1 Adiposity and Sex Influence on SARS-CoV-2 Antibody

2 **Response in University Students. An ESFUERSO**

3 cross-sectional study.

- 4
- 5 Adriana L. Perales-Torres, PhD, 1,
- 6 Lucia M. Perez-Navaro, PhD, 2,
- 7 Esperanza M. Garcia-Oropesa PhD 1,
- 8 Alvaro Diaz-Badillo, PhD 3,4,
- 9 Yoscelina Estrella Martinez-Lopez, PhD 5,
- 10 Marisol Rosas, PhD 1,
- 11 Octelina Castillo PhD 1,
- 12 Laura Ramirez-Quintanilla, MSc 1,
- 13 Jacquelynne Cervantes PhD 6,
- 14 Edda Sciutto PhD 7,
- 15 Claudia X. Munguia Cisneros MPH, 8,
- 16 Carlos Ramirez-Pfeifer PhD 4,10,
- 17 Leonel Vela MD, MPH 9,
- 18 Beatriz Tapia, MD EdD, MPH 9,
- 19 Juan C. Lopez-Alvarenga, MD, PhD 4, 9
- 20
- 21 1. Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de
- 22 Tamaulipas, Reynosa, Tamaulipas, México.
- 23 2. Departamento de Nefrología. Hospital General de México Dr. Eduardo Liceaga.
- 24 Mexico City.

It is made available under a CC-BY 4.0 International license .

- 25 3. Public Health Research Group, Department of Life Sciences, Texas A&M
- 26 University-San Antonio, USA.
- 27 4. Escuela de Medicina. Universidad México Americana del Norte. Reynosa,
- 28 Tamaulipas, Mexico.
- 29 5. School of Public Health, University of Texas Health Science Center at Houston,
- 30 Brownsville, TX, USA.
- 31 6. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de
- 32 México. Mexico City.
- 33 7. Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de
- 34 México, Mexico City.
- 35 8. Centro Especializado de Diabetes y Metabolismo CEDIAMET. Universidad Mexico
- 36 Americana del Norte. Reynosa, Tamaulipas, Mexico.
- 37 9. School of Medicine. University of Texas Rio Grande Valley, UTRGV. Edinburg,
- 38 Texas, U.S.A.
- 39
- 40 Note: Partial results of this study were presented in the UTRGV 2020 Research
- 41 Symposium won a prize for best oral presentation. Dataset is available at the
- 42 https://scholarworks.utrgv.edu/cgi/ir_submit.cgi?context=som_pub
- 43
- 44 Dr. Juan Carlos Lopez Alvarenga, MD, PhD
- 45 University Dr 1201. Edinburg Texas 78539. USA
- 46 Mail: juan.lopezalvarenga@utrgve.edu
- 47

It is made available under a CC-BY 4.0 International license .

49 Abstract

- 50 Introduction. Prior studies have identified various determinants of differential immune
- 51 responses to COVID-19. This investigation delves into the Ig-G anti-RBD marker,
- 52 scrutinizing its potential correlations with sex, vaccine type, body fat percentage,
- 53 metabolic risk, perceived stress, and previous COVID-19 exposure.
- 54 Methods. In this study, data were obtained from 116 participants from the ESFUERSO
- 55 cohort, who completed questionnaires detailing their COVID-19 experiences and stress
- 56 levels assessed through the SISCO scale. Quantification of Ig-G anti-RBD
- 57 concentrations was executed using an ELISA assay developed by UNAM. Multiple
- 58 regression analysis was adeptly employed to control for covariates, including sex, age,
- 59 body fat percentage, BMI, and perceived stress.
- 60 **Results**. This sample comprised young individuals (average age of 21.4 years),
- 61 primarily consisting of females (70%), with a substantial proportion reporting a family
- 62 history of diabetes, hypertension, or obesity. Most students had received the Moderna or
- 63 Pfizer vaccines, and 91% displayed a positive anti-RBD response.
- 64 A noteworthy finding was the interaction between body fat percentage and sex. In
- 65 males, increased adiposity was associated with a decrease in Ig-G anti-RBD
- 66 concentration, while in females, the response increased. Importantly, this trend was
- 67 consistent regardless of the vaccine received. No significant associations were observed
- 68 for variables such as dietary habits or perceived stress.
- 69 Conclusions. In summation, this research reports the impact of both sex and body fat
- 70 percentage on the immune response through Ig-G anti-RBD levels to COVID-19
- 71 vaccines. The implications of these findings offers a foundation for educational
- 72 initiatives and the formulation of preventive policies aimed at mitigating health
- 73 disparities.

4

74 Introduction

75	To understand factors that can impact the serum levels of antibodies produced by the
76	COVID-19 vaccine, many studies have been conducted. Age is a critical factor that
77	plays a significant role in determining the immune response. Elderly individuals with
78	obesity and non-prior infection had reduced antibody titers against SARS-CoV-2 spike
79	antigen after CoronaVac vaccine (manufactured in China) compared to non-obese
80	people.(1) Lower antibody response, after receiving two doses of the Pfizer vaccine, has
81	also been linked to central obesity (correlation of $r=-0.3$), presence of hypertension and
82	smoking habits, with no notable differences by gender.(2)
83	Interestingly, losing weight has been shown to improve the adaptive immune response
84	particularly an increase in INF-g2 levels following administration of two doses of
85	mRNA vaccine.(3)
86	Sex and body weight interaction can also result in varying immune responses. For
87	individuals with a BMI >40 kg/m2, there were no discernible differences in IgG
88	antibody levels between sexes. In contrast, those with normal weight showed higher
89	levels among males.(4)
90	The present study focused on a nested sample of students from the ESFUERSO
91	program, which recruited first-year college students living in Reynosa prior the
92	COVID-19 pandemic in 2018. This group of students reported a significant family
93	history of type 2 diabetes (T2D) with 25% having family history of the condition, and
94	39% having family history of hypertension. Interestingly, between 17 to 47% students
95	were unsure whether their first-degree relatives suffered from T2D, hypertension, or
96	other obesity-related metabolic issues, as documented in the ESFUERSO study.
97	These young students experienced impact from the COVID-19 pandemic, forcing them
98	to home confinement, which led to changes in their food intake, physical activity, and

It is made available under a CC-BY 4.0 International license .

- 99 increased psychological stress. Vaccination efforts began in 2021, employing novel
- 100 mRNA vaccine used in veterinary science for three decades.
- 101 During the pandemic, it was evident that metabolic imbalances associated with obesity
- 102 could increase the severity of COVID-19 and the risk of mortality.(5, 6) The aim of this
- 103 study was to analyze the immune response to the receptor-binding domain (RBD), a
- 104 protective epitope found in the S protein, using Ig-G response among young students
- 105 from Mexico, living near the US-Mexico border. The study provides insights in the
- 106 immune response and the potential implications in the context of COVID-19.
- 107

108

109 Methods

110 Study Sample

111 In 2018, the ESFUERSO (Estudio en la Frontera Urbana para las Enfermedades y

112 Factores Asociados a la Obesidad) cohort study was launched, with its focus on first-

113 year students from two universities in Reynosa, Tamaulipas. Initially, the parental

sample included 500 students. However, due to the pandemic, a subset of 116 students

- 115 was contacted between September 1st and October 31st, 2021. During this period, we
- 116 obtained signed informed consent (see Ethics Statement below for details), conducted
- 117 questionnaire surveys, collected anthropometric measurements, and collected blood
- 118 samples from 108 students.

It is made available under a CC-BY 4.0 International license .

120 Measures

121	The questionnaires and methods used in the ESFUERSO study have been described
122	elsewhere.(7) Briefly, the questionnaires collected information on family metabolic risk,
123	anxiety, depression and uncertainty. The Cronbach α coefficient from each question
124	ranged from 0.72–0.96. The test-retest for agreement in categorical variables was a
125	kappa coefficient between 0.5-0.91 and an intraclass correlation coefficient between
126	0.73-0.96 in continuous variables. The stress during the pandemic was evaluated with
127	the Coping Inventory for Stressful Situations (SISCO), composed of five stressors, five
128	symptoms and five coping strategies. The SISCO had a Cronbach α coefficient of 0.9
129	with high homogeneity and was validated in Mexico and other Latin American
130	countries.(8) All the questionnaires were administered electronically, with students
131	completing them on their own cellphones. This approach ensured efficient data
132	collection and minimized the need for physical paperwork or in-person administration.
133	Weight, height, acanthosis nigricans grade(9) were assessed and registered at the
134	universities by standardized nutritionist.(7) Blood samples were obtained after an
135	overnight fasting period for the measurement of serum concentration of Ig-G anti-RBD
136	by indirect ELISA.(10) Following collections, the samples underwent centrifugation,
137	and four aliquots were stored at -20 C. These aliquots were subsequent transported to
138	Mexico City in November 2021 for antibody analysis. The assessment of the effective
139	neutralizing concentration of anti-RBD IgG was carried out, and this variable was
140	analyzed in both continuous and dichotomous dimensions. A threshold of 1.0 for anti-
141	RBD IgG ratio was established to differenciate between effective and non-effective
142	neutralization.
143	

144 **Ethics Statement**

It is made available under a CC-BY 4.0 International license .

7

145	The protocol and informed consent were approved by the Comite de Etica Institucional
146	de la Unidad Academica Multidisciplinaria Reynosa-Aztlan (CEI-UAMRA) number
147	registration CEI-UAMRA 005/2019/CEI under Health normativity (NOM-012-SSA-3-
148	212). All participants signed the approved informed consent. The present report
149	followed the STROBE recommendations for cross-sectional studies.(11)
150	
151	Statistical analysis
152	Descriptive statistics with percentage for counts variables, mean and standard deviation
153	for continuous variables. Inferential statistics with regressions was used for the SISCO
154	questionnaire for anxiety, uncertainty, sadness, lack of sleep was contrasted by the
155	presence of metabolic risk. Locally weighted regression (lowess) was performed to
156	analyze nonlinear functions. We used the antibody concentration as dependent variable
157	adjusted for sex, age, metabolic risk, body fat percentage and BMI. Multiplicative
158	interactions for covariates were analyzed. Variance inflation factors (VIF) was
159	calculated to evaluate multicollinearity for lineal models without interactions. The
160	models were evaluated using first to third grades polynomial multiple regression and
161	goodness of fit with mean squared error calculation. The best goodness of fit for data
162	was polynomial multiple regression with 114 students with all complete data. All
163	analyses were performed with Stata V18.0 (StataCorp, College Station, TX).

It is made available under a CC-BY 4.0 International license .

165 **Results**

- 166 A total of 108 students in the ESFUERSO cohort were enrolled during the 3rd year of
- 167 the cohort follow-up in Reynosa. The participants had mean age of 21.4 (SD 1.0) years,
- average BMI of 27.9 (SD 6.2), and gender distribution of 69% (75 out of 108) females.
- 169 A significant family risk of T2D, hypertension, presence of obesity, or a combination of
- 170 these conditions was identified in 70% of the students. Notably, there were no
- 171 discernible differences by universities on metabolic risk, anthropometry, sex, and
- 172 commercial brand of vaccine or presence of adequate antibody levels. Only 3 (3%)
- 173 students from the private university had no COVID-19 vaccination at the time of the
- 174 study and they also belonged to the metabolic risk group (Pearson standardized distance
- 175 >3.0). From vaccinated students 97 (90%) were vaccinated with Moderna or Pfizer and
- 176 only 8 (7%) with other vaccines (Johnson & Johnson n=1, Cansino n=6, Sinovac n=1).
- 177 The prevalence of positive anti-RBD was 91%.
- 178

Variable	Females (n=75)	Males (n= 33)
Continous variables [Average (SD)]		
Age (years)	21.4 (1.1)	21.4 (0.9)
BMI (kg/m^2)	27.7 (6.1)	28.4 (6.3)
Body fat (%)	33.04 (10.45)	24.2 (10.34)
Waist circumference (cm)	83.3 (13.2)	91.9 (13.7)
Neck circumference (cm)	34.4 (3.2)	40.4 (10.6)
Systolic blood pressure (mmHg)	113 (9)	120.8 (18.7)
Diastolic blood pressure (mmHg)	77 (7)	81.1 (92.9)
Ordinal variables [median (Q1, Q3)]		

It is made available under a CC-BY 4.0 International license .

9

Anguish	3 (2, 5)	3 (1, 4)	
Uncertainty	3 (2, 4)	2 (1, 4)	
Lack of sleep	4 (2, 5)	2 (1, 3)	
Sadness	3 (3, 5)	2 (1, 3.5)	
Anxiety	4 (3, 5)	3 (1.5, 4)	
Acanthosis nigricans	0 (0, 2)	1 (0, 2)	

179
 Table 1. Descriptive Statistics of General Variables by Sex. Continuous variables are
180 presented as mean and standard deviation. Ordinal variables, such as the perceived 181 stress items of the SISCO questionnaire, are described using a 6-point Likert scale (0 =182 none, 5 = highest score). Acanthosis nigricans is described by its median and 183 interquartile range (Q1, Q3). 184 185 The multicollinearity analysis showed BMI and fat percentage had VIF= 4.8 and 186 1/VIF = 0.02, most models were analyzed separating both variables. The body fat 187 percentage interaction with sex was statistically significant, explaining why the serum 188 concentration of anti-RBD decreased as adiposity increased in men (p=0.034 for second 189 grade term), but Ab-RBD increased with increased adiposity in women (p=0.01, 190 p=0.015 for second and third grade terms) (Figure 1). The interaction remained in spite 191 of the type of vaccine. The adjusted model minimized the mean squared error (0.51 and 192 $R^2 = 0.14$), compared with other models (MSE between 0.54 to 0.56, and R^2 between 193 0.04 and 0.07) (Figure 2). The residuals adjusted a normal distribution (Shapiro-Wilkins 194 p=0.136). 195 No differences due to metabolic risk factors or effective antibody concentration were 196 found, for food consumption, distress, and uncertainty, lack of sleep, sadness, and

197 anxiety.

It is made available under a CC-BY 4.0 International license .

1	Λ
1	υ

199	Figure 1. Sex Differences Analyzed with Locally Weighted Regression (Lowess)
200	Function. This figure displays the relationship between neutralizing anti-RBD IgG ratio
201	and body fat percentage in a sample of university students. Females are represented by
202	diamonds, and males by crosses. The Lowess curve for females is shown as a
203	continuous line, while for males, it is depicted as a discontinuous line.
204	
205	Figure 2. Adjusted Function of Anti-RBD IgG Ratio Predicted by Body Fat Percentage.
206	This figure illustrates the relationship between anti-RBD IgG ratio and body fat
207	percentage using a 3rd-grade polynomial regression model. For males, a 2nd-grade
208	polynomial is sufficient. Females are represented by white circles, and males by black
209	circles.

211 **Discussion**

212 Based on the results of our study, it appears that the neutralizing anti-RBD response to 213 the COVID-19 vaccine is influenced by a multiplicative interaction of sex and body fat 214 percentage. Specifically, females tend to have increased responses while males tend to 215 have decreased responses (Figure 2). Stress scores do not appear to have significant 216 effects. 217 This observation aligns with existing research on sex-based differences in immune 218 responses. For instance, a study involving the Cameron County Hispanic Cohort, which 219 included 624 participants with a mean age of 50 (SD 14) years, has previously reported

- sex-specific variations in adipokines and carotid intima media thickness.(12) The
- 221 present study extends these findings to a younger cohort, specifically individuals in the
- 222 final stages of adolescence residing near the U.S.-Mexico border. This highlights the

It is made available under a CC-BY 4.0 International license .

223 relevance of considering age and geographic location when examining immune

224 response differences between sexes.

225	Additionally, another study conducted in Mexico on 980 adult participants with a
226	median age of 50 (Q1: 36, Q3: 54) who had obesity before mass vaccination sheds light
227	on this matter. (13) The authors identified independent factors associated with SARS-
228	Cov-2 infection in a symptomatic group. Their findings revealed higher levels of anti-
229	S1/2 antibodies in individuals with conditions like advanced age, type 2 diabetes,
230	hypertension, and a positive correlation with body mass index (BMI). Furthermore,
231	women exhibited higher levels of anti-RBD IgG antibodies compared to men. This
232	study highlighted the heightened vulnerability of individuals with underlying health
233	conditions or obesity to SARS-CoV-2 infection. In contrast, the ESFUERSO cohort
234	focused on a younger population who received vaccinations, providing valuable insights
235	into this demographic group.
236	Other populations have reported similar findings. Yamamoto et al.(14), reported sex-
237	associated differences in the relationship between body mass index and SARS-CoV-2
238	antibody titers following the BNT162b2 vaccine in a study of 2,435 healthcare workers
239	in Japan. Additionally, a meta-analysis examining antibody responses to COVID-19
240	vaccinations also indicated a significant association between obesity and reduced
241	antibody response. (15) Nevertheless, the considerable heterogeneity (88%) observed
242	across studies suggests that biological factors, including sex, age, and body fat play a
243	pivotal role in this outcomes.
244	Tailoring vaccination plans based on an individual's characteristics may enhance
245	vaccine effectiveness. Addressing gender-specific and body fat-related factors in public
246	health interventions have the potential to reduce infection rates. Using the provided
247	information in this study can help in programs to educate individuals about their

It is made available under a CC-BY 4.0 International license .

248 susceptibility to infections considering the social determinants in the U.S.-Mexico

border region.

250 Limitations

251 While the present study yields valuable insights, it is important to acknowledge several

252 potential limitations. Variations in immune responses across different age groups, the

- 253 influence of genetic factors, and the impact of social determinants can introduce
- complexities that our study may not fully capture. Moreover, it's essential to recognize
- that the study's cross-sectional design allows identifying associations but does not
- establish causality. These considerations emphasize the need for caution in generalizing
- the findings and highlight avenues for further research.
- 258 In summary, this study provides novel insights into the response of anti-RBD IgG
- antibodies to vaccination in a young cohort. The findings reveal a complex relationship
- 260 between sex and body fat percentage, depicted by a third-degree polynomial curve
- 261 (Figure 2). This emphasizes the intricate interplay between body fat and the immune
- 262 response to vaccines and accentuates the importance of considering sex-specific factors,
- 263 especially among younger individuals. Comprehensive knowledge of distinct
- 264 characteristics and immunological responses, help to understand social and biological
- 265 dynamics for tailoring vaccination strategies, optimizing public health interventions and
- 266 reducing health disparities
- 267

268

269 Acknowledgments

270 Preliminary results of this study were presented and recognized as the best oral clinical

- 271 presentation at the UTRGV School of Medicine's 5 th Annual Research Symposium,
- 272 2021, Mission, TX. The study was supported by Convocatoria 2021-01: Impulso a la

It is made available under a CC-BY 4.0 International license .

- 273 Investigación Científica y de Tecnología Aplicada, COTACyT grant number:
- 274 COTACYT-2021-01-23. The authors acknowledge the generous support provided by
- the Universidad Mexico Americana del Norte, the Universidad Autónoma de
- 276 Tamaulipas for supporting ESFUERSO sharing spaces, personnel, laboratory facilities,
- and the enthusiastic participation of alumni, staff, and faculty.
- 278
- 279

It is made available under a CC-BY 4.0 International license .

280

281 **References**

282

283	1. Kara Z, Akcin R, Demir AN, Dinc HO, Kocazeybek B, Yumuk VD. Antibody
284	Response to Inactive SARS-CoV-2 Vaccination in a Cohort of Elderly Patients Living
285	with Obesity. Obes Facts. 2023;16(4):374-80.
286	2. Watanabe M, Balena A, Tuccinardi D, Tozzi R, Risi R, Masi D, et al. Central
287	obesity, smoking habit, and hypertension are associated with lower antibody titres in
288	response to COVID-19 mRNA vaccine. Diabetes Metab Res Rev. 2022;38(1):e3465.
289	3. Watanabe M, Balena A, Masi D, Tozzi R, Risi R, Caputi A, et al. Rapid Weight
290	Loss, Central Obesity Improvement and Blood Glucose Reduction Are Associated with
291	a Stronger Adaptive Immune Response Following COVID-19 mRNA Vaccine.
292	Vaccines (Basel). 2022;10(1).
293	4. Kara Z, Akcin R, Demir AN, Dinc HO, Taskin HE, Kocazeybek B, et al.
294	Antibody Response to SARS-CoV-2 Vaccines in People with Severe Obesity. Obes
295	Surg. 2022;32(9):2987-93.
296	5. Fishkin T, Goldberg MD, Frishman WH. Review of the Metabolic Risk Factors
297	for Increased Severity of Coronavirus Disease-2019. Cardiol Rev. 2021;29(6):292-5.
298	6. Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin
299	K, et al. COVID-19 and metabolic disease: mechanisms and clinical management.
300	Lancet Diabetes Endocrinol. 2021;9(11):786-98.
301	7. Garcia-Oropesa EM, Perales-Torres AL, Martinez-Lopez YE, Munguia-Cisneros
302	CX, Nava-Gonzalez EJ, Perez-Navarro M, et al. Effect of Insulin Resistance on
303	Abdominal Obesity, Liver Fat Infiltration, and Body Mass Index in Youngsters. Arch
304	Med Res. 2023;54(7):102873.
305	8. Barraza-Macias A. El estrés de la pandemia (COVID 19) en población
306	Mexicana.: Centro de Estudios Clinica e Investigacion Psicoanalitica S.C. ; 2020.
307	9. Burke JP, Hale DE, Hazuda HP, Stern MP. A quantitative scale of acanthosis
308	nigricans. Diabetes Care. 1999;22(10):1655-9.
309	10. Ayon-Nunez DA, Cervantes-Torres J, Cabello-Gutierrez C, Rosales-Mendoza S,
310	Rios-Valencia D, Huerta L, et al. An RBD-Based Diagnostic Method Useful for the
311	Surveillance of Protective Immunity against SARS-CoV-2 in the Population.
312	Diagnostics (Basel). 2022;12(7).
313	11. Network. E. The Strengthening the Reporting of Observational Studies in
314	Epidemiology (STROBE) Statement: guidelines for reporting observational studies.
315	2023 [updated March 6, 2023. Available from: https://www.equator-
316	network.org/reporting-guidelines/strobe/]
317	12. Kim D, Memili A, Chen HH, Highland HM, Polikowsky HG, Anwar MY, et al.
318	Sex-specific associations between adipokine profiles and carotid-intima media thickness
319	in the Cameron County Hispanic Cohort (CCHC). Cardiovasc Diabetol.
320	2023;22(1):231.
321	13. Montes-Herrera D, Munoz-Medina JE, Fernandes-Matano L, Salas-Lais AG,
322	Hernandez-Cueto MLA, Santacruz-Tinoco CE, et al. Association of Obesity with
323	SARS-CoV-2 and Its Relationship with the Humoral Response Prior to Vaccination in

324 the State of Mexico: A Cross-Sectional Study. Diagnostics (Basel). 2023;13(16).

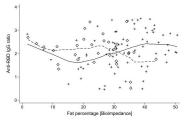
- 325 14. Yamamoto S, Mizoue T, Tanaka A, Oshiro Y, Inamura N, Konishi M, et al. Sex-
- associated differences between BMI and SARS-CoV-2 antibody titers following the
- 327 BNT162b2 vaccine. Obesity (Silver Spring). 2022;30(5):999-1003.
- 328 15. Ou X, Jiang J, Lin B, Liu Q, Lin W, Chen G, et al. Antibody responses to
- 329 COVID-19 vaccination in people with obesity: A systematic review and meta-analysis.
- 330 Influenza Other Respir Viruses. 2023;17(1):e13078.

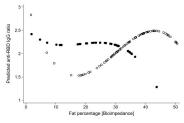
331

It is made available under a CC-BY 4.0 International license .

333

334 Figure legends:


335


- Figure 1. Sex differences analyzed with locally weighted regression (lowess)
- 337 function of neutralizing anti-RBD IgG ratio and body fat percentage in a sample
- 338 of university students. Females: Diamonds, Males: cross, Lowess females:
- 339 Continuous line, Lowess males: discontinuous line.

340

341

- 342 Figure 2. Function of anti-RBD IdG ratio predicted by body fat percentage with a
- 343 3rd grade polynomial regression model. The function for males can be modeled
- 344 with a 2nd grade polynomial. Females: White circles, Males: Black circles.

