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Abstract
Current methods for Mendelian randomization (MR) analyses are restricted to single SNP
instruments, and cannot reliably infer causality with instruments that are mostly weak and
pleiotropic. We describe methods to overcome these limitations: key innovations are
construction of scalar instruments from multiple SNPs, use of a regularized horseshoe prior,
and hypothesis tests based on the marginal likelihood of the causal effect parameter. To
demonstrate the approach, we constructed genotypic instruments from unlinked trans-pQTLs
detected in two large GWAS studies of plasma proteins, and tested the top 20 genes for which
the aggregated effects of the instruments was associated with type 2 diabetes in the UK
Biobank cohort. The only protein with clear evidence of a causal effect on type 2 diabetes was
adiponectin, encoded by ADIPOQ: standardized log odds ratio -0.34 (95% CI -0.44 to -0.24)
using UK Biobank instruments. These results have implications for the design and analysis of
Mendelian randomization studies. Where the exposure under study is expression of a gene,
restricting the instruments to cis-acting variants is likely to miss causal effects. Tests based
on the marginal likelihood should supersede other methods of testing for causality in the
presence of pleiotropy.
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Introduction
Instrumental variable analysis with genetic instruments (“Mendelian randomization”) has
been widely used to infer causal effects of exposures (broadly defined to include behavioural
traits, biomarkers and gene expression levels) on diseases. The biggest methodological
challenge is how to infer causality when some of the genetic instruments have direct
(pleiotropic) effects on the outcome that are not mediated through the exposure under study.
These pleiotropic effects are usually not directly observed, and their distribution over the
instruments is unknown. Inference of causality in the presence of pleiotropic effects has relied
on makeshift procedures for the construction of estimators such as weighted medians that
downweight or exclude instruments that are outliers.1 The results depend on which estimator
is used: recent guidelines suggest that “investigators should pick a sensible range of methods
to assess the sensitivity of their findings.”2

The motivation for the work reported here was to infer causality from genetic instruments
constructed from trans-QTLs that perturb expression (as levels of the transcript or encoded
protein) of a gene. Mendelian randomization studies of gene expression are usually restricted
to cis-QTLs, on the basis that trans- effects are too weak and pleiotropic to be used as genetic
instruments.2 Weak instruments are excluded because weak estimators constructed from
ratios of estimated coefficients have unstable sampling properties where the denominators of
these ratios – the instrument-exposure coefficients – can take values close to zero. With
recently-described Bayesian methods that use an unregularized horseshoe prior to marginalize
over the distribution of pleiotropic effects to infer the causal effect,3,4 there is no need to
exclude weak instruments. However few real-world application of these methods have been
reported.

For studies that use trans-QTLs as instruments, a key limitation of all existing methods is
that they cannot aggregate the effects of multiple SNPs at each locus to construct unlinked
instruments that can be modelled as independent. The usual procedure is to select a single
SNP that is reliably associated with the exposure from each genomic region in which genetic
associations with the exposure have beeen detected. This does not use all the available
information about the effects of variants in the region on the exposure, and the results may
depend upon which variants are selected.

This paper describes methods that overcome these limitations, and demonstrates their
application to infer causal effects of circulating proteins on type 2 diabetes in the UK Biobank
cohort.

Methods

Statistical model

For a Mendelian randomization study with J unlinked genetic instruments, we specify a
model with three parameters:

• α vector of coefficients of effects of the instruments on exposure X.

• β vector of coefficients of direct (pleiotropic) effects of the instruments on outcome Y

• θ causal effect of X on Y

From summary statistics we have estimates α̂, γ̂ of the effects α, γ of the J instruments
on the exposure and the outcome, with corresponding standard errors sα, sγ . We assume
that these estimates have been adjusted for relevant covariates such as genetic background.
As the instruments are unlinked, we can model the estimates as independent Gaussian
variables conditional on the true values.
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α̂j ∼ N
(
αj , s

2
α(j)

)
γ̂j ∼ N

(
γj , s

2
γ(j)

)
The crude effect of each instrument on the outcome is the sum of the direct effect and the

causal effect.

γj = βj + θαj

With priors on β, θ we can compute the joint posterior distribution of these parameters
given γ̂, sγ , α̂, sα. As the form of the distribution of pleiotropic effects over loci is unknown,
any realistic statistical model has to specify a prior on these effects that encompassses a broad
family of symmetric distributions ranging from a spike-and-slab mixture to a Gaussian. One
such prior is the horseshoe,5 which has been applied to inference of causal effects from
Mendelian randomization using individual-level data3 or summary-level data.4 A limitation of
the original horseshoe is that the posterior distribution is difficult to sample from because the
curvature varies. This problem is not obvious when Gibbs sampling is used,4 but is revealed
by the divergence diagnostics that are implemented in the NUTS (No U-Turn Sampling)
algorithm used in Stan and other probabilistic programming languages.6 Another limitation
of the original horseshoe is that there is no way of specifying a realistic prior on the size of the
nonzero effects in the “slab” component. When modelling the genetics of complex traits, we
already know that the effects of common genetic variants on a complex trait are usually small.
The regularized horseshoe prior, known as the “Finnish horseshoe”, overcomes these
limitations as described below. We name our method “MR-Hevo”, using the Finnish word for
a horse to distinguish it from the recently-described “MR-Horse” method which uses an
unregularized horseshoe prior.4

Fig 1 shows the model as a directed acyclic graph in plate notation. The regularized
horseshoe prior for the regression coefficients β1, . . . , βJ is

βj ∼ N
(
0, τ2λ̃2

j

)
, λ̃2

j =
η2λ2

j

η2 + τ2λ2
j

Half-Cauchy priors are specified on the unregularized local scale parameters λj and the
global scale parameter τ .

λj ∼ C+ (0, 1)

τ ∼ C+ (0, sglobal)

The heavy tail of the half-Cauchy priors on λj allows some of the regression coefficients to
escape the shrinkage imposed by small values of the global parameter τ . These nonzero
coefficients are the slab component of the spike-and-slab distribution.

A weakly informative prior is specified for the regularization parameter η:

η2 ∼ Inverse-Gamma
(
ν

2
,
νs2slab
2

)
Even the largest direct effects will be regularized as a Gaussian with standard deviation η.

The scaling factor sslab is specified based on prior information about the expected size of the
largest direct effects. To constrain η so that the sampling algorithm does not diverge, we set
ν = 2; this translates to a half-t2df prior on the scale of the largest direct effects.
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Shrinkage coefficients and effective number of nonzero effects

Calculation of the shrinkage coefficients and the effective number of nonzero parameters does
not affect the results of statistical modelling, but is helpful for interpretation of what the
horseshoe prior is learning.

The shrinkage coefficient κj for the jth regression coefficient βj , with prior ∼ N
(
0, τ2λ2

j

)
and Gaussian likelihood with Fisher information Ij can be defined as the fraction by which
the information in the prior shrinks the posterior mean of βj from the maximum likelihood
estimate:

κj = 1−
τ2λ2

j

τ2λ2
j + I

=
1

1 + τ2λ2
j/Ij

This definition of the shrinkage coefficient ignores the regularization parameter η, which
imposes a lower bound on the shrinkage of βj . The prior on each shrinkage coefficient has a
horseshoe shape. The shrinkage coefficients κj can take values from 0 (no shrinkage) to 1
(complete shrinkage).

Ij is asymptotically equivalent to the inverse variance of the maximum likelihood estimate
of βj at θ = 0. When using summary statistics, the approximate variance of the maximum
likelihood estimate of the ratio βj = γj/αj can be calculated by the delta method.

The effective fraction f of nonzero coefficients is

f =
1

J

J∑
j=1

(1− κj)

The prior expectation of f is

E⟨f | τ⟩ = 1− 1

J

J∑
j=1

1

1 + τ2Ij

The information Ij on the coefficient βj depends on the sample sizes in the studies from
which the summary statistics α̂j and γ̂j were obtained. With more information, a smaller
value of τ is required to impose the same prior expectation of f . Piironen and Vehtari
recommend setting the scale of the prior on τ to be consistent with this prior expectation.6
For this analysis we have set the scale of the Cauchy prior on τ to so that the prior median τ0
is the value at which the prior expectation of f given I1, . . . , IJ is 0.2, and we have set the
scale of the Inverse-Gamma prior on η2 as 0.1, encoding our prior knowledge that effects of
any single genomic region on type 2 diabetes are of modest size. We examined the sensitivity
of the results to these prior settings as described below.

Computational methods

The NUTS algorithsm is implemented in several recently developed probabilistic
programming languages, including Stan, PyMC, and NumPyro. MR-Hevo is implemented in
NumPyro, which has a more robust implementation of the NUTS algorithm than Stan giving
fewer divergent transitions. To improve posterior geometry, the Cauchy distributions are
parameterized as mixture distributions (Gaussian with inverse gamma distribution of scale
parameter). A divergent transitions rate of less than 1 in 1000 is considered acceptable. This
criterion was met with the regularized horseshoe, but not with the original horseshoe for
which the divergent transition rate was about 5%. To obtain the marginal likelihood as a
function of the parameter of interest, we simply divide the posterior by the prior on that
parameter. We calculated the likelihood of the causal effect parameter θ by fitting a kernel
density to the posterior samples of θ, weighting each observation by the inverse of the prior. A
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quadratic function was fitted by least-squares to the logarithm of this likelihood function.
Where the log-likelihood is asymptotically quadratic, a confidence interval for θ and a test of
the null hypothesis θ = 0 can be obtained by standard methods. Where the log-likelihood is
not quadratic, inference should be based on the posterior distribution rather than on sampling
theory.

Constructing scalar instruments from multiple SNPs

Instrument-exposure coefficients

From summary statistics we have for each clump of exposure-associated SNPs a vector α̂u of
univariate coefficient estimates for the effect of the SNPs on the exposure. Multivariable
coefficient estimates α̂m are calculated by premultiplying the univariate coefficients by the
inverse of the correlation matrix ΣG between the SNP genotypes.

α̂m = Σ−1
G α̂u

The correlation matrix ΣG is obtained from a reference panel such as 1000 Genomes. A
shrinkage penalty (equivalent to ridge regression) can be imposed by adding a penalty factor
to the diagonal elements of ΣG. Where the correlation matrix is singular or ill-conditioned, a
pseudo-inverse can be used to calculate the multivariable coefficients. For an individual with
genotypes G at the exposure-associated SNPs, a locus-specific score S predicting the exposure
is calculated as G · α̂m.

Because the score S is calculated from the genotypes and the genotype-exposure
coefficients, we cannot use it as a genotypic instrument in a model of the relationship of the
genotype-outcome coefficients to the genotype-exposure coefficients. We can factor the dot
product G · α̂m as the product of two scalars: the magnitude of the multivariable coefficient
vector ∥α̂m∥ and a pseudo-genotype ∥G∥ρG,α̂m , where ρG,α̂m is the correlation between G
and α̂m, geometrically equivalent to the cosine of the angles between these vectors. We can
then substitute ∥α̂m∥ for the scalar coefficient estimate α̂ and S/∥α̂m∥ for the scalar
instrument Z as a pseudo-genotype in the statistical model. The derived coefficient for the
estimated effect of the instrument on the exposure is always positive; flipping the coding of
the alleles would flip the sign of ρG,α. We can calculate the standard error of α̂ as 1/

√
Iα

where Iα is the Fisher information on the slope of the linear regression of X on Z, given by

Iα = Nα
Var (Z)

σ2
X − α̂2Var (Z)

,

where Nα is the sample size of the study from which the estimated univariate coefficients
α̂u were obtained, Var (Z) is the variance of the scalar instrument Z estimated in a reference
panel, and σ2

X is the variance of the exposure X. If an estimate of σ2
X is not given, it can be

calculated from the allele frequency aj of the jth SNP, the standard error sG(j) of the jth
univariate coefficient estimate α̂u(j), and the sample size Nα as

σ2
X = 2aj (1− aj)

(
Nαs

2
G(j) + α2

u(j)

)
.

Instrument-outcome coefficients

For this study, where we have individual-level data in UK Biobank for the scalar instrument
Z and the outcome Y , we estimated the coefficients for the effect of the scalar instruments Z
on the outcome Y and its standard error by fitting logistic regression models. A method for
calculating the instrument-outcome coefficient γ̂ and its standard error from summary-level
data for SNP-outcome coefficients is described below.
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For each instrument we standardize the pseudo-genotypes Z to unit variance and scale the
coefficient estimates accordingly, so that the variance explained by the jth linear predictor
Zjα̂j , which can be interpreted as the “strength of the instrument”, is proportional to the
square of the scalar coefficient α̂j . The prior on the scale of the pleiotropic effects β of the
instruments Z is thus independent of the strength of the instrument.

Where only summary-level data are available for the genotype-outcome associations, an
estimate γ̂ of the coefficient for the effect of the scalar instrument Z on the outcome and its
standard error can be obtained using individual-level genotype data from a reference panel.
First, the vector γ̂m of estimated multivariable coefficients is calculated by premultiplying the
estimates γ̂u of the univariate coefficients by Σ−1

G . The coefficient γ̂ for the scalar instrument
Z is then estimated by minimizing the sum of the squared differences between the predictor
calculated from Z and the linear predictor calculated from the vector of genotypes G, where
the sum is taken over the genotypes of all n individuals in the reference panel.

n∑
i=1

(γZi −Gi · γ̂m)2

Equating to zero the derivative of this expression with respect to γ, substituting
∥Gi∥ρG,α̂m for Zi and factoring the dot product Gi · γ̂m as ∥Gi∥ρGi,γ̂m∥γ̂m∥ we obtain

γ̂ = ∥γ̂m∥
∑n

i=1 ρGi,γ̂m∥Gi∥2ρGi,α̂m∑n
i=1∥Gi∥2ρ2Gi,α̂m

The ratio in this expression can be recognized as a weighted average of the ratio
ρGi,γ̂m/ρGi,α̂m , with weights Z2

i . The standard error of γ̂ is 1/
√
Iγ where Iγ is the Fisher

information on the slope of the regression of Y on Z, given (for a logistic regression model) by

Iγ = NγVar (Z) p (1− p)

where Nγ and p are respectively the total sample size and the the proportion of cases in
the dataset from which the coefficient estimates γ̂u were obtained.

Example: effect of adiponectin on type 2 diabetes

As the methods described above overcome some of the limitations of standard methods for
design and analysis of Mendelian randomization studies, they may help to resolve
contradictory results obtained in earlier studies. As an example, we examine the effect of
adiponectin, encoded by the ADIPOQ gene, on the risk of type 2 diabetes. Low adiponectin
levels are strongly associated with type 2 diabetes. Of four previous studies using Mendelian
randomization to investigate whether low adiponectin levels cause type 2 diabetes, two
reported no evidence of a causal effect7,8 and two reported evidence for a causal effect.9,10 We
obtained coefficient estimates for the effects of SNPs on circulating levels of adiponectin from
two studies:

• The DeCODE study of 35559 Icelanders in which 4719 proteins on the SomaLogic v4
panel were measured in plasma.11 2207 aptamers on this platform that appeared to
cross-react with complement factor H were excluded. The criteria for identifying these
aptamers were: a trans-pQTL at the CFH locus and no cis-pQTL for the protein that
the aptamer was designed to detect and association of the trans- score with age-related
macular degeneration.

• The UK Biobank proteomics study of 54306 individuals in which 2923 proteins on the
Olink Explore panel were measured in plasma12
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The calculated standard deviation of adiponectin levels was 1.14 in the DeCODE dataset
and 0.83 in the UK Biobank dataset. In each genomic region where there was at least one
SNP-exposure association with p < 10−6, all SNPs with p < 10−6 separated by no more than
1 Mb were included in the calculation of the multivariable coefficient vector. This yielded 26
unlinked genotypic instruments from the DeCODE study, calculated from 567 SNPs, and 44
instruments from the UK Biobank proteomics study, calculated from 945 SNPs. Each
instrument was annotated with a list of nearby genes, and the genes on each list were matched
to a list of 256 genes for which SNP associations with type 2 diabetes have been reported at
p < 5× 10−8, extracted from GWAS Catalog.

The target dataset with genotypes and type 2 diabetes status was the UK Biobank cohort.
Ethical approval for the UK Biobank study was granted in 2011 by the North West
Multi-centre Research Ethics Committee (11/NW/0382), and renewed every five years since
then. Informed consent was obtained for all participants in UK Biobank. The work described
herein was approved by the UK Biobank under application number 23652.

Separate analyses were undertaken using the instruments constructed from these two
proteomics studies. When using instruments obtained from the UK Biobank proteomics study,
the 54306 participants who were in the proteomics study were excluded from the target
dataset.

Because the individuals in the proteomics studies were predominantly of European
ancestry, the target dataset was restricted to individuals of European ancestry. Of 451447
unrelated individuals with nonmissing phenotype and genotype data, 37981 were classified as
cases of type 2 diabetes and the all others were classified as noncases.

For each instrument, the pseudo-genotypes were standardized to unit variance and a
logistic regression model was fitted with type 2 diabetes as outcome variable. The other
covariates were sex and the first five principal components of the SNP relationship matrix.
The coefficients for the effect of each scalar instrument on type 2 diabetes were used to fit the
model. Cis-pQTLs were excluded.

For comparison with inference based on the marginal likelihood of the causal effect
parameter, three widely-used estimators for the causal effect were calculated from the
coefficient ratios: the inverse-variance weighted mean of the coefficient ratios which assumes
no pleiotropy, the weighted median, and the penalized weighted median which downweights
outliers.1 The coefficient ratio estimates and their standard errors were calculated by the delta
method, based on second-order Taylor expansions for the moments of the distribution of the
ratio of two independent normally-distributed variables. Standard errors for the weighted
median and penalized weighted median estimators were calculated by a parametric bootstrap
method. To generate the sampling distribution of the weighted median, we used 4000 draws
from the posterior distribution of the regularized shrinkage parameters λ̃j and the instrument
effects αj . At each draw we sampled the direct effects βj of J new genetic instruments, and
sampled the coefficient ratio estimates γ̂j (calculated by the delta method) conditional on βj ,
αj and the standard errors s α̂, β̂ of these estimates. The standard deviation of the weighted
median of the coefficient ratio estimates obtained from this posterior predictive distribution
was calculated and used to obtain p-values and confidence intervals.

Results

Table S1 shows summary statistics for the genetic instruments for adiponectin derived from
each pQTL study. There is suprisingly little overlap between the 24 trans-pQTLs detected in
the DeCODE study and the 43 trans-pQTLs detected in UK Biobank. Only eleven
trans-pQTLs – gene-poor regions at 219.4 Mb on chromosome 1, 34.2 Mb on chr 6, 139.5 Mb
on chromosome 6, and regions containing ALAS1, ADRB1, SPON1, PDE3A, ABCB9,
CDH13, AKR1B1P7, and MIR6813 – were detected in both studies at a threshold of
p < 10−6. This may reflect the low power to detect weak trans-pQTLs even in these large

April 8, 2024 7/23

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2023.12.15.23300008doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.15.23300008
http://creativecommons.org/licenses/by-nd/4.0/


datasets. In both studies there is a cis-QTL at the ADIPOQ transcription site. In the
DeCODE study an extended cis-pQTL is detected 2 Mb upstream of the transcription site.
Only two pQTLs – SPON1 and APOC1 – contained genes that were listed in GWAS Catalog
as associated with type 2 diabetes.

Figure 2 shows that 22 of 24 trans-pQTL instruments from DeCODE and 39 of 43
trans-pQTL instruments from UKBB are inversely associated with type 2 diabetes. The
cis-pQTL instruments are not associated with type 2 diabetes.

Table 2 shows the estimates of the causal effect parameter obtained by each method, as log
odds ratios for unit change in adiponectin levels. The maximum likelihood estimates obtained
by marginalizing over direct effects were -0.4 (95% CI -0.52 to -0.27) using DeCODE
instruments and -0.34 (95% CI -0.44 to -0.24) using UK Biobank instruments. In comparison
with the weighted median or penalized weighted median estimators, the confidence intervals
obtained from the likelihood function were wider and the p-values were more conservative.

Supplementary Figure S2 shows the posterior distribution and log-likelihood of the causal
effect parameter using UK Biobank instruments. As expected with this large sample size, the
posterior distribution is approximately Gaussian and the log-likelihood is well approximated
by a quadratic function. Supplementary Table 1 shows posterior summaries of the model
parameters. For each of the two sets of instruments, the prior median of the global shrinkage
parameter τ was set to a value that translated to an expectation of 0.2 for the effective
fraction f of instruments with nonzero pleiotropic effects. The posterior medians of τ and f
were much lower than the prior medians. Consistent with this low estimate of the fraction of
instruments that have nonzero pleiotropic effects, Figure 3 shows that only a few instruments
have clearly escaped shrinkage: of the DeCODE instruments these were APOC1 CDH13 and
ABCB9, and of the UK Biobank instruments these were CDH13, ABCB9 and CCND2.

Specifying different values for the scale of the prior on the global shrinkage parameter τ
which regulates the number of nonzero pleiotropic effects, or for the scale of the prior on the
regularization parameter η which regulates the size of these effects, did not appreciably alter
the results.

Fig S3 compares, for the top 20 genome-wide aggregated trans- effect scores associated
with type 2 diabetes in the UK Biobank cohort, the p-values calculated from the weighted
median and penalized weighted median estimators (using the procedure described above to
calculate the standard deviation of these estimators), with p-values based on the marginal
likelihood. ADIPOQ was the only gene for which p-values based on the marginal likelihood
provided strong evidence of a causal effect. The p-values obtained from tests based on the
sampling distribution of the weighted median were broadly concordant with those obtained
from tests based on the marginal likelihood but were less extreme. This is to be expected, as
the median is less efficient than the maximum likelihood estimate.

Discussion
Mendelian randomization analysis, combined with related approaches including
transcriptom-wide association studies and co-localization analysis, has been widely used to
infer causal effects of gene expression on outcomes. The most widely-used methods use
summary statistics for the coefficients for the effect of each SNP on the outcome and on the
exposure from non-overlapping samples.13 “Estimators” for the causal effect are constructed
from the ratios of SNP-outcome to SNP-exposure coefficients. Bayesian methods for
marginalizing over the unobserved pleiotropic effects to infer the causal effect parameter in a
Mendelian randomization study have been described previously.3,4 The methods described in
this paper extend this approach: (1) by allowing unlinked scalar genetic instruments to be
constructed from all SNPs associated with the exposure without having to restrict to one SNP
from each genomic region; (2) by using a regularized horseshoe prior which allows encoding of
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prior knowledge that genetic effects of a single genomic region on a complex trait are usually
small; and (3) by constructing classical hypothesis tests based on the likelihood of the causal
effect parameter.

The difficulties associated with using ratios of coefficients to construct estimators are
eliminated in a Bayesian framework, where nothing is “estimated”. Where the log-likelihood is
asymptotically quadratic, statistical theory guarantees that the maximum-likelihood estimate
has the sampling properties that are desirable for an estimator: consistency, minimum
variance and unbiasedness. Where the log-likelihood is not approximately quadratic, it is
preferable to base inference directly on the likelihood function rather than on the sampling
properties of an estimator. Because Bayesian inference does not rely on the sampling
properties of ratios, there is no need to exclude “weak instruments”. This makes it possible to
integrate Mendelian randomization into genome-wide aggregated trans- effects analysis, which
attempts to identify core genes on which the polygenic effects of many variants coalesce via
trans- effects to influence complex traits.14 In this approach, the genetic instruments are
clumps of SNPs with trans- effects on the expression of a gene as transcript or circulating
protein.

Using instruments constructed from trans-pQTLs in two different studies that used
different assays for the protein, there is clear support for a causal effect of low adiponectin
levels on type 2 diabetes. This is apparent even without a formal statistical analysis, as the
signs of the effects of the instruments are almost all negative. Earlier studies that failed to
detect a causal effect were restricted to cis-acting SNPs.7,8 Some of these cis- acting SNPs
affect not only the measured levels but also the splicing of the gene product,15 so their effects
on measured adiponectin levels do not necessarily correspond to effects on the functional
protein. The most direct human evidence for a causal effect of low adiponectin on type 2
diabetes comes from reports of families in which type 2 diabetes segregated with rare
loss-of-function variants in ADIPOQ.16 In the obese mouse model, overexpression of
adiponectin in the liver protected against diabetes.17 Though adiponectin analogues have
been studied experimentally, none has reached the clinical stage of drug development.
Misleading results from cis- Mendelian randomization studies may have discouraged
development of a possible drug target.

Where, as in this example, the exposure under study is a gene transcript or a circulating
protein, study designs that use only cis- acting variants as genetic instruments have been
advocated.18 The rationale for thse “cis-MR” designs is that cis- acting variants are less likely
to have pleiotropic effects on the outcome that are not mediated through the level of the
circulating protein. This supposition is questionable: especially where cis-acting variants
affect the splicing of the transcript, the relationship between measured levels and functional
activity of the protein may be broken. More fundamentally, restriction to cis-QTLs focuses on
the genes least relevant to disease risk. Most disease/trait-associated SNPs are not
co-localized with cis-eQTLs detected in relevant cell types.19 Recent studies have shown that
disease-relevant genes are enriched with redundant enhancer domains and depleted of
cis-eQTLs of large effect, as would be expected if perturbation of these genes has large effects
on fitness.20,21 Most of the SNP heritability of gene expression is attributable to trans-
effects.22

Bayesian hypothesis testing is based on the Likelihood Principle: all information conveyed
by observations that supports one model or one parameter value over another is contained in
the ratio of the likelihoods of these models or parameter values. The likelihood-based
approach to causal inference described in this paper is aligned with the not yet
universally-accepted principle that causal inference is just a special case of statistical
inference, requiring attention to assumptions about exchangeability between observations (of
exposure and outcome) and predictions of the effect of perturbing the exposure.23 In this
decision-theoretic framework there is no need to invoke counterfactuals24 or to require causal
effects to be expressed as marginal rather than as conditional effects. In this example, the
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likelihood of a model with a causal effect parameter and only a few nonzero pleiotropic effects
is higher than the likelihood of a model with no causal effect that requires more nonzero
pleiotropic effect parameters to adjust to the data to obtain the same fit. Thus even though
the causal effect parameter is not identifiable because for any setting of the causal effect
parameter we can find a setting of pleiotropic effect parameters that has the same fit to the
data, a formal hypothesis test can be obtained. With horseshoe priors, which allow the
distribution of the pleiotropic effects to be learned from the data, this model comparison is
performed “under the hood,”25 without the computational inconvenience of having to average
over all possible partitions of the variables into two disjoint sets (spike-and-slab) as in the
contamination mixture model26 or over different settings of the number of nonzero effect
parameters.27 A corollary of inference based on model comparison is that reliable inference of
causality in the presence of pleiotropy requires a relatively large number of unlinked genetic
instruments to allow learning the distribution of pleiotropic effects.

The statistical model assumes that the effects of the instruments on the exposure and their
direct effects on the outcome are independent in magnitude and direction: this has been
denoted the InSIDE (Instrument Strength Independent of Direct Effect) assumption28 though
this term has also been used for the less stringent assumption that “the magnitude of the
pleiotropic effects are independent of the SNP-exposure associations.”29 With the procedure
described here for constructing scalar instruments, the estimates for the coefficients of the
instrument-exposure effects can take only positive values (a negative effect would simply
correspond to flipping of the allele coding), and the direct effects are assumed to arise from a
distribution with zero mean. This assumption that the instrument-exposure effects and the
direct effects are uncoupled in direction is termed “balanced pleiotropy”. It is possible in
principle to infer a causal effect if the instrument-exposure effects and the direct effects are
assumed to be uncoupled in magnitude even if they are coupled in direction28 but it is not
obvious why this would be a biologically realistic assumption.

If the statistical model is extended to allow the instrument-exposure effects and the direct
effects to be coupled in magnitude and direction, it is not possible to infer causality without
other information about pleiotropy because models with and without a causal effect can fit
the data equally well with the same number of adjustable parameters. It may be more useful
to formulate and test possible hypotheses about mechanisms that could give rise to coupling
of instrument-exposure effects with direct effects on the outcome, as this may identify a
shared aetiological pathway. For adiponectin and type 2 diabetes, for instance, coupling could
arise if the pQTLs for adiponectin are QTLs for a trait such as obesity that causes low
adiponectin levels and increased risk of type 2 diabetes. In this situation other circulating
proteins such as leptin that are biomarkers for obesity would show a similar pattern of
apparently causal pQTL effects on type 2 diabetes. More generally, pQTLs that have
pleiotropic effects should be detectable on a heat map of correlations between genotypic scores
for multiple proteins or transcripts.

Guidelines for the design of Mendelian randomization studies have recently been updated.2
Based on the work described here, some suggestions for revisions to these guidelines are listed
below.

• For inference of causal effects where pleiotropic effects may be present, the optimal
method is to compute the likelihood of the causal effect parameter by marginalizing over
the distribution of pleiotropic effects. This is robust to the inclusion of weak
instruments, and is computationally efficient with modern tools for Bayesian
computation. Investigators should not “pick a range of methods”, but assess the
sensitivity of their results to prior assumptions about the distribution of unobserved
pleiotropic effects. There is no advantage to using tests based on the sampling
distribution of estimators such as the weighted median, when the likelihood can be
calculated as a function of the parameter of interest.
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• There is no need to restrict the selection of SNPs to one SNP from each genomic region:
the methods described here allow scalar instruments to be constructed from multiple
SNPs. This maximize the strength of the genetic instruments that can be obtained for
each genomic region, and ensures that the results do not depend upon an arbitrary
choice of which SNP to select from each region.

• Study designs that rely on using variants from a single genomic region, for instance
using only cis-acting variants to study the effects of a gene transcript or gene product
on a disease or trait, are likely to give misleading results and should be deprecated.
Because cis- acting variants are likely to affect the function of the gene through
mechanisms (such as altered splicing) other than the measured levels of the transcript or
gene product, it is preferable to report the effects of a cis-QTL separately.
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Fig 1. MR-Hevo model as a directed acyclic graph in plate notation. Stochastic nodes are
shown as ellipses with continuous borders, deterministic nodes as ellipses with dashed borders.
Observed nodes are shaded.
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Fig 2. Plot of coefficients of regression of type 2 diabetes on each instrument against
coefficients of regression of adiponectin levels on each instrument. Size of each data point is
inversely proportional to the standard error of the ratio estimate. The value of each estimator
is shown as the slope of a line passing through the origin. Cis-pQTLs are excluded from these
estimates.
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Fig 3. : Effects of trans-QTLs for adiponectin on type 2 diabetes: posterior medians and
80% credible intervals for direct effects and shrinkage coefficients
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Tables

Table 1. Posterior summaries of global parameters of MR-Hevo models of the effect of
instruments for adiponectin levels on type 2 diabetes

Posterior distribution

Parameter Prior median Median 10th centile 90th centile

DeCODE
Global shrinkage τ 0.07 0.008 0.004 0.014
Regularization η 0.10 0.099 0.063 0.189
Fraction nonzero pleiotropic effects f 0.20 0.036 0.014 0.078
Causal effect θ 0.00 -0.399 -0.470 -0.326

UK Biobank
Global shrinkage τ 0.08 0.008 0.005 0.013
Regularization η 0.10 0.091 0.059 0.170
Fraction nonzero pleiotropic effects f 0.20 0.033 0.015 0.063
Causal effect θ 0.00 -0.340 -0.404 -0.271
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Table 2. Effect of adiponectin on type 2 diabetes: comparison of causal effect parameter
estimates obtained with different methods

Estimator Estimate 95% CI p-value

DeCODE instruments
Weighted mean -0.27 -0.32, -0.22 5× 10−25

Weighted median -0.27 -0.47, -0.07 0.009
Penalized weighted median -0.35 -0.47, -0.22 3× 10−8

Marginal likelihood -0.40 -0.52, -0.27 2× 10−9

UK Biobank instruments
Weighted mean -0.26 -0.3, -0.22 2× 10−37

Weighted median -0.17 -0.3, -0.04 0.01
Penalized weighted median -0.27 -0.4, -0.14 3× 10−5

Marginal likelihood -0.34 -0.44, -0.24 1× 10−10
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Fig S1. Pairs plot of posterior samples using UK Biobank instruments for adiponectin levels
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Fig S2. Posterior density and log-likelihood of causal effect parameter θ for effect of
adiponectin on type 2 diabetes, using UK Biobank instruments
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Fig S3. Comparison of p-values from weighted median estimators with p-values from
marginal likelihood, for top 20 associations of genome-wide aggregated trans- scores with type
2 diabetes in UK Biobank cohort
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Supplementary Tables

Table S1. Summary statistics for regression of type 2 diabetes and adiponectin levels on
genetic instruments

Study Chr Start
(Mb)

End
(Mb)

Nearby genes γ̂ SE(γ̂) α̂ SE(α̂) θ̂

DeC 1 9.9 10.4 . -0.011 0.005 0.0361 0.0061 -0.309
DeC 1 11.8 11.8 . -0.014 0.005 0.0329 0.0061 -0.424
DeC 1 77.5 78.2 . 0.004 0.005 0.0345 0.0061 0.127
DeC 1 219.4 219.6 . -0.030 0.005 0.0510 0.0061 -0.598
DeC 3 49.7 49.9 AMIGO3, CDHR4, RNF123,

TRAIP, UBA7
-0.024 0.005 0.0277 0.0061 -0.911

DeC 3 52.2 53.2 ALAS1, ALDOAP1, TWF2,
TWF2-DT, WDR82

-0.016 0.005 0.0474 0.0061 -0.353

DeC 3 183.6 184.5 ABCC5, ABCC5-AS1,
YEATS2, YEATS2-AS1,
Y_RNA

0.006 0.005 0.0567 0.0061 0.100

DeC 3 185.7 188.0 ADIPOQ, ADIPOQ-AS1,
ST6GAL1, TBCCD1, TRA2B

0.005 0.005 0.3289 0.0058 0.016

DeC 4 88.8 88.8 FAM13A -0.022 0.005 0.0310 0.0061 -0.754
DeC 5 53.8 54.1 ARL15, ASS1P9, MIR581,

RN7SL801P, RNU6-272P
-0.024 0.005 0.0481 0.0061 -0.510

DeC 6 34.2 34.4 . -0.022 0.005 0.0352 0.0061 -0.644
DeC 6 139.5 139.5 . -0.025 0.005 0.0312 0.0061 -0.847
DeC 6 163.3 163.3 . -0.002 0.005 0.0254 0.0061 -0.072
DeC 8 125.4 125.5 TRIB1 -0.014 0.005 0.0438 0.0061 -0.337
DeC 10 17.8 18.0 MIR511, MRC1, SLC39A12 -0.003 0.005 0.0393 0.0061 -0.087
DeC 10 114.0 114.1 ADRB1 -0.016 0.005 0.0326 0.0061 -0.521
DeC 11 14.1 14.9 COPB1, CYP2R1, PSMA1,

RRAS2, SPON1,
SPON1-AS1

-0.004 0.005 0.0390 0.0061 -0.105

DeC 12 20.2 20.4 PDE3A, PDE3A-AS1 -0.013 0.005 0.0524 0.0061 -0.257
DeC 12 106.7 106.9 RFX4, RIC8B -0.011 0.005 0.0355 0.0061 -0.306
DeC 12 122.7 124.4 ABCB9, ARL6IP4, VPS37B,

Y_RNA, ZNF664
-0.004 0.005 0.1037 0.0060 -0.035

DeC 16 81.5 81.5 CMIP, PPIAP51 -0.026 0.005 0.0540 0.0061 -0.495
DeC 16 82.5 83.0 CDH13, MIR8058, RN7SL134P 0.000 0.006 0.0678 0.0061 0.002
DeC 17 67.4 67.4 . -0.010 0.005 0.0334 0.0061 -0.296
DeC 19 33.3 33.5 AKR1B1P7, CEBPA, CEBPG,

PEPD, RPS3AP50
-0.027 0.005 0.0628 0.0061 -0.441

DeC 19 44.9 44.9 APOC1, APOE, NECTIN2,
TOMM40

-0.048 0.005 0.0327 0.0061 -1.518

DeC 20 64.1 64.1 LKAAEAR1, MIR6813,
OPRL1, RGS19, TCEA2

-0.026 0.005 0.0341 0.0061 -0.793

UKB 1 11.8 11.8 . -0.007 0.006 0.0226 0.0045 -0.342
UKB 1 30.9 31.1 . -0.009 0.006 0.0316 0.0045 -0.285
UKB 1 109.9 110.0 . -0.012 0.006 0.0314 0.0045 -0.401
UKB 1 218.7 219.6 . -0.025 0.006 0.0392 0.0045 -0.647
UKB 2 226.0 226.6 -0.037 0.006 0.0481 0.0045 -0.787
UKB 3 38.4 38.5 ACVR2B, ACVR2B-AS1,

RPL18AP7, XYLB, Y_RNA
-0.003 0.006 0.0255 0.0045 -0.127

UKB 3 46.8 47.5 BOLA2P2, CCDC12, SCAP,
SETD2, SNORD13P3

-0.020 0.006 0.0749 0.0045 -0.266

UKB 3 48.5 53.5 ABHD14A, ABHD14A-ACY1,
ZMYND10, ZMYND10-AS1,
ZNF652P1

-0.010 0.006 0.1056 0.0045 -0.099
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UKB 3 132.5 132.7 ACAD11, ACKR4, NPHP3,
NPHP3-ACAD11, UBA5

0.003 0.006 0.0223 0.0045 0.145

UKB 3 157.1 157.1 . 0.008 0.006 0.0238 0.0045 0.337
UKB 3 186.5 187.0 ADIPOQ, ADIPOQ-AS1,

SNORD2, ST6GAL1, TBCCD1
0.001 0.006 0.2639 0.0043 0.003

UKB 4 55.4 55.7 CLOCK, LINC02928,
SRD5A3-AS1, TMEM165,
Y_RNA

-0.006 0.006 0.0247 0.0045 -0.245

UKB 4 88.7 88.8 FAM13A, FAM13A-AS1,
HERC3

-0.031 0.006 0.0291 0.0045 -1.076

UKB 5 54.0 54.0 ARL15 -0.031 0.006 0.0808 0.0045 -0.379
UKB 5 158.5 158.6 -0.021 0.006 0.0258 0.0045 -0.841
UKB 6 34.2 34.4 . -0.021 0.006 0.0296 0.0045 -0.712
UKB 6 43.8 43.8 . -0.027 0.006 0.0240 0.0045 -1.145
UKB 6 139.5 139.5 . -0.027 0.006 0.0288 0.0045 -0.963
UKB 6 153.1 153.2 . -0.014 0.006 0.0238 0.0045 -0.602
UKB 6 163.7 163.7 . -0.014 0.006 0.0221 0.0045 -0.672
UKB 7 17.8 18.0 MRM3P2, SNX13 -0.007 0.006 0.0238 0.0045 -0.311
UKB 7 77.5 78.0 APTR, PHTF2, RSBN1L,

TMEM60, Y_RNA
-0.006 0.006 0.0376 0.0045 -0.169

UKB 7 150.5 150.7 ALDH7A1P3, GIMAP4,
GIMAP7, STRADBP1,
TRPC6P3

-0.010 0.006 0.0251 0.0045 -0.392

UKB 8 12.8 12.8 LINC03019 -0.026 0.006 0.0265 0.0045 -1.012
UKB 8 71.5 71.6 EYA1 -0.014 0.005 0.0232 0.0045 -0.605
UKB 9 129.1 129.2 CRAT, DOLPP1, IER5L,

IER5L-AS1, PTPA
-0.011 0.006 0.0304 0.0045 -0.375

UKB 9 134.2 134.2 . -0.004 0.006 0.0221 0.0045 -0.173
UKB 10 114.0 114.1 ADRB1 -0.016 0.006 0.0269 0.0045 -0.614
UKB 11 14.1 14.9 COPB1, CYP2R1, PSMA1,

RRAS2, SPON1,
SPON1-AS1

-0.016 0.006 0.0397 0.0045 -0.398

UKB 12 4.2 4.3 CCND2, CCND2-AS1 -0.079 0.007 0.0262 0.0045 -3.120
UKB 12 20.2 20.5 PDE3A, PDE3A-AS1, UBE2L2 -0.021 0.006 0.0667 0.0045 -0.320
UKB 12 56.5 57.3 ATP5F1B, BAZ2A, STAT6,

TAC3, ZBTB39
-0.011 0.006 0.0377 0.0045 -0.289

UKB 12 121.9 124.2 ABCB9, ARL6IP4, Y_RNA,
ZCCHC8, ZNF664

-0.018 0.006 0.1073 0.0045 -0.165

UKB 14 24.4 24.4 NYNRIN 0.000 0.006 0.0232 0.0045 -0.008
UKB 16 81.5 81.6 CMIP, MIR7854, PPIAP51 -0.029 0.006 0.0678 0.0045 -0.437
UKB 16 82.6 83.7 CDH13, CDH13-AS1, MIR3182,

MIR8058, RN7SL134P
0.000 0.006 0.1086 0.0045 -0.004

UKB 17 7.2 7.3 . 0.007 0.006 0.0330 0.0045 0.202
UKB 17 47.9 48.0 . -0.003 0.006 0.0270 0.0045 -0.108
UKB 18 63.2 63.2 BCL2 -0.040 0.006 0.0227 0.0045 -1.841
UKB 19 13.0 13.1 DAND5, LYL1, NFIX 0.009 0.006 0.0350 0.0045 0.273
UKB 19 33.3 33.6 AKR1B1P7, CEBPA, CEBPG,

PEPD, RPS3AP50
-0.025 0.006 0.0466 0.0045 -0.551

UKB 20 7.3 7.4 LINC01706, MIR8062 -0.002 0.006 0.0229 0.0045 -0.100
UKB 20 52.6 52.6 LINC01524 -0.008 0.006 0.0227 0.0045 -0.354
UKB 20 64.1 64.1 MIR6813, OPRL1, RGS19,

TCEA2
-0.020 0.006 0.0265 0.0045 -0.766

Genes in bold are those for which GWAS Catalog lists associations with type 2 diabetes detected at p < 5 ×
10−8.
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