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Lay Abstract 

Question: Can artificial intelligence (AI) be used to predict if a person is at risk of a lethal heart 
rhythm, based solely on an electrocardiogram (an electrical heart tracing)? 
 
Findings: In a study of 270 adults (of which 159 had lethal arrhythmias), the AI was correct in 4 
out of every 5 cases. If the AI said a person was at risk, the risk of lethal event was three times 
higher than normal adults. 
 
Meaning: In this study, the AI performed better than current medical guidelines. The AI was 
able accurately determine the risk of lethal arrhythmia from standard heart tracings over a year 
away which is a conceptual shift in what an AI model can see and predict. This method shows 
promise in better allocating implantable shock box pacemakers (ICDs) that saves lives. 
 
Scientific Abstract 
 
Aim: Current clinical practice guidelines for implantable cardioverter defibrillators (ICDs) are 
insufficiently accurate for ventricular arrhythmia (VA) risk stratification leading to significant 
morbidity and mortality. Artificial intelligence offers novel risk stratification lens through which VA 
capability can be determined from electrocardiogram in normal sinus rhythm. The aim was to 
develop and test a deep neural network for VA risk stratification using routinely collected 
ambulatory electrocardiograms.  
 
Methods: A multicentre case-control study was undertaken to assess VA-ResNet-50, our open 
source ResNet-50 based deep neural network. VA-ResNet-50 was designed to read pyramid 
samples of 3-lead 24-hour ambulatory electrocardiograms to decide if a heart is capable of VA 
based on the electrocardiogram alone. Consecutive adults with VA from East Midlands, UK, 
who had ambulatory electrocardiograms as part of their NHS care between 2014 and 2022 were 
recruited and compared to all comer ambulatory electrocardiograms without VA.  
 
Results: Of 270 patients, 159 heterogeneous patients had a composite VA outcome. The mean 
time difference between the electrocardiogram and VA was 1.6 years (⅓ ambulatory 
electrocardiogram before VA). The deep neural network was able to classify electrocardiograms 
for VA capability with an accuracy of 0.76 (CI 95% 0.66 - 0.87), F1 score of 0.79 (0.67 - 0.90), 
AUC of 0.8 (0.67 - 0.91) and RR of 2.87 (1.41 - 5.81). 
 
Conclusion: Ambulatory electrocardiograms confer risk signals for VA risk stratification when 
analysed using VA-ResNet-50. Pyramid sampling from the ambulatory electrocardiograms is 
hypothesised to capture autonomic activity. We encourage groups to build on this open-source 
model.  
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Introduction 
Ventricular arrhythmias (VAs) can be lethal with survival determined by access to 

effective defibrillation. Delays in defibrillation are associated with functional disability, care 
dependency and death (1). External defibrillators are not accessed in 90% of cases and current 
implantable cardioverter-defibrillators (ICDs) guidelines are insufficiently accurate, including 
fewer than 20% of all VAs (2,3). Novel artificial intelligence (AI) prediction methodologies may 
improve current guidelines to determine VA capability and therefore assign ICDs more 
accurately (4). The aim is to develop a deep neural network for VA risk stratification using 
routinely collected ambulatory electrocardiograms in order to predict VA capability from a 
patient’s normal cardiac rhythm. 
 
Methods 

A multicentre retrospective deep-learning based case-control study was undertaken at 
University Hospitals of Leicester (UHL: Leicester General Hospital, Glenfield Hospital & 
Leicester Royal Infirmary) and University Hospitals of Northamptonshire NHS Group (UHN: 
Kettering Hospital), UK. Eligibility for ventricular arrhythmia cohort was consecutive adults with 
International Classification of Diseases 10 (ICD10) diagnoses of I47.2 ventricular tachycardia 
(VT) & I49.0 ventricular fibrillation/flutter (VF) with ambulatory electrocardiograms between 
2014-2022. For patients with multiple ambulatory electrocardiograms, only the earliest was 
taken. There is no established power factor for AI studies, therefore the largest possible cohort 
was sought. Eligibility for the comparator cohort was consecutive adults with ambulatory 
electrocardiograms over a 5-day period in Nov 2022.  
 
Signal processing 

Three-lead ambulatory 24-hour electrocardiograms (Spacelabs Lifecard CF Holter 
monitors 128hz) were exported from Spacelabs in ISHNE (.ecg) format. Electrocardiograms 
were pre-processed using a second-order Bessel filter, passband between 0.1 Hz and 50 Hz, 
and a notch filter at 50 Hz. R peaks in the electrocardiogram data were detected using the Pan-
Tompkins algorithm. Smoothed RR intervals were obtained by a moving average filter with a 
factor of 40 samples before converting to HR. Pyramid sampling was undertaken by 
categorising computed heart rates into 100 distinct levels ranging from slow to fast rates; these 
levels were defined by uniformly distributed percentiles regardless of time of the day. One 10 
second segment was selected randomly from each level and formed one input sample. This 
selection process was repeated 100 times for each patient and for each of the three 
electrocardiogram leads. As a result, for each patient, 100 3D tensors were generated in the 
format of 100X1280X3, (figure1). 

 
Data Flow 

A patient-wise partitioning strategy was employed, allocating 80% for training and 20% 
for testing. Within the training data, we instituted a 5-fold cross-validation procedure partitioned 
by patients. Consequently, this yielded five distinct models from which an ensemble approach 
converged the predictions to deliver the final prediction model on the unseen test data. Figure 1.  

Deep learning architecture  
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A transfer-learned, customised ResNet-50 based convolutional neural network was 
employed with a modified input layer we name: VA-ResNet-50. The architecture was organized 
into blocks of convolutional and identity layers with 53 convolutional layers using various filter 
sizes, 53 batch normalisation layers, 49 ReLU layers, and 5 pooling layers. In addition to these, 
we have incorporated 3 fully connected layers, two dropout layers, L2 regularization 
(regularization factor of 0.01), a softmax layer, and a classification layer, (figure 1). We 
employed a learning rate of 1e-4, a decay factor of 0.1 every 5 epochs, for 20 epoch max with 
early stopping at 2 consecutive epochs and adam optimisation. The batch size was 64, the 
dropout layer rate was 0.6. Open-source model is available on Github (5). The model served to 
take 100x3D ECG tensors per patient that are individually classified by the model to generate 
the averaged class probability score for the per-patient prediction with a threshold arbitrarily set 
to 0.5. 

 
Statistical analysis 

The performance of the neural network was evaluated in the test set using metrics such 
as overall accuracy, F1 score, sensitivity, specificity, AUC, AUPCR. Confidence intervals for 
performance metrics were calculated using bootstrapping with 1000 iterations. All analyses 
were completed in MATLAB (Mathworks, USA).  
 
Permissions and reporting 

Study permissions were granted from the respective institutional review committees; 
registration numbers; UHN: REF8882 & UHL: REF11434. This paper was reported according to 
STARD2015 reporting guidelines.  
 
Results 

The study comprised 270 patients - 178 UHN and 92 UHL patients. VA occurred in 159 
patients (mean [CI:95%] age 61 years [57-65]; 78 female (49%)) compared to 111 patients 
without VA (age 58 years [54-62]; 56 female (51%). The VA positive and negative cohorts 
differed in proportions of cardiovascular risk factors, electrocardiographically distinct diagnoses 
and cardiomyopathies but all diagnoses were represented within both cohorts. For the 
composite outcome of VA, VT was 88% (n=140) whilst 24% (n=39) represented VF and 6% 
represented both VT & VF diagnoses, (table 1). The mean time difference between the 
electrocardiogram and VA was 1.6 years with 27% of the cohort having an ambulatory 
electrocardiogram before the VA.  
 
Deep learning performance 

For the testing dataset, from sinus rhythm the model was able to classify by VA 
capability with an F1 score of 0.79 (0.67 - 0.90). Figure 1 displays the confusion matrix. The 
accuracy was 0.76 (CI 95% 0.66 - 0.87). Figure 1 shows the ROC curve for the test dataset, the 
AUC was 0.8 (0.67 - 0.91). The relative risk was 2.87 (1.41 - 5.81), (table 1).  

 
Discussion 
 VA-ResNet-50, a deep neural network classifier for ambulatory electrocardiograms, 
demonstrates signals exist for VA capability from normal intrinsic cardiac rhythm. This re-look at 
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ubiquitously available, non-invasive, cheap cardiovascular patient data holds promise to assign 
ICDs with greater precision and more economically than current practice (6). The AUC of 0.8 is 
consistent with a growing body of evidence for VA prediction with AI (4,10). Specifically for 
ambulatory electrocardiograms we report lower AUC than unpublished results of Fiorena et al. 
(AUC=0.91) to predict incident sustained VT (7). This difference is likely because of time 
disparities between electrocardiogram and VA between cohorts, 2 weeks vs. 1.6 years. This 
work improves on work published by Sammani et al. who describe an AUC of 0.67, albeit with 
an explainable autoencoder model within a cohort of dilated cardiomyopathy (8). This difference 
might be explained by their refined “life-threatening” VA outcome - granularity of outcome not 
available to ICD10. Our newly termed pyramid sampling could explain our good performance as 
autonomic nervous activity is a prognostic marker for VAs which manifests over a range of heart 
rates (9). 
 
Limitations 

Retrospective recruitment of VA meant ambulatory electrocardiograms were frequently 
available after VA which introduces survivor bias. The traumatic nature of VA may induce 
electrophysiological changes to be detected. The heterogeneity of the cohort is representative 
of real-world VA but precludes the convention of mechanistic understanding required of 
evidence-based medicine. The comparator cohort is similarly comorbid but healthier than the 
original intended comparator cohort meaning the model is at risk of classifying heart health 
index as opposed to a VA risk specifically. The intended comparator cohort; those with ICDs 
and no VA; were not available because they do not undergo ambulatory electrocardiograms due 
device EGM availability. The outcomes were derived from secondary care billing data only 
which can result in misclassification. The ad-hoc data collection strategy likely confounds 
external validity, though this recruitment strategy is consistent with the field due to the sudden 
and unexpected nature of VA (4). Our current analysis does not include a systematic 
assessment of model stability to random and adversarial perturbations to data and model 
structure (10). This, however, will be the topic of our future work. 
  
Conclusion 

Normal sinus ambulatory electrocardiograms contain signals for VA risk stratification 
when analysed using our open-source VA-ResNet-50 deep neural network. Pyramid sampling 
from the ambulatory electrocardiograms is hypothesised to capture autonomic activity. 
Importantly VA-ResNet-50 is agnostic of cardiomyopathy. The retrospective, ad hoc recruitment 
strategy limits generalisability. Prospective validation within other cohorts is planned and we 
encourage other groups to build on this open-source model. 
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Patient characteristics Ventricular arrhythmia  (n=159) No ventricular arrhythmia (n= 111) 

Demographics 

Age in years n (CI 95%) 61 (57-65) 58 (54-62) 

Female n (%) 78 (49%) 56 (51%) 

Cardiomyopathies 

Ischaemic heart disease n (%) 92 (59%) 19 (17%) 

Inherited Cardiomyopathy n (%) 24 (15%) 3 (3%) 

Hypertrophic cardiomyopathy n (%) 7 (4%) 1 (1%) 

Heart failure (any) n (%) 47 (30%) 13 (12%) 

Dilated Cardiomyopathy n (%) 10 (6%) 1 (<1%) 

Myocarditis n (%) 2 (1%) 0 (0%) 

Valvular Heart Disease n (%) 69 (43%) 11 (10%) 

Cardiovascular risk factors 

Hypertension n (%) 98 (61%) 34 (31%) 

Type 2 diabetes n (%) 16 (10%) 5 (5%) 

Chronic obstructive pulmonary 

disease n (%) 22 (14%) 6 (5%) 

Chronic Kidney Disease n (%) 1 (<1%) 1 (<1%) 

Dyslipidaemia n (%) 51 (32%) 16 (14%) 

Syncope n (%) 22 (14%) 7 (6%) 
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Electrocardiographically distinct diagnoses 

Atrial fibrillation or flutter n (%) 56 (35%) 14 (13%) 

Left bundle branch block n (%) 18 (11%) 3 (3%) 

Complete Heart Block n (%) 3 (2%) 0 (0%) 

Ventricular arrhythmia outcomes 

Ventricular tachycardia n (%) 131 (82%) 0 (0%) 

Ventricular fibrillation/ flutter  n (%) 36 (23%) 0 (0%) 

Both ventricular tachycardia & 

fibrillation/ flutter 8 (5%) 0 (0%) 

Presence of implantable cardioverter 

defibrillator 23 (15%) 0 (0%) 

Time between ambulatory electrocardiogram and ventricular arrhythmia 

Mean time difference 1.6 years (n=159) NA 

ECG collected before VA 0.4 years (n=43, 27%) NA 

ECG collected after VA 2.1 years (N=117, 73%) NA 

VA-ResNet-50 performance 

Performance metric Train set - 80% - 5-fold cross 

validation results 

Test set - 20% - ensemble per 

patient results 

Accuracy (CI 95%) 0.71 (0.6 - 0.82) 0.76 (0.66 - 0.87) 

AUC  (CI 95%) 0.76 (0.64 - 0.88) 0.80 (0.67 - 0.91) 

AUCPR  (CI 95%) 0.77 (0.65 - 0.89) 0.81 (0.64 -0.91) 

F1 Score (CI 95%) 0.76 (0.66 - 0.86) 0.79 (0.67 - 0.90) 

Balanced accuracy (CI 95%) 0.70 (0.53 - 0.83) 0.76 (0.64 - 0.87) 

PPV (CI 95%) 0.75 (0.65-0.85) 0.81 (0.67 - 0.95) 

NPV (CI 95%) 0.67 (0.53 -0.81) 0.70 ( 0.51 - 0.89) 
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RR (CI 95%) 2.32 (1.36 - 3.28) 2.87 (1.41 - 5.81) 

Sensitivity (CI 95%) 0.62 (0.48 - 0.76) 0.78 (0.64 - 0.92) 

Specificity (CI 95%) 0.78 (0.67 - 0.89) 0.73 (0.52 - 0.91) 

Table 1: Patient characteristics & performance metrics. Abbreviations: area under the receiver operator curve 

(AUC), area under the precision-recall curve (AUCPR), confidence interval (CI), positive predictive value (PPV), 

negative predictive value (NPV), relative risk (RR), ventricular arrhythmia (VA), electrocardiogram (ECG).  
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Figure 1. A – Pyramid sampling schematic demonstrating 100 samples at various heart rates over 24-

hour period. B - VA-ResNet-50 Architecture. C – Patient flow. D Confusion Matrix- including 

participants before and after ECG. E – Receiver Operator Characteristic Curve. Abbreviations: Receiver 

Operator Characteristic (ROC), ventricular arrhythmia (VA), electrocardiogram (ECG), average pooling 

(avg pool), batch normalisation (batch norm), identity block (ID block), convolutional block (conv 

block), fully connected (FC), Rectified Linear Unit (ReLu). 
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