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This work presents an on-device edge-learning for cardiac abnormality detection by developing a hybrid and spiking
form of 2-Dimensional (time-frequency) Convolutional Long-Short-Term Memory (ConvLSTM2D) with Closed-form
Continuous-time (CfC) neural network (sCCfC), which is a bio-inspired shallow network. The model achieves an F1
score and AUROC of 0.82 and 0.91 in cardiac abnormalities detection. These results are comparable to the non-spiking
ConvLSTM2D-CfC (ConvCfC) model1. Notably, the sCCfC model demonstrates a significantly higher energy effi-
ciency with an estimated power consumption of 4.68 µJ/Inf (per inference) on an emulated Loihi’s neuromorphic chip
architecture, in contrast to ConvCfC model’s consumption of 450 µJ/Inf on a conventional processor. Additionally,
as a proof-of-concept, we deployed the sCCfC model on the conventional and relatively resource-constrained Radxa
Zero, which is equipped with Amlogic S905Y2 processor for on-device training, which resulted in performance im-
provements. After initial training of 2 epochs on a conventional GPU, the F1 score and AUROC improved from 0.46
and 0.65 to 0.56 and 0.73 respectively with 5 additional epochs of on-device training. Furthermore, when presented
with a new dataset, the sCCfC model showcases strong out-of-sample generalization capabilities that can constitute a
pseudo-perspective test, achieving an F1 score and AUROC of 0.71 and 0.86. The spiking sCCfC also outperforms the
non-spiking ConvCfC model in robustness regarding effectively handling missing ECG channels during inference. The
model’s efficacy extends to single-lead electrocardiogram (ECG) analysis, demonstrating reasonable accuracy in this
context, while the focus of our work has been on the computational and memory complexities of the model.

Keywords: Spiking neural networks, Electrocardiogram analysis, Energy efficiency, On-device fine-tuning, Gener-
alization, Robustness.

I. INTRODUCTION

Many technologies have been created to track heart ac-
tivity, and because it is non-invasive and reasonably priced,
the Electrocardiogram (ECG) has become a popular option.
The 12-lead ECG is considered the gold standard for assess-
ing cardiac electrical activity in clinical settings2. This re-
search introduces a Spiking Neural Network (SNN) that in-
corporates a bio-inspired Neural Circuit Policy (NCP)3 based
model developed on 2-Dimensional (time-frequency)4 Con-
volutional Long-Short-Term Memory (ConvLSTM2D)5. This
model is explicitly designed for abnormality detections where
large models cannot be deployed and achieves an average F1
score of 0.82. In contrast to conventional artificial neural net-
works, SNNs exhibit significantly lower energy consumption
while maintaining a reasonable performance, primarily due to
their ability to generate sparse output spike trains when the in-
tegrated input surpasses a predetermined threshold6. The aim
of developing an SNN architecture in this work was to demon-
strate a feasibility study for a significant reduction in power
consumption of the ECG abnormality detection system, open-
ing new avenues for edge-AI and near-sensory computing in
medical devices. Therefore, the mere choice of a 12-lead ECG
is for that purpose only, and this method can be expanded to
other domains, including single-lead ECGs and implantable
cardiac monitoring devices (ICMs).

Considering the promise of SNNs in enabling highly
power-efficient smart systems, this research is influenced by

the progress made in bio-inspired Neural Circuit Policy (NCP)
models, which are designed to aid healthcare professionals in
detecting cardiac abnormalities1. Unlike traditional Recurrent
Neural Networks (RNNs) such as Long Short-Term Mem-
ory (LSTM), these NCP structured models effectively address
the complexities inherent in learning long-term dependencies
within specialized tasks, as expounded upon in the investiga-
tion conducted by Lechner et al. 3 . Furthermore, the research
by Lechner et al. 3 substantiates the computational superior-
ity of the NCP model when compared to contemporary deep
learning models.

Unlike traditional deep neural network models that heav-
ily depend on clean input data, the NCP model displays en-
hanced robustness when faced with transient disruptions com-
monly encountered in real-world scenarios3. Moreover, the
NCP model’s simplified and sparse network structure facili-
tates easier interpretation3. Furthermore, its minimal memory
requirements render it well-suited for deployment on various
hardware platforms1. An important feature of the NCP model
is its capacity to perform effectively with a relatively modest
number of neurons. The present study’s SNN model achieved
an F1 accuracy score of 0.82. The envisioned application of
this research, as depicted in Figure 1, holds the potential for
expansion onto hardware, thus enabling seamless integration
into wearable devices.

In the current study, on-chip learning was also conducted,
demonstrating that the current model can undergo fine-tuning
directly on the chip. This allows the model to be customized
based on a patient’s specific data, enhancing its ability to gen-
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eralize across different patients. The on-chip tuning improves
the F1 score and AUROC from 0.31 and 0.63 to 0.45 and 0.72
when training with 640 samples is performed.

Detection

FIG. 1. The proposed model and use for wearable devices. On-
device and real-time detection and identification of abnormalities,
harnessing the potential of powerful neuromorphic chips and spiking
neural networks.

A. Background

Medical diagnostics has witnessed substantial advance-
ments in abnormality detection owing to the introduction of
state-of-the-art models. For instance, Petmezas et al. 7 intro-
duced a Hybrid CNN-LSTM Network tailored to classify spe-
cific heartbeat types using ECG data, delivering exceptional
sensitivity (97.87%) and specificity (99.29%). On another
front, Chen et al. 8 engineered a model comprising five CNN
blocks, a bidirectional RNN layer, an attention layer, and a
dense layer, culminating in an impressive F1 score of 0.84
for detecting various ECG abnormalities. Huang et al. 9 took
a rapid approach, introducing a compression residual convo-
lutional neural network-based model designed for ECG clas-
sification, which achieved an average accuracy of 98.79%.
Furthermore, Huang et al. 10 unveiled a shallow S4D model,
which demonstrated remarkable robustness with an F1 score
of 0.81 and a remarkable capability to manage situations in-
volving incomplete data inputs.

Shifting our focus to innovations in the NCP model domain,
Mathias Lechner’s NCP model, initially devised for car driv-
ing applications employing camera input, stands out for its
unique emphasis on the road’s horizon, a departure from the
conventional CNN models that typically prioritize roadside
features. The NCP model’s dedicated attention to the road’s
horizon equips it to capture and learn global driving features
adeptly. This prowess is further evidenced by the remarkable
variance explained by the first principal component (PC1),
reaching an impressive 92%3. Such proficiency in compre-
hending global driving features holds significant promise for

enhancing decision-making in car driving applications. Addi-
tionally, the field has seen advancements from Ramin Hasani,
who has pushed the boundaries of Liquid Time-constant Net-
works by developing closed-form continuous-time neural net-
works, ushering in improved computational speed and effi-
ciency11. Recently, Huang et al. 1 has developed an NCP-
based model for cardiac abnormality detection.

Like bio-inspired NCP models, spiking neural networks
have found their application in cardiology. This utilization
of SNNs showcases their potential to reduce power consump-
tion and underscores their applicability in addressing real-
world challenges such as ECG classification. Yan, Zhou, and
Wong 12 developed an SNN for a portable device to classify
ECG beats and achieve better energy efficiency and enables
a daily monitoring and classifying of ECG. Rana and Kim 13

developed spike-timing-dependent plasticity (STDP) for ECG
classification. The model weights are trained according to
spike signal timing and reward or punishment signals to save
power on a portable device. Feng et al. 14 developed an ar-
tificial neural network for ECG classification and transferred
into spiking.

II. PREREQUISITE

A. Spiking Neural Network (SNN)

Spiking Neural Networks (SNNs) are similar to Artificial
Neural Networks (ANNs) in that they utilize computing units
with continuous activation values and a set of weighted in-
puts, as described by Tavanaei et al. 6 . In this SNN architec-
ture, one finds interconnected spiking neurons connected by
synapses characterized by their adjustable scalar weights. It’s
important to note that SNNs encompass two distinct types of
synapses: excitatory synapses, which lead to an increase in
the membrane potential upon receiving input, and inhibitory
synapses, which induce a decrease in the membrane potential
upon stimulation6. The generation of a spike in an SNN de-
pends on the cumulative effect of stimulus changes surpassing
a certain threshold. This feature contributes to the network’s
energy-efficient properties, as explained in the same source6.
The implementation of the SNN in this research was carried
out utilizing the "snnTorch" package15.

B. Neural circuit policies (NCP)

The NCP model, as introduced by Lechner and colleagues
in their research3, constitutes an end-to-end learning system
characterized by convolutional layers. This model draws its
foundational inspiration from the intricate neural wiring dia-
gram of the C. elegans nematode, as extensively detailed in
Lechner et al. 3 . Within the biologically inspired framework
of the NCP model, four distinct neural layers are at play: sen-
sory neurons (Ns), interneurons (Ni), command neurons (Nc),
and motor neurons (Nm). A specific number of synapses are
strategically introduced to facilitate the seamless flow of in-
formation between each consecutive layer, thereby governing
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the synaptic connectivity.
A comprehensive exposition of the fundamental aspects of

the NCP network and its specific details can be found in the
supplementary information accompanying this manuscript.

C. Closed-form Continuous-time (CfC) Neural Networks

Closed-form Continuous-time (CfC) Neural Networks, as
innovatively presented by Hasani and collaborators16, dis-
tinctly depart from traditional practices by obviating the
need for numerical solvers when generating temporal roll-
outs within the realm of Ordinary Differential Equations
(ODEs). These networks seamlessly integrate the strengths
of ODE-based counterparts, encompassing flexibility, causal-
ity, and continuous-time attributes, all while delivering a
marked enhancement in computational efficiency16. Equa-
tion 1 vividly encapsulates the essence of the CfC model,
where the continuous-time gating mechanisms, denoted by
σ(− f (x, I;θ f )t) and [1 − σ(−[ f (x, I;θ f )]t)], underpin the
model’s innovative approach16.

X(t) =σ(− f (x, I;θ f )t)⊙g(x, I;θg)

+ [1−σ(−[ f (x, I;θ f )]t)]⊙h(x, I;θh)
(1)

D. ConvLSTM2D CfC (ConvCfC)

The ConvLSTM2D CfC (ConvCfC) model is structured
with a single ConvLSTM2D layer responsible for feature ex-
traction. This layer is connected to 75 neurons, which act as
input neurons for the NCP (Neural Control Policy) network
within the CfC arrangement1. The ConvCfC model, known
for its compact and efficient design, demonstrated successful
deployment on the STM32F746G Discovery board, an edge
device characterized by resource constraints. It efficiently
conducted inferences on ECG data during the deployment.1

III. DATASET

In this research, the same datasets were employed for train-
ing and evaluation as the ConvCfC proposed by Huang et al. 1 .
The training dataset originated from the Telehealth Network
of Minas Gerais (TNMG) dataset. A balanced subset of
the TNMG dataset encompassing six distinct cardiac abnor-
malities: Atrial Fibrillation (AF), Left Bundle Branch Block
(LBBB), First Degree Atrioventricular Block (1dAVb), Right
Bundle Branch Block (RBBB), Sinus Tachycardia (ST), and
Sinus Bradycardia (SB) was deployed in training the sCCfC.
These ECG recordings are uniformly sampled at a rate of 400
Hz.

For assessing model generalization, we employed the China
Physiological Signal Challenge 2018 (CPSC) dataset, which
includes eight different abnormalities, with four of them over-
lapping with the TNMG dataset: Atrial Fibrillation (AF),

Right Bundle Branch Block (RBBB), First Degree Atri-
oventricular Block (1dAVb), and Left Bundle Branch Block
(LBBB). It’s important to note that the CPSC dataset com-
prises 12-lead electrocardiogram (ECG) recordings sampled
at a uniform rate of 500 Hz. To ensure compatibility with
the TNMG dataset used for model training, we performed a
down-sampling process to harmonize the sampling rate of the
CPSC dataset with that of the TNMG dataset.

For more detailed information about the dataset, please re-
fer to the supplementary information provided at the end of
this study, which offers a comprehensive overview of the com-
position and characteristics of both the TNMG subset and
CPSC datasets used in our research.

IV. METHODS

Our primary aim is to develop a compact and efficient
model optimized for processing electrocardiogram (ECG)
data, strongly emphasising energy efficiency. To achieve this
objective, we have adopted the ConvCfC model, as outlined
in1, as the foundational framework for our work. Incorpo-
rating spiking neural networks, well-known for their energy-
efficient properties, is a central focus of our research. There-
fore, our primary efforts are to seamlessly integrate spiking
components into the ConvCfC model to attain the desired
energy-efficient results.

Furthermore, we comprehensively assess the recently in-
tegrated model’s performance. This evaluation considers its
capacity for generalization and its resilience in dealing with
incomplete data, comparing it to the ConvCfC model as a ref-
erence point.

With the ConvCfC model, we undertake crucial preprocess-
ing steps on the ECG data, involving filtering and Short-Time
Fourier Transform (STFT) transformation. These procedures
are vital for improving data quality and facilitating the extrac-
tion of relevant features.

Following preprocessing, the refined data is input into the
proposed models for both training and validation. We employ
selected metrics to evaluate the model’s efficacy, providing
valuable insights into its performance and capabilities.

A. Preparatory Steps for ECG Data

A Butterworth band-pass filter is strategically employed
in the signal processing pipeline to attenuate the interfer-
ence caused by extraneous noise within the electrocardiogram
(ECG) signal. The choice of the Butterworth filter is predi-
cated on its ability to maintain a consistent response across the
entire spectrum of desired frequencies, as supported by rep-
utable sources17. This band-pass filter’s passband is thought-
fully set to span from 0.5 Hz to 40 Hz. This particular fre-
quency range is deliberately selected to retain and safeguard
critical components within the ECG signal, including but not
limited to the T wave, P wave, and QRS complex. Concur-
rently, this setting effectively obviates the presence of power-
line noise at the 50 Hz frequency18.
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After the application of the aforementioned filtration pro-
cedure, STFT is enlisted as the analytical tool of choice. Di-
verging from the Fast Fourier Transform (FFT), which con-
ducts a holistic spectral analysis of the entire signal, the STFT
adopts a segmented approach. It subdivides the signal into
smaller, overlapping time windows, conducting FFT analy-
sis independently on each of these temporal segments. This
methodological divergence facilitates the extraction of both
frequency and time-related attributes from the signal’s com-
position. Under this temporal segmentation, the STFT cap-
tures nuanced variations in the signal’s characteristics over
time, engendering a more intricate and precise representation
of the signal’s time-dependent frequency components. Con-
sequently, this analytical approach affords comprehensive in-
sights on both frequency-based and temporal aspects of the
signal’s characteristics.

In addition to the preprocessing steps detailed in Con-
vCfC1, this study incorporates two supplementary procedures.
Firstly, the preprocessed data undergoes a scaling process in-
volving the application of the max-min scaling technique to
each data point. This particular step is informed by prior re-
search19 and enhances the overall data quality. Furthermore,
the processed electrocardiogram (ECG) data is subjected to
a spike generation process. This operation renders the data
compatible with input requirements for a spiking neural net-
work.

B. Model ConvCfC and NCP

Taking inspiration from the Caenorhabditis elegans nema-
tode, neural circuit policies (NCPs) have emerged as intel-
ligent agents influenced by brain-inspired principles. These
NCPs incorporate neurons with enhanced computational ca-
pabilities, resulting in the creation of sparse networks, as de-
tailed in3. These networks include Liquid Time Constant
(LTC) neurons, depicted as leaky integrators, which accumu-
late and release charge overtime to process temporal informa-
tion3.

Furthermore, this study introduces Closed-form
Continuous-time Neural Networks (CfC) for time-series
modeling. Derived from liquid networks, CfC models
employ closed-form ordinary differential equations (ODEs)
to approximate solutions for previously unsolved integrals,
significantly enhancing their performance compared to
advanced, recurrent neural networks, as elaborated in16. The
ConvCfC model, introduced in the reference1, is a straightfor-
ward model architecture that leverages the principles of NCP.
This model is designed with simplicity and effectiveness and
aims to provide an efficient approach to solving specific tasks
or problems.

C. Simple Spiking Model Design

The proposed model architecture, as illustrated in Figure
2, is built upon the foundation of the ConvCfC model intro-
duced in the reference1. This model implements a stream-

Spiking Conv2dLSTM

Raw ECG 
Data

Processed 
ECG

Apply: Max 
Min Scaling
Timestep: 9

Kernel Size: 9
Out Channels: 16
Max Pool: 2
Threshold: 0.17

Dense Neurons: 75
Dropout: 0.2
Beta: 0.4
Threshold: 0.17

Inter & Command 
Neurons: 14
Connection: CfC

Neurons: 6
Beta: 0.4
Threshold: 0.17
Activation: Sigmoid
Output: Abnormality

Input
Inter

Command
Output

Abnormalities

Scaling and Spiking ECG

FIG. 2. The model architecture includes a specialized Spiking
SConv2dLSTM layer for processing spiking STFT-transformed ECG
data. This layer extracts key features, which are then fed into 75
Leaky Integrate-and-Fire (LIF) neurons, forming the input layer for
the Neuronal Coherence Propagation (NCP) network. The network’s
connections are facilitated through CfC network, with a sigmoid ac-
tivation function applied to the LIF neurons in the final stage.

lined architecture, featuring a singular SConv2dLSTM layer
responsible for spiking feature extraction. This layer seam-
lessly connects to a dense layer composed of 75 LIF (Leaky
Integrate-and-Fire) neurons, which function as the input neu-
rons for the NCP network. By adopting the ConvCfC frame-
work, the resulting model falls under the category of sCCfC
models, which include 14 interneurons and command neu-
rons, along with 6 LIF output neurons.

D. Performance Metrics

Recall and precision are pivotal metrics for appraising
model performance. Precision scrutinizes the precision of
positive predictions, whereas recall quantifies the proportion
of actual positives correctly identified. The F1-score, a harmo-
nious measure, amalgamates precision and recall, furnishing
valuable insights into the equilibrium between the two. In this
study, a threshold of 0.5 is employed for performance metrics.

The Area Under the Receiver Operating Characteristic
curve (AUROC) scrutinizes a model’s capacity to discriminate
between negative and positive cases across diverse threshold
values. In binary classification tasks, AUROC stands as a
valuable metric of assessment.

These metrics, encompassing the F1-score, precision, re-
call, and AUROC, are critical in thoroughly evaluating ma-
chine learning model performance, particularly in endeavors
such as abnormality detection.
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V. EXPERIMENTS

A. Train

In the experimental phase, we employed the preprocessed
TNMG subset dataset as the foundation for training and vali-
dation procedures concerning the sCCfC model. To address
the inherent issue of class imbalance within multi-labeled
datasets, we introduced the utilization of class weights.
Specifically, a weight factor of 6 was incorporated into the
construction of the loss function, to afford greater considera-
tion to positive-labeled data points. This approach aimed to
rectify the imbalance between positive and negative labels in
the training dataset.

The model training process was executed on a Tesla V100S-
PCIE-32GB, utilizing a batch size of 32 and spanning 100
training epochs. A learning rate of 0.0003 was adopted, and
optimization was performed using the AdamW optimizer in
conjunction with the binary cross-entropy loss function.

To assess the models’ generalization capabilities, we turned
to the preprocessed CPSC dataset. Furthermore, we evaluated
the models’ robustness by subjecting them to corrupted data
inputs, thereby scrutinizing their performance under challeng-
ing conditions.

B. Model Training and Validation using In-sample Data

To assess the model’s performance, we set aside a dedicated
validation subset comprising 20% of the TNMG dataset. Im-
portantly, these validation data points were excluded from the
model’s training process, exclusively for performance evalu-
ation. This separation between training and validation was
rigorously upheld for a consistent and unbiased assessment of
the ConvCfC model. This meticulous validation ensures that
our evaluation remains aligned with the model’s training pro-
cess, enabling a robust comparison of its performance.

C. Energy Usage of the Model

The model’s energy consumption was assessed using the
KerasSpiking library, which offers a tool to estimate the
model’s energy consumption under different deployment sce-
narios, such as on a neuromorphic chip or for inference on
a CPU. This tool served as a means to compare the differ-
ences in energy consumption between the sCCfC and Con-
vCfC models.

D. Radxa Zero Edge AI Deployment

To demonstrate the feasibility of our concept and as an al-
ternative to employing a neuromorphic chip, we implemented
the sCCfC model on a conventional computing but relatively
resource-constraint system, Radxa Zero, which is a single-
board computer, featuring an Amlogic 905Y2 processor with

64-bit ARM architecture and up to 4GB of 32-bit memory.
This could appropriately emulate what is possible if a digital
silicon chip with custom computing architecture is designed.

The experimental model refinement process was conducted
on the Radxa Zero. Initially, a model pre-trained for two
epochs on the TNMG dataset using a GPU was chosen as the
foundational model for fine-tuning. Adjustments were made
to accommodate the limited computational resources available
on the board, including reducing the batch size from 32 to
8 during model training on the GPU. A dataset comprising
640 data points was employed for fine-tuning throughout five
epochs, with subsequent validation conducted on a subset of
320 data points. Following the fine-tuning process, the model
was inferred on a data set containing 128 data points, and the
results were compared to those obtained from the base model
originally trained on the GPU for two epochs.

E. Assessment of Data on Unfamiliar Samples

The performance assessment of the models will be con-
ducted meticulously using the CPSC dataset, thoughtfully cu-
rated to mirror real-world scenarios. Through a rigorous com-
parative analysis of the models’ predictions vis-à-vis estab-
lished ground truth values, we intend to discern their respec-
tive merits and demerits. This empirical evaluation will pro-
vide valuable insights into the efficacy of the models and may
offer suggestions for potential enhancements in the realm of
ECG analysis. A critical comparative analysis of the perfor-
mance of sCCfC and ConvCfC models will be conducted.

F. Model Robustness

In this section, we will subject the model to a rigorous bat-
tery of robustness tests. These tests involve systematically re-
moving random channels from the 12-lead ECG data. The pri-
mary objective is to assess how well the model performs when
confronted with missing input information. We will progres-
sively remove varying numbers of channels, ranging from 1
to 6 leads, in order to evaluate the model’s ability to maintain
accuracy across different degrees of data incompleteness.

To quantify and compare the model’s performance in these
diverse scenarios, we will employ a set of performance met-
rics. These metrics will provide valuable insights into poten-
tial areas for model improvement and offer a deeper under-
standing of possible refinements. Furthermore, we will com-
pare the performance of the sCCfC model with its non-spiking
counterpart, the ConvCfC model1, to shed light on how spik-
ing dynamics impact the model’s robustness.

G. Model Evaluation: Single Lead ECG Processing

In our extensive study, we conducted a thorough analysis to
assess the model’s proficiency in handling Single Lead ECG,
specifically emphasizing Lead II. The model underwent spe-
cialized training, utilizing only Lead II data from the dataset.
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We then exclusively evaluated its performance with Single
Lead ECG, comparing it to the model trained on the complete
12-lead ECG dataset. It’s noteworthy that the training process
and model architecture remained consistent with the 12-lead
examination. The primary distinction lies in integrating Lead
II ECG data for both training and testing, providing precise
insights into the model’s capabilities within this specific con-
text.

VI. RESULTS

In this section, we will perform an exhaustive analysis of
the model’s performance, delving deeply into their capabili-
ties and resilience.

A. Model Performance

This study primarily concentrates on the training phase of
the proposed models, as elaborated upon in preceding sec-
tions of this paper. Specifically, we employ the TNMG sub-
set dataset, as previously detailed, as the primary dataset for
training and evaluating the models under investigation. The
training procedure encompasses 100 epochs, during which we
meticulously track and document key metrics such as accu-
racy and loss for both the validation and training datasets at
each epoch. Visual representations in this scholarly work pro-
vide a clear graphical overview of these recorded metrics, fa-
cilitating a comprehensive understanding of the entire training
process. Additionally, we conduct a thorough assessment of
the sCCfC model’s performance, and the results of this evalu-
ation are visually presented in Figure 3 for ease of reference.

FIG. 3. The figure provides a visual representation of the model’s
performance throughout the training process, displaying both train-
ing and validation accuracy and losses.

Figure 3 reveals a prominent pattern as the training pro-
cess unfolds. Notably, there is a noticeable decrease in train-
ing loss, indicating continuous improvement in the model’s

FIG. 4. The sCCfC model’s comprehensive performance, both in-
sample and during generalization, is benchmarked against the Con-
vCfC model1, serving as a foundational reference.

performance. Simultaneously, training accuracy steadily in-
creases and eventually stabilizes, reflecting the model’s effec-
tive learning from the training data.

Throughout the training duration, a consistent trend
emerges in the validation accuracy, with a steady rise indi-
cating enhanced model performance on unseen data. Further-
more, validation loss consistently decreases over time, sug-
gesting that the model’s predictions increasingly align with
the actual labels during the validation phase.

TABLE I. In-sample Validation and Generalisation Results for the
sCCfC Model (P: Precision, R: Recall)

Class P R F1 AUROC
In-Smaple Validation

AF 75.6% 74.2% 74.9% 86.3%
LBBB 91.7% 86.7% 89.1% 95.4%
RBBB 81.7% 84.8% 83.2% 90.0%
SB 95.7% 85.5% 90.3% 97.3%
ST 95.3% 89.3% 92.2% 97.4%
1dAVb 58.2% 63.8% 60.9% 77.1%
Average 83.0% 80.7% 81.8% 90.6%

Generalisation
AF 87.4% 63.6% 73.7% 90.6%
LBBB 83.8% 74.1% 78.6% 91.7%
RBBB 59.4% 85.8% 71.2% 78.5%
1dAVb 69.9% 55.6% 61.9% 82.7%
Average 75.1% 69.8% 71.1% 85.9%

The evaluation of the sCCfC models’ performance is suc-
cinctly summarized in Table I, with ConvCfC’s performance
serving as a baseline for comparison in Figure 4. Comparing
the two models, the sCCfC model has achieved slightly lower
average F1 score and AUROC values in in-sample validation,
specifically recording 0.82 and 0.91 compared to ConvCfC’s
0.83 and 0.96, respectively. However, it’s crucial to empha-
size that the decrease in performance is minimal, especially
when considering the F1 score.
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It becomes apparent that the sCCfC model’s performance
closely mirrors that of ConvCfC. This observation under-
scores the robust performance of sCCfC, even when operating
in spiking settings.

While accuracy is a common metric for evaluating model
performance, it may not always provide a comprehensive
assessment. Nevertheless, it’s worth noting that during
the training process, we recorded validation accuracy met-
rics. Interestingly, in the validation phase, the sCCfC model
achieved an accuracy of 94.1%, demonstrating its strong per-
formance. However, it’s noteworthy that this accuracy was
only marginally lower than the 94.8% achieved by the Con-
vCfC model. This minor difference suggests that while the
sCCfC model was expected to perform slightly worse than the
ConvCfC model, the actual gap in performance turned out to
be quite small.

B. Energy Usage of the Model

Energy consumption assessments for both the sCCfC and
ConvCfC models were conducted utilizing the KerasSpik-
ing framework. Specifically, the ConvCfC model demon-
strated an estimated energy consumption of approximately
450 µJ/Inf (CPU), whereas the sCCfC model displayed no-
tably lower energy consumption, estimated at approximately
4.68 µJ/Inf (Loihi). A comprehensive breakdown of these en-
ergy consumption estimates can be found in Table II.

TABLE II. Energy Consumption per Inference for Each Layer
Layer CPU (µJ) Loihi (µJ)
ConvLSTM2D 110 4.6
Dense 340 0.055
CfC 0.1 0.0044
Sigmoid 0.052 0.0044

C. On-Device Fine-Tuning

This study implemented the sCCfC model on the Radxa
Zero with an Amlogic 905Y2 processor and 4GB memory as
fully digital and conventional computing on a small board al-
ternative to a neuromorphic chip. Model refinement on the
Radxa Zero involved using a pre-trained model, originally
trained for two epochs on a large dataset (TNMG), via a
GPU. Adjustments were made, such as reducing the batch size
to 8, during fine-tuning with 72% memory utilization. The
fine-tuning process included training on a dataset of 640 data
points over five epochs and validation on a subset of 320 data
points. The performance of the fine-tuned model was evalu-
ated by comparing its results to those of the GPU-trained base
model.

Throughout the training process, the model exhibited no-
table enhancements in performance metrics. Specifically, in
the 320-sample validation dataset, the average F1 score in-
creased from 0.46 to 0.56, while the AUROC improved from

0.65 to 0.73. Additionally, when testing the fine-tuned model
on a larger test set of 1280 samples, the average F1 score and
AUROC showed substantial improvements, rising from 0.31
and 0.63 in the pre-trained model to 0.45 and 0.72.

This observation underscores the effectiveness of on-device
fine-tuning in enhancing model performance. By conducting
the fine-tuning process directly on the hardware, in this case,
the Radxa Zero, we can clearly see tangible evidence of its
positive impact. On-device fine-tuning is a testament to the
adaptability and resource efficiency of the sCCfC model. It
signifies that the model is capable of initial training and fur-
ther refinement within the constrained computational environ-
ment of the Radxa Zero.

D. Model Generalization

Our evaluation involved applying predictive modeling to
the CPSC dataset using models that had previously undergone
training on the TNMG subset, as elaborated in the data sec-
tion. The primary objective of this assessment was to gauge
the models’ capacity for generalization, especially when con-
fronted with new and unfamiliar data from the CPSC dataset,
which significantly differs from their original training data.

It’s crucial to emphasize that the CPSC dataset comprises
eight distinct types of abnormalities, with only four overlap-
ping those in the TNMG dataset. Evaluating the model’s per-
formance on this subset provided valuable insights into its
ability to transfer acquired knowledge to novel and previously
unencountered data.

Table I offers an insight into the model’s performance on
previously unseen data, facilitating comparison with the per-
formance of the ConvCfC model, as elaborated in Figure 4.
These comparative findings underscore the models’ effective
performance. Specifically, the sCCfC model achieves an aver-
age F1 score of 0.71 and an AUROC of 0.86, while the Con-
vCfC model attains an F1 score of 0.72 and an AUROC of
0.91 when assessed on the same dataset. These results empha-
size the robust generalization capabilities of the sCCfC model,
which closely aligns with the performance of the non-spiking
ConvCfC model.

E. Model Robustness

To thoroughly assess the model’s performance, we carried
out supplementary evaluations utilizing the CPSC dataset. In
these assessments, deliberate variations were introduced by
selectively excluding specific channels from the 12-lead ECG
data. This intentional manipulation of the input data evaluated
the model’s robustness and ability to handle scenarios where
input information is either incomplete or missing.

Figure 5 provides insights into the impact of omitted leads
on the models’ F1 performance metric. As the number of re-
moved leads increases, we observe a decrease in model per-
formance. Notably, when comparing the performance of the
sCCfC model to the ConvCfC model, it becomes apparent
that while the initial performance of sCCfC might have been
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FIG. 5. The F1 metrics of the models were examined about the pres-
ence of empty channels within the 12-lead CPSC ECG data.

slightly lower, it exhibits greater resilience in the face of miss-
ing channels. As more channels are excluded from the data,
the sCCfC model maintains its accuracy better than the Con-
vCfC model.

F. Model Performance with Single-Lead ECG

As a component of the study showcasing the model’s profi-
ciency in handling single-lead ECG data, the model under-
went training exclusively with Lead II ECG of the TNMG
subset. The validation results of the model have been suc-
cinctly summarized in Table III.

TABLE III. sCCfC Model Performance on Lead II ECG Data (P:
Precision, R: Recall)

Class P R F1 AUROC
AF 75.5% 67.0% 71.0% 85.3%
LBBB 79.1% 64.8% 71.3% 87.0%
RBBB 65.0% 54.9% 59.5% 77.4%
SB 92.7% 86.9% 89.7% 95.8%
ST 93.6% 86.6% 90.0% 96.4%
1dAVb 59.0% 57.5% 58.3% 76.6%
Average 77.5% 69.6% 73.3% 86.4%

The model exhibits satisfactory performance, underscoring
its capability to handle reduced-lead ECG data and signaling
promising prospects for future applications.

VII. DISCUSSION

The performance of the proposed sCCfC model on the
TNMG subset dataset showcases its competence in classifying
various cardiac abnormalities. The model’s precision, recall,
F1-score, and AUROC values across different classes reflect
its proficiency in distinguishing between normal and abnormal

ECG patterns. Overall, sCCfC achieves an average F1-score
of 0.81 and an average AUROC of 0.91. These metrics signify
the model’s ability to effectively identify abnormal ECG pat-
terns with a balanced trade-off between precision and recall.

In comparison, the ConvCfC model, which serves as a base-
line, exhibits similar performance metrics. The average F1-
score for ConvCfC is 0.83, and the average AUROC is 0.96.
These results suggest that the sCCfC model, despite its spik-
ing neural network architecture, maintains competitive per-
formance with the non-spiking ConvCfC model. This finding
highlights the potential of spiking neural networks in achiev-
ing efficient and effective ECG classification.

Table IV presents a comparative analysis of models tran-
sitioning to spiking neural networks, contrasting with similar
works. It highlights that the proposed sCCfC has maintained
its performance in conversion compared to other spiking neu-
ral networks.

TABLE IV. Previous Research on Normal Neural Networks Against
Spiking Neural Networks
Ref Metrics Non-Spiking Spiking Drop
Yan, Zhou, and Wong 12 Accuracy 81.00% 79.00% 2.00%
Rana and Kim 13 Accuracy 98.10% 82.30% 15.80%

Accuracy 80.28% 73.95% 6.33%
F1 67.98% 58.00% 9.97%

Feng et al. 14 AUROC 91.43% 91.45% -0.03%
AUPRC 71.33% 73.00% -1.68%
Precision 70.43% 68.38% 2.05%

Recall 67.30% 56.93% 10.38%
Precision 85.9% 83.0% 2.9%

Our proposed Recall 80.6% 80.7% -0.1%
F1 82.8% 81.8% 1.0%

AUROC 96.3% 90.6% 5.7%

One of the standout advantages of the sCCfC model is
its significantly reduced estimated energy consumption com-
pared to the ConvCfC model, owing to the inherent charac-
teristics of Spiking Neural Networks (SNN). While the Con-
vCfC model consumes approximately 450 µJ/Inf when exe-
cuted on a CPU, the sCCfC model demonstrates notably lower
energy consumption, with only around 4.68 µJ/Inf when de-
ployed on a neuromorphic chip like Loihi. This substan-
tial decrease in energy consumption underscores the energy
efficiency of SNNs, making them a suitable choice for de-
ployment in battery-powered or energy-constrained devices.
Moreover, the performance difference, as depicted in Figure 4,
in comparison to other existing approaches shown in Table
IV, exhibits a minimal drop in performance when transformed
into SNNs.

The sCCfC model’s ability to undergo on-device fine-
tuning on the Radxa Zero with performance improvements
is noteworthy. This process demonstrates the model’s adapt-
ability and resource efficiency, making it suitable for real-
world applications requiring continuous learning and refine-
ment. While this is a proof of concept demonstration con-
ducted on a non-neuromorphic chip, it nonetheless showcases
the model’s capabilities.

The evaluation of model generalization on the CPSC
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dataset, which contains ECG data with different abnormali-
ties than the TNMG subset, provides valuable insights into
the models’ adaptability to new and diverse data. The sC-
CfC model maintains competitive performance, with an aver-
age F1-score of 0.71 and an average AUROC of 0.86. While
these metrics are slightly lower than those achieved on the
TNMG subset, they indicate that the model can generalize ef-
fectively to new ECG abnormalities. When compared to the
baseline model, the non-spiking ConvCfC model attained an
average F1-score of 0.72 and an average AUROC of 0.89 on
the CPSC dataset. These outcomes highlight that the sCCfC
model continues to exhibit a robust capacity for transferring
acquired knowledge to previously unencountered data, even
when compared to its non-spiking counterpart.

The robustness of the sCCfC model is evident in its consis-
tent performance across various levels of data incompleteness,
where leads are progressively removed from the 12-lead ECG
data. The model’s ability to maintain accuracy even when pre-
sented with partially available input information underscores
its resilience and potential for handling noisy or incomplete
data in clinical settings. In this domain, the sCCfC model
has exhibited superior performance compared to the ConvCfC
model, unveiling a captivating revelation.

VIII. CONCLUSION

In conclusion, this research comprehensively analyses the
sCCfC model for cardiac abnormality detection and diagnosis.

The sCCfC model demonstrated competitive performance
metrics, closely matching the non-spiking ConvCfC model
regarding average F1 score and AUROC. This suggests that
spiking neural networks can achieve similar diagnostic accu-
racy while offering unique advantages.

The sCCfC model exhibited significantly lower energy con-
sumption per inference than ConvCfC, making it a promis-
ing option for energy-efficient deployments, particularly when
utilizing neuromorphic hardware like the Loihi chip.

The sCCfC model’s ability to undergo on-device fine-
tuning on a single-board computer showcases its adaptabil-
ity and resource efficiency, making it suitable for applications
that require continuous learning and refinement.

The sCCfC model demonstrated strong generalization ca-
pabilities when applied to a novel dataset (CPSC) with dif-
ferent types of abnormalities. It maintained competitive diag-
nostic performance, emphasizing its potential for real-world
applications.

The sCCfC model displayed resilience in handling missing
channels in ECG data, outperforming the ConvCfC model as
channels were omitted. This highlights the robustness of spik-
ing neural networks to input variability.

The sCCfC model is promising for cardiac abnormality de-
tection and diagnosis. Its combination of competitive perfor-
mance, energy efficiency, adaptability, and robustness posi-
tions it as a valuable tool for healthcare professionals and re-
searchers in cardiology.

Subsequent research and practical applications have the po-
tential to leverage the advantages of spiking neural networks

to propel the accuracy and efficiency of anomaly detection
systems forward. In forthcoming endeavors, our focus will re-
volve around advancing on-chip learning, encompassing fine-
tuning for personalization, augmenting memory optimization,
and establishing corresponding testing protocols. Further-
more, we intend to broaden the capabilities of our potential
portable device by integrating additional sensors. This ap-
proach will bring us closer to achieving real-time data train-
ing, thereby further enhancing the model’s adaptability and
versatility.
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SUPPLEMENTARY INFORMATION

Neural circuit policies (NCP)

The synaptic connections among neurons in the NCP net-
work constitute the foundational structure of the network.
These synaptic links are established through various mecha-
nisms:

1. Information transmission between consecutive layers
involves source neurons transmitting data to target neu-
rons via a specific number of synapses denoted as nso−t .
These synapses’ distribution follows a Bernoulli distri-
bution characterized by the probability p2

3.

2. In cases where target neurons initially lack synapses,
additional synapses (mso−t ) are introduced from source
neurons. The quantity of these synapses is determined
by a Binomial distribution with a probability denoted
as p3. These synapses are randomly selected from an
available pool of source neurons3.

3. Command neurons exhibit recurrent connections, form-
ing synapses (lso−t ) targeting command neurons. The
establishment of these connections is governed by a Bi-
nomial distribution with a probability identified as p4

3.

Together, these mechanisms collaboratively influence the
flow of information and computational behaviors within the
NCP model3.

Equation 2 illustrates the utilization of the semi-implicit
Euler technique in the NCP model, where Iin denotes the en-
semble of neurons acting as inputs to neuron i:

xi(t +∆) :=(
xi(t)Cmi

∆
+glixleaki

+∑ j ∈ Iinωi jσi(x j(t))Ei j)

/(
Cmi

∆
+gli + ∑

j∈Iin

ωi jσi(x j(t)))

(2)

Datasets

Our research involved a comprehensive evaluation of our
proposed models using two distinct datasets. The first dataset,
known as the CPSC dataset or the 12-lead ECG dataset, was
originally created for The China Physiological Signal Chal-
lenge in 201820. Its primary objective was to enable the auto-
mated detection of irregularities in both the rhythm and mor-
phology of 12-lead ECGs. The second dataset utilized in our
study is the Telehealth Network of Minas Gerais (TNMG)
dataset21, which served as our primary training dataset for
building and fine-tuning our models.

To thoroughly assess the effectiveness of our models, we
utilized the CPSC dataset as a separate testing dataset. This
approach enabled us to evaluate how well the models could
generalize to new and unfamiliar data, which differed from
the TNMG dataset.

Our study was specifically designed to gauge the models’
ability to generalize and perform effectively on unfamiliar
data, following their training on the TNMG dataset. This eval-
uation holds paramount importance in establishing the relia-
bility and practical utility of the models in real-world scenar-
ios.

Telehealth Network of Minas Gerais (TNMG) Dataset

Our study utilized the TNMG dataset, comprising an exten-
sive repository of 2,322,513 labeled instances of 12-lead elec-
trocardiogram (ECG) data. Within this dataset, we encoun-
tered six distinct categories of abnormalities, namely Atrial
Fibrillation (AF), Left Bundle Branch Block (LBBB), First
Degree Atrioventricular Block (1dAVb), Right Bundle Branch
Block (RBBB), Sinus Tachycardia (ST) and Sinus Bradycar-
dia (SB)21. These original ECG recordings were sampled at a
frequency of 400 Hz.

To construct a well-structured and balanced dataset for our
model training, we adopted a systematic approach. We initi-
ated this process by randomly selecting 3,000 data instances
for each of the six distinct abnormalities. Additionally, we in-
cluded 3,000 instances with no indications of abnormalities.
Through this meticulous data selection process, we curated a
comprehensive dataset, totaling 21,000 instances. In instances
where patients exhibited multiple abnormalities, we randomly
selected the remaining instances from the TNMG dataset to
reach our specified subset size of 21,000.

The dataset underwent a meticulous normalization process,
carefully adjusted to a uniform length of 4,096 readings. This
thorough standardization not only guaranteed complete con-
sistency but also significantly streamlined the data analysis
and modeling procedures. Any readings surpassing this pre-
determined length were methodically removed, resulting in
a more straightforward data processing pipeline and an im-
proved ability to conduct meaningful comparisons. As illus-
trated in Table V, the resampled dataset exhibited a balanced
gender distribution, emphasizing the significance of inclusiv-
ity and reinforcing the reliability of subsequent analyses. Ad-
ditionally, the dataset closely resembled the age distribution
observed in the broader population, further bolstering its ap-
propriateness for research inquiries related to age.

Moreover, the adopted sampling strategy yielded a well-
balanced distribution of diverse abnormalities, enabling a
thorough examination of their attributes and consequences.
This equilibrium in the dataset substantially enhanced the
model’s learning process and overall performance, as detailed
in the research conducted by22.

The dataset for the China Physiological Signal Challenge 2018
(CPSC)

The CPSC dataset comprises 12-lead electrocardiograms
(ECGs) sampled at a frequency of 500 Hz. To ensure seamless
compatibility with the CPSC dataset for training purposes, we
meticulously adjusted the sampling rate of the TNMG data
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TABLE V. The subset of TNMG data used in our study constitutes a carefully balanced dataset that includes six distinct abnormality categories.
Furthermore, it demonstrates a greater representation of elderly patients, in line with the broader population demographics. The total incidences
may exceed the total patients due to some patients exhibiting multiple abnormalities.

Breakdown 1dAVb RBBB LBBB SB AF ST Normal
Gender

Female 1477 2048 2109 1212 1639 2188 1862
Male 1757 2272 1334 2158 1922 1111 1138

Age
0-29 95 50 13 306 24 350 372
30-44 253 287 107 503 122 697 707
45-59 593 952 615 1071 418 920 963
60-74 1173 1740 1427 1072 1348 837 671
74-89 1007 1175 1144 393 1476 446 272
90+ 113 116 137 25 173 49 15
Total 3234 4320 3443 3370 3561 3299 3000

from its original 400 Hz to match the 500 Hz rate. This dataset
is notably exceptional due to its inclusion of ECGs collected
from patients diagnosed with a wide range of cardiovascular
conditions and common rhythms. A team of expert annotators
painstakingly labeled these ECGs, resulting in precise anno-
tations for the identified abnormalities. In total, the dataset
encompasses a comprehensive set of eight distinct types of
abnormalities.

In a comprehensive evaluation of the model’s generaliza-
tion abilities, we rigorously conducted tests employing four
specific overlapping abnormalities meticulously chosen from
the dataset: AF, RBBB, 1dAVb, and LBBB. It’s important to
underscore that our study intentionally omits four other types
of abnormalities: ST-segment Depression (STD), Premature
Ventricular Contraction (PVC), Premature Atrial Contraction
(PAC), and ST-segment Elevated (STE). The dataset is char-
acterized and outlined in Table VI.

In our data selection process, we took great care to exclude
any entries in the dataset that contained missing readings. This
meticulous approach resulted in a final dataset comprising
6,877 distinct ECG tracings. Following this, we standardized
the data to ensure consistency and uniformity.

After conducting an extensive dataset analysis, we observed
a gender disparity, wherein male patients were more promi-
nently represented than their female counterparts. However,
it’s important to highlight that the age distribution of the pa-
tients closely resembles that of the broader population, with
a substantial proportion falling into older age groups. Never-
theless, a more detailed examination of abnormality distribu-
tion indicates a slight imbalance. Specifically, the occurrence
of Left Bundle Branch Block (LBBB) is comparatively less
frequent when contrasted with the prevalence of other abnor-
malities present in the dataset.
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TABLE VI. The table offers an overview of the CPSC dataset, delineating the gender and age distribution for each of the abnormalities
examined in this study. The total incidences may exceed the total patients due to some patients exhibiting multiple abnormalities.

Breakdown 1dAVb RBBB LBBB AF Normal
Gender

Female 232 653 119 530 1734
Male 490 1203 116 687 1321

Age
0-29 24 113 1 10 505
30-44 37 151 8 24 541
45-59 130 380 29 146 721
60-74 269 700 100 456 809
74-89 240 467 85 537 460
90+ 22 45 12 44 19
Total 722 1856 235 1217 3055
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