting	their	normal	shifts.	This	dataset	is	
difficult	because	(1)	the	data	were	collected	in	the	wild	rather	than	in	controlled	lab	
settings	and	(2)	individual	nurses	were	not	consistent	about	their	labeling	practices,	
leading	to	sparse,	irregular,	noisy,	and	otherwise	messy	labels.	Consequently,	we	
found	that	the	difference	in	AUC-ROC	scores	for	self-supervised	models	was	only	
about	2.5%	higher	on	average	compared	against	an	equivalent	baseline	model	[27],	
and	this	increase	is	within	the	margin	of	error	due	to	the	limited	sample	size.	This	
lack	of	improvement	in	noisy	annotation	settings	highlights	the	need	for	HCI	
innovations	for	improving	data	labeling	quality	for	personalized	AI	within	
naturalistic	settings.	
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Figure	2.	Workflow	of	the	CardioMate	app.	The	application	comprises	two	primary	
screens:	Account	and	Home.	The	Account	screen	features	user	details,	a	star	reward	
system	for	active	participation	in	the	study,	and	options	to	link	two	wearable	
devices	(Fitbit	and	Omron	Heartguide)	for	data	synchronization	with	our	secure,	
encrypted	database.	The	Home	screen	is	divided	into	six	sections,	including	
Questionnaire,	Messages,	Feedback,	Records,	Blood	Pressure	Readings,	and	App	
Instructions.	Additionally,	the	CardioMate	app	includes	an	administrative	area	for	
study	managers	to	view	participant	statistics	and	initiate	personalized	chats,	
complete	with	alarm	and	notification	functions.	
	
We	have	also	observed	improved	performance	when	personalizing	affect-related	
prediction	tasks	without	personalization	both	using	classical	ML	[28]	and	deep	
learning	[29]	as	well	as	when	only	applying	SSL	without	personalization	[30].	When	
disentangling	and	comparing	the	effects	of	SSL	and	personalization	separately,	we	
find	that	SSL	yields	more	benefit	than	individualization	on	non-affective	medical	
data	with	large	time	intervals	between	data	points,	suggesting	that	the	sampling	
frequency	and	other	data	considerations	must	be	considered	[31].	Collectively,	these	
preliminary	results	demonstrate	promise	for	the	core	ML	approach	that	we	propose.	
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