
Transforming Healthcare Education: Harnessing

Large Language Models for Frontline Health Worker

Capacity Building using Retrieval-Augmented

Generation

Yasmina Al Ghadban

University of Oxford, Department of
Women’s and Reproductive Health

yasmina.alghadban@wrh.ox.ac.uk

Huiqi (Yvonne) Lu

University of Oxford, Institute of
Biomedical Engineering

yvonne.lu@eng.ox.ac.uk

Uday Adavi

The George Institute for Global Health
uadavi@georgeinstitute.org

Ankita Sharma

University of Oxford, Department of
Women’s and Reproductive Health
ankita.sharma@gtc.ox.ac.uk

Sridevi Gara

The George Institute for Global Health
sgara@georgeinstitute.org.in

Neelanjana Das

The George Institute for Global Health
ndas@georgeinstitute.org.in

Bhaskar Kumar

The George Institute for Global Health
bkumar@georgeinstitute.org.in

Renu John

The George Institute for Global Health
rjohn@georgeinstitute.org.in

Praveen Devarsetty

The George Institute for Global Health
dpraveen@georgeinstitute.org.in

Jane E. Hirst

The George Institute for Global Health,
Imperial College London

j.hirst@imperial.ac.uk

Abstract

In recent years, large language models (LLMs) have emerged as a transformative
force in several domains, including medical education and healthcare. This paper
presents a case study on the practical application of using retrieval-augmented
generation (RAG) based models for enhancing healthcare education in low- and
middle-income countries. The model described in this paper, SMARThealth GPT,
stems from the necessity for accessible and locally relevant medical information to
aid community health workers in delivering high-quality maternal care. We describe
the development process of the complete RAG pipeline, including the creation of
a knowledge base of Indian pregnancy-related guidelines, knowledge embedding
retrieval, parameter selection and optimization, and answer generation. This case
study highlights the potential of LLMs in building frontline healthcare worker
capacity and enhancing guideline-based health education; and offers insights for
similar applications in resource-limited settings. It serves as a reference for machine
learning scientists, educators, healthcare professionals, and policymakers aiming
to harness the power of LLMs for substantial educational improvement.
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1 Introduction

Recently, the natural language processing (NLP) landscape has seen spectacular advances with the
increasing availability of pre-trained large language models (LLMs), such as Open AI’s GPT [1],
Llama [2], and PaLM [3]. These models have had applications in several fields and are increasingly
being employed in medical education and healthcare [4, 5].

Retrieval-Augmented Generation (RAG) and fine-tuning emerge as two powerful methodologies for
tailoring pre-trained LLMs to specific applications. Fine-tuning modifies the model’s weight based
on a task-specific dataset in a “close-book” setting, relying solely on additional input-output pairs of
training data for learning [6, 7]. In contrast, RAG operates in an “open-book” setting and does not
require labelled training data [8, 9]. Instead, it utilizes external information sources to retrieve and
incorporate relevant information, enhancing the model’s comprehension and generative capabilities.

This paper introduces a case study, SMARThealth GPT (version Rv1), that showcases the application
of RAG in developing educational and communication tools for frontline healthcare workers in low-
and middle-income countries. This LLM tool aims to enhance community health workers’ knowledge,
skills, and competencies by providing accessible, context-relevant information.

2 SMARThealth Pregnancy

Identifying women with high-risk pregnancies before complications occur is essential to prevent
maternal and newborn mortality and morbidity. However, owing to health worker shortages, resource
constraints, poverty, and gender barriers, delivering high-quality pregnancy and postnatal care to
women living in rural locations in low- and middle-income countries is challenging.

To improve the early detection, referral and management of high-risk pregnancy conditions and early
prevention of non-communicable diseases, SMARThealth Pregnancy, a digitally supported tool, was
developed for frontline health workers (ASHAs) [10, 11]. The system utilises task sharing to ASHAs,
equipped with point-of-care devices and an Android tablet App with electronic decision support
based on the George Institute for Global Health (TGI) SMARThealth platform. The system has been
co-designed with end users in rural India, demonstrated to be feasible and acceptable, and is currently
being assessed in a large cluster implementation effectiveness trial across 60 villages in two states in
India (Telangana and Haryana) (clinicaltrial.gov NCT05752955).

Qualitative research has found that whilst the system is highly valued, ASHAs lack detailed knowledge
to give diet and lifestyle advice, and information about medical conditions and pregnancy symptoms
in simple terms and in local languages to support pregnant and postpartum women. In line with this
need, the aim of this project was to develop, technically and clinically validate, an LLM suitable
for community health workers in rural India to support guideline-based pregnancy care. We believe
this LLM application, SMARThealth GPT, can be a valuable tool to enhance medical education for
frontline health workers, particularly in resource-constrained environments.

3 Methodology

3.1 Formal definition of RAG

RAG enables LLMs to access information from non-parametric storage, making it highly adaptable
to new tasks and reducing the need for extensive annotated training data. Within the RAG framework,
external information sources are transformed into embeddings and stored in a vector database. This
process forms the basis for the subsequent steps. To illustrate the RAG process formally, we express
it using conditional probabilities, dividing it into two key components: retrieval and generation.

In the retrieval step, the objective is to select a set of relevant documents, D(D1, . . . , Dk), from a
repository of documents (E) based on a user’s question (Q). This can be expressed as P (D|Q), the
likelihood of choosing documents D from E, given the question Q. This probability is computed by
the retriever.

Once the relevant documents (D) have been retrieved, the answer (A) needs to be generated. This
generation step can be expressed as P (A|D,Q), representing the probability distribution of generating
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the answer A, given the retrieved documents D and the question Q. This probability is computed by
a text generator.

The entire RAG process can be expressed as follows:

P (A | Q) =
kX

i=1

P (A | Di, Q) · P (Di | Q) (1)

Here, P (A|Q) signifies the probability of generating answer A given the question Q.

In summary, RAG selects pertinent documents based on the input context and then generates the
output text, conditioned on both the selected documents and the input context. These steps are
often implemented using neural network models, which are trained to maximize the likelihood of
generating the correct output, aligning with the retrieved documents.

3.2 Rationale for the use of RAG

We selected RAG for our use case for several reasons. First, the pedagogical nature of our application
necessitates that responses provided by the model are not only accurate but also traceable back to their
sources. RAG’s ability to trace responses back to their respective sources increases explainability
and trustworthiness in the educational content and reduces potential model hallucinations. This also
aligns with the needs of our application where ASHAs not only require a response to their question
but also a source guideline to refer to. The RAG method allows us to retrieve the context relevant
to the query and to return the source (document name and page number) to the user. Second, our
model needs to be scalable, especially in the context of vast knowledge bases within the healthcare
domain. RAG models are highly scalable as they leverage retrieval mechanisms to accommodate
large knowledge bases. Third, given the continuous evolvement of clinical guidelines, our model
needs to be flexible and swiftly updated to align with the latest recommendations. By using RAG,
our model can be easily and quickly updated by incorporating new guidelines or updates into the
knowledge base, ensuring the relevance and accuracy of our model.

3.3 Model development

We deployed a three-step approach in the RAG model development pipeline, as shown in Figure 1.

Figure 1: Flow diagram of the RAG process in SMARThealth GPT

Step 1: Development of the encyclopaedia of Indian guidelines To create the knowledge base
that RAG will be based on, the clinical team created a large repository of Indian pregnancy-related
guidelines. This initial file included 37 documents. The clinical team then created a smaller repository
of Indian pregnancy guidelines relevant only to community health workers, ASHAs. To identify
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whether the repository was complete, we first ran the model of 130 questions collected through
community engagement with ASHAs on the small repository. For questions where the model did
not return an answer, we ran the model on the large repository and identified the sources that were
missing. The clinical team then decided whether the source should be included or if it was appropriate
for the model not to return an answer to that question.

We transformed the final repository of Indian guidelines into embeddings and stored them in the same
FAISS vector database. We chose the FAISS vector store for its ability to perform similarity search in
sets of vectors of any size, and the option to store the index locally. This allows us to load the vector
store directly, rather than creating it at every iteration, decreasing the processing time.

Step 2.a: Context retrieval We selected three commonly used retrieval methods in RAG: vector-
store backed retriever, contextual compression retriever and ensemble retriever, as shown in Sup-
plementary Figure S1. The vector-store backed retriever is the simplest method, which retrieves
documents with the highest similarity to the question.

In this study, all three retriever methods were tested and compared for both similarity search and
Maximal Marginal Relevance (MMR) search. Compared to the similarity search, MMR balances
between relevance and diversity. It selects the document Di from the ranked list of relevant documents,
D(D1, . . . , Dk), that maximizes the trade-off between similarity to question Q, Sim1(Di, Q) and
similarity to the documents already selected (S), Sim2(Di, Dj) [12]. A parameter � controls the
trade off between Sim1(Di, Q) and Sim2(Di, Dj). MMR can be defined as:

MMR(D,Q, S) = argmaxDi2D\S


� · Sim1(Di, Q)� (1� �) · max

Dj2S
Sim2(Di, Dj)

�
(2)

Similarity is measured using the cosine similarity between two vectors A and B, which is calculated
as follows:

Cosine Similarity(A,B) =
A ·B

kAk · kBk =

Pn
i=1 Ai ·BipPn

i=1 A
2
i ·

pPn
i=1 B

2
i

(3)

The selection of the retrieval method was based on a quantitative assessment and an evaluation of
the processing time (using both wall time and CPU time). For the quantitative assessment, we used
10 diverse pregnancy-related questions and compared the model’s answer to the clinician provided
answer (the gold standard) using both a cosine similarity score and a Clinical BERT similarity score.
ClinicalBERT is a modified BERT model pre-trained on patient clinical notes and electronic health
records, which more accurately captures clinical word similarity [13]. Given the clinical nature of
our application, we used a similarity score based on the ClinicalBERT model (range 0-5) in addition
to the cosine similarity score (range 0-1).

Step 2.b: Parameter optimisation We then investigated the impact of 4 model parameters (chunk
size, chunk overlap, number of documents retrieved (k) and search type) on model performance. In
this round, we limited our retrieval method to a vector-store backed retrieval but compared similarity
search and MMR. Due to the limited number of questions, we carried out two grid search tests on 1)
chunk size and chunk overlap, and 2) search type and number of documents retrieved (k).

To select the model parameters, we developed an evaluation pipeline using the RAGAS framework,
which allows evaluation of both generation and retrieval steps alone, and a RAGAS score for overall
performance assessment [14]. The metrics that evaluate retrieval are context relevancy which
measures the signal-to-noise ratio in retrieved contexts by determining the ratio of essential sentences
to total sentences in the context, and context recall which assesses the retriever’s ability to find all
necessary information by checking if statements from the ground-truth answer are present in the
retrieved context. The metrics that evaluate generation are faithfulness which assesses the factual
accuracy of the generated answer by comparing its statements to the context and calculating the ratio
of correct statements to total statements, and answer relevancy which measures how relevant the
generated answer is to the original question by assessing its similarity to potential questions it could
address. The RAGAS score is the harmonic mean of all four metrics [14].
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Table 1: RAGAS metrics for SMARThealth GPT model parameters: search type and number of
retrieved documents (k)

k
Evaluation metric

Context relevancy Faithfulness Answer relevancy Context recall RAGAS score

MMR search

1 0.16 0.77 0.91 0.26 0.15
2 0.12 0.85 0.92 0.22 0.15
3 0.08 0.93 0.92 0.14 0.11
4 0.07 0.89 0.91 0.31 0.13
5 0.07 0.85 0.93 0.24 0.10

Similarity search

1 0.10 0.72 0.93 0.28 0.17
2 0.09 0.86 0.91 0.21 0.12
3 0.10 0.90 0.91 0.37 0.20
4 0.10 0.81 0.91 0.19 0.12
5 0.10 0.90 0.91 0.40 0.20

Step 3: Answer generation The backbone of the SMARThealth GPT Rv1 is the Open AI GPT
model. To optimise the answer generation, we compared two pre-trained models: “gpt-3.5-turbo”
and “gpt-4”. In this answer generation step, we also designed three prompt instructions that were
customised to meet clinical needs, namely the length of response; length and use case; and length and
use case and one-shot learning. We evaluated model performance based on the RAGAS metrics.

4 Model performance evaluation and results

Step 1: Development of the encyclopaedia of Indian guidelines The final repository included
20 pregnancy-related guidelines. The included guidelines covered a range of pregnancy-related
conditions with a particular focus on the three key conditions addressed by the SMARThealth
Pregnancy project: anaemia, gestational diabetes, and hypertension in pregnancy.

Step 2.a: Context retrieval The answer quality (measured by ClinicalBERT and cosine similarity
scores) of the simplest vector-store based retriever did not improve with the contextual compression
retriever or the ensemble retriever, while the processing time increased, as shown in Supplementary
Table S1. The significant response time increase was deemed not feasible for our application,
considering the time pressure ASHAs face while providing care for women. Therefore, the simplest
vector-store based retriever was chosen to be evaluated in the next steps.

Step 2.b: Parameter optimisation Interestingly, the chunk size, chunk overlap, search type and
number of retrieved documents (k) parameters did not significantly impact model performance,
measured by RAGAS metrics (Table 1 and Supplementary Table S2). As a result, model parameters
were primarily chosen based on processing time and technical considerations. Accordingly, we
selected a chunk size of 1000, with an overlap of 200 characters. We chose the MMR search type
as health guidelines include several similar parts, and considering diversity in retrieval minimises
repetition and provides more comprehensive documents. Two retrieved documents (k=2) showed a
balance in result completeness and duplications.

Step 3: Answer generation The model choice and prompt template also minimally impacted
RAGAS metrics. We selected “gpt-4” due to its lower likelihood of hallucinations as demonstrated in
previous studies [15], and the one-shot prompt template as providing an example may result in more
predictable responses, required for our application.
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Figure 2: RAGAS metrics for different model parameters. (A) Prompt template (B) Model type

5 Initial clinical validation results

The model is currently undergoing a first round of clinical validation. During this round, 12 commu-
nity medicine clinicians and two obstetricians, across two states, rated the model generated answers
based on accuracy, completeness, appropriateness, and presence of bias on a 3-point Likert scale.
The 180 questions included in this round of clinical validation were developed with ASHAs directly
though focus groups and community engagement. Each question was rated by a different number of
clinicians between two and six. For 141 (79%) questions, all clinicians agreed that the AI generated
answer was completely or partially accurate; and that the AI-generated answer was either unbiased or
actively promoted equity. However, all clinicians rated the completeness of the AI generated answer
as adequate or comprehensive for only 49 (35%) questions. The clinical validation has allowed to
gain significant insight into the performance of the model, and importantly, has allowed us to identify
the cases where the model is failing (the answers with low ratings).

6 Future work

Our immediate next goal is the improvement of responses using prompt engineering and ensuring
the LLM includes safety features, such as moderation, bias and evaluation checks. In collaboration
with the clinical team, we also need to define topics that are beyond the scope of community health
workers, such as questions around medical prescriptions and interpretation of reports. Additionally,
we need to develop contextually relevant and gender transformative responses to sensitive queries
such as questions about predicting the gender of the baby.

In addition to rating the model’s answer to the 180 questions, clinicians also provided an ideal
response that is clear, uncontroversial, and appropriate for ASHAs. The answers provided by multiple
clinicians are being compiled and standardized by an obstetrician and a community medicine doctor.
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Figure 3: Iterative LLM improvement through the four phases of clinical evaluation

These answers will constitute the “gold-standard” responses and the repository of 180 question-
answer pairs can be used to fine-tune the model or improve its prompts. The LLM will be improved
iteratively based on the feedback from each phase of validation (Figure 3).

Future work must also address several impending challenges. These include scaling up the knowledge
base while ensuring efficient information retrieval, handling multi-level conversations, as well as
addressing critical data privacy concerns, such as communication storage management and learning
from user requests. A future avenue of work is the exploration of local models to overcome the
limitations imposed by the use of Open-AI models such as cost.

7 Conclusion

In this paper, we have described a comprehensive case study centred on the deployment of RAG to
develop SMARThealth GPT (version Rv1), an LLM tool to build the capacity of community health
workers. This model was developed to enhance guideline-based pregnancy care, showcasing the
impactful intersection of generative AI and healthcare education. The selection of RAG was driven by
clinical needs – traceability to source material, scalability across vast knowledge bases, and seamless
adaptability to evolving clinical guidelines.

Our process of model development and optimization encompassed the building of the encyclopaedia
of Indian pregnancy-related guidelines and quantitative evaluations of different retriever methods and
model parameters. SMARThealth GPT showcases the promising role of RAG and LLMs in medical
education and provides insights for future applications of generative AI in diverse educational settings.
We hope that the deployment of RAG models emerges as a strategy for surmounting educational
barriers, and the case study of SMARThealth GPT (version Rv1) can serve as a template for the
application of generative AI in education, particularly in non-traditional educational settings and
resource-constrained environments.
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