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Abstract 

Background: Polygenic risk scores (PRS) summarise genetic information into a single number with 

multiple clinical and research uses. Machine learning (ML) has revolutionised a diverse set of fields, 

however, the impact of ML on genomics in general, and PRSs in particular, has been less significant. 

We explore how ML can improve the generation of PRSs. 

Methods: We train ML models on known PRSs using UK Biobank data. We explore whether the 

models can recreate human programmed PRSs, including using a single model to generate multiple 

PRSs, and the difficulty in using ML for PRS generation. We also investigate how ML can compensate 

for missing data and the constraints on performance. 

Results: We demonstrate almost perfect generation of PRSs, including when using one model to 

predict multiple scores, and with little loss of performance with reduced quantity of training data. 

For an example set of missing SNPs the MLP produces predictions that enable separation of cases 

from population samples with an area under the receiver operating characteristic curve of 0.847 

(95% CI: 0.828-0.864) compared to 0.798 (95% CI: 0.779-0.818) for the PRS. We provide evidence 

that input information is the limiting factor of further improvement.  

Conclusions: ML can accurately generate PRSs, including with one model for multiple PRSs. The 

models are transferable and have high longevity. With certain missing SNPs the ML models can 

statistically significantly improve on normal PRS generation. Models trained are probably at the edge 

of performance and further improvements likely require use of additional input data.  

Code is available at https://github.com/stevensquires/  

1) Introduction 

Polygenic risk scores (PRSs), also known as genetic risk scores, are a method of summarising risk 

information from the genome into a single number (1). PRSs show high discrimination for certain 

diseases and can be used for various clinical and research purposes including stratifying people into 

risk classes (2), enabling improved targeting of diagnostic methods and predicting disease 

progression (3).  

A PRS is typically produced from a genome wide association study (GWAS) (4)  aimed at assessing 

which single nucleotide polymorphisms (SNPs) are associated with a partition of the samples. The 

GWAS provides the statistical significance of the SNPs along with an associated weight which can be 

used in the PRS. A common approach to produce a PRS is to take the statistically significant SNPs 

with the associated weights and sum the product of the weights with the effect allele count. 

Alternative methods can utilise more complex functions such as the inclusion of pairwise interaction 

terms (5). 

Machine learning has been successfully applied to medical and biological domains. Examples include 

the use of deep learning in medical imaging (6), the prediction of progression of disease (7), and the 

discovery of protein structure (8). However, these approaches have not worked as well in genetics 

and genomics in part due to the tabular nature of genetic data (9) alongside the challenges of high 
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dimensionality. There is potential for machine learning to have a substantial impact on genomics, as 

it is having elsewhere, if appropriate methodologies can be found. 

In this paper we explore how machine learning can be used in the generation of PRSs. We consider 

three overall aims: 1) to investigate the use of deep learning to replicate human programmed PRSs; 

2) to explore whether deep learning can compensate for missing input SNPs; 3) to examine the 

limitations of the deep learning models to compensate for missing SNPs. To test whether deep 

learning can generate PRSs we take four PRSs, all with non-linearities due to interaction terms, and 

train deep models on the labelled outputs using a large dataset.  

There are several potential advantages of using deep learning to generate PRSs. One is the 

transferability of the models to researchers and clinicians. Complex PRSs (with non-linearities) are 

typically generated by specific code written in a particular programming language. With deep 

learning models the predictions are sets of matrix multiplications with trained weights which can be 

stored in formats accessible to people using many analysis platforms or programming languages. This 

approach also provides longevity as the matrices can be stored in formats which will still be readable 

as programming languages change with time. Furthermore, if we can train a single model to 

accurately predict multiple PRSs it simplifies the generation of these complex PRSs. 

Another potential use of deep learning based PRSs is that they can compress the data into latent 

representations that may be of use to further prediction models. A PRS is a scalar, and it may be that 

a vector-based compression may allow for improved predictions by models which combine multiple 

factors into a risk model.  

The training of a deep network on PRSs may also function as an effective self-supervised learning 

(SSL) pretext task. SSL is becoming one of the most important approaches in deep learning (10) and a 

crucial part of the process is the choice of pretext tasks. By training models on the PRSs this may 

allow the model to find a set of parameters which can then allow improved training on the specific 

desired task. The use of SSL has already been demonstrated in genomics (11) and many further uses 

would be expected. 

The second aim is to be able to generate a complex PRS from subsets of the input SNPs using 

machine learning approaches. The values of SNPs can be missing, or of poor quality, and this will 

reduce the performance of the PRS. We consider three potential mechanisms a model could use to 

accurately estimate the PRS without all the input SNPs. The first is that reweighting the remaining 

SNPs may compensate for the missing SNPs. The second is that the values of the missing SNPs can be 

estimated. The third is that there are patterns in values of the remaining SNPs that can be leveraged 

to predict what the final PRS should be. 

We explore three models in this study. The first is a linear predictor which tests the extent to which 

the reweighting of the SNPs can enable the original PRS to be reproduced. The second method is to 

use a variant on an autoencoder (12) which can take in the remaining SNPs and outputs the 

prediction of the values of the original SNPs. The third is a multi-layer perceptron (MLP) (13) which 

should cover all three hypotheses and is the main model we focus on throughout the paper. 

The third aim of this study is to probe the limitations of deep learning to compensate for missing 

SNPs. We take a SNP subset and train multiple models with different architectures, training 

approaches and encodings of the inputs. If the constraints on performance are due to the quality of 

the models we should expect to observe improvements in performance over a base model. 

Alternatively, if the limitation is due to lack of information in the input data there should be little 

improvement when exploring different model variants.  
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2) Methodology 

2.1 Polygenic risk scores (PRSs) 

We consider four PRSs for two diseases. Three are for risk score estimation for type 1 diabetes (T1D) 

and the fourth is for Celiac disease. We primarily study a T1D PRS generated from 67 input SNPs (5) 

which we label as T1D67. This PRS includes both a standard additive component alongside a more 

complicated set of interaction terms which describes important relationships within the human 

leukocyte antigen (HLA) region of chromosome 6.  

The other two T1D PRSs use ten SNPs, denoted T1D10, and thirty SNPs, denoted T1D30 (14), 

respectively. Both include an additive part alongside an interaction term based on two SNPs. The 

fourth PRS is produced with 42 SNPs for Celiac disease, denoted CD42, and contains similar 

interaction terms to the T1D67 PRS.  

 2.2) Data and pre-processing 

For training and testing we utilise the UK Biobank (UKBB) genomic data imputed using Minimac 

servers (15) with a combination of the 1000G panel data (16) and the Haplotype Reference 

Consortium panels (17). The dataset consists of 487,409 samples which we partition in slightly 

different ways to include the T1D and Celiac samples as a separate test set to check the 

discrimination capacity of the models. We use 387 T1D and 1,184 Celiac cases. 

When building models individually on the T1D PRSs (T1D10, T1D30 and T1D67) we partition the 387 

T1D cases into a separate test set. The rest of the samples are randomly assigned into 70% training 

(340,915), 15% validation (73,053) and 15% testing (73,054) sets. When building models to predict 

the CD42 PRS we partition the 1,184 Celiac cases into a test set then randomly split the rest of the 

data into 70% training (340,357), 15% validation (72,933) and 15% testing set (72,935).  

We also produce a single model which can predict all four PRSs, for which we hold out both the 

1,184 Celiac disease and 387 T1D cases in two separate test sets. There are 8 samples in both Celiac 

and T1D test sets. The remaining data is split into 70% training (340,092), 15% validation (72,876) 

and a second testing set (72,878). For the two test sets we denote the samples with T1D or Celiac as 

case test sets and the other as population test sets.  

For the input data we convert all SNP values to be based on the effect allele, so that a 0 represents 

no effect allele being present. Any missing values were set to 0 before training and testing of our 

models. The four PRSs were generated for all 487,409 samples. These scores are our ground truth 

label for training of the models and assessment of their quality. 

In addition to the UKBB data we use data from the Type 1 Diabetes Genetics Consortium (T1DGC) 

study (18) which consists of 9,413 non-T1D controls and 6,666 T1D cases. We use this dataset for 

inference and perform no training or model selection on it.  

2.3 Generation of PRSs from neural networks 

Our main approach is to use an MLP for generation of PRSs. A representative (not showing actual 

number of layers or neurons) diagram of this type of model is shown in Figure 1 with five neurons in 

the input layer (IL), two hidden layers (denoted by HL1 and HL2) with 4 and 3 neurons respectively 

and a single neuron in the output layer. The model is fully connected with all weights learnable 

during training. The basic MLP consists of three hidden layers each with 50, 30 and 20 neurons 

respectively. The input number of neurons is defined as the number of SNPs in the PRS (or the 

number of subset SNPs being investigated). We use rectified linear units (ReLUs) (19) as the 
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activation function for the hidden layer neurons and no additional activation function for the final 

output neuron. We use the mean squared error (MSE) objective function ||������ � ���||�
� to train 

the model where we denote the batch by subscript b and g is the function produced by the MLP. We 

refer to this model as the standard MLP. 

A potential use case for the neural network approach is to provide one model which outputs multiple 

PRSs. This is demonstrated in Figure 2 where the previous MLP model (in Figure 1) is altered to have 

four output neurons, each representing one of the four PRSs. The number of inputs is now the 

combined SNPs required for all four PRSs but otherwise no changes are made from the previous MLP. 

For clarity we refer to this model as the multi-predictor MLP 

To act as a model comparison to the MLP, and to test the reweighting hypothesis when we examine 

reduced number of input SNPs, we train a linear predictor, using Sci-Kit Learn (20). The number of 

samples is much larger than the number of features but we also applied an elastic net form of 

regularisation (21) to the trained models to check if performance improved. The linear predictor is 

given by ��	�

���� 
 ∑ ��
�

��

�	

, where pj is the number of SNPs for the jth set of SNPs, � � ��� is the 

vector of weights to be found and 	�

��� � ��� is the input SNP values for the kth sample. The elastic 

net is trained to minimise ||���� � ��||�
� � �
||�||
���||�||�

� where the training samples (with 

number ntr) have been stacked into matrix  � � ���� � ����. A grid search over  �
and ��  was 

performed and the MSE assessed on the validation data. Regularisation added no improved 

performance on the validation set and we reverted to using a direct linear predictor with no 

regularisation, therefore optimising ||���� � ��||�
�
. 

We also developed a variant of an autoencoder (AE) to predict missing SNP values when we reduce 

the number of input SNPs. A representation of this model is shown in Figure 1 with an example three 

neurons in the input layer (IL), 5 neurons in the hidden layer (HL) and 5 neurons in the output layer 

(���� . The actual AE model is designed with two hidden layers each with 67 neurons connected to an 

output layer with 67 neurons each one representing one of the original SNPs. The number of 

neurons in the input layer is defined by the number of input SNPs. The activation function of the 

neurons in the hidden layers is a ReLU and in the final layer a sigmoid multiplied by two to allow 

prediction of the SNP value (0, 1, 2).  

The AE is trained to produce a 67-neuron output with the MSE objective function ||����� � ��

���||�
�, 

where h() is the function produced by the AE, ��  is the stacked batch of inputs where each x is the pi 

dimensional vector for that number of SNPs and ��

���
 is the batch of original inputs with all the SNPs 

intact. The AE output is the estimate of the original SNP values. To generate the PRS estimate for 

each input 	�

���
 we apply the p0-SNP (all 67 SNPs) trained MLP, with function g0, to the output of the 

AE to give our estimate of the PRS: ��������	�

�����. We denote the AE followed by MLP method as AE-

MLP.  

In Figure 3 we show the three functions (MLP, linear predictor and autoencoder followed by MLP) we 

use for predicting a PRS including when there are missing input SNPs. The subscripts denote the 

sample and the superscript a set of remaining SNPs with (0) showing all original SNPs.  
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Figure 1. Schematic diagrams of the structure of the MLP (left) and AE (right). Each circle represents one neuron and the 

lines represent the links between the neurons on adjacent layers. IL stands for “input layer” where each neurons represents 

an input SNP, HL is the “hidden layer”. For the MLP (left) the final output is the prediction of the PRS (��) while for the AE 

(right) the output layer ����� is the prediction of the original 67 input SNPs. 

We use PyTorch (22) for both the MLP and AE using the Adam (23) optimiser with hyperparameters 

other than the learning rate left as defaults. The MLP is trained with a learning rate of 1 � 10�� and 

a batch size of 5 while the AE is trained with a learning rate of  5 � 10�� and a batch size of 5. The 

batch-sizes and learning rates were selected by assessment of the training and validation plots due to 

the number of models to be trained they are kept the same for all the basic models.  

 

Figure 2 The multi-predictor MLP model schematic. The model design is the same as the standard MLP (in Figure 1). The 

changes are in the input layer (IL) where the number of SNPs is increased to include all necessary SNPs for all the desired 

models and in the output layer where each output neuron represents one of the PRSs (in this case with four). 

2.4) Estimating the PRS with missing SNPs 

One of our objectives is to estimate a PRS without having access to all the required input SNPs. In 

Figure 3 we show a graphical representation of the procedure. In this toy example there are three 

subsets with no SNPs removed, one SNP removed, and three SNPs removed, respectively. We show 

the effect of different removal permutations in the results.  
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Figure 3. Left) The functions of the three predictors (linear, MLP, AE-MLP) with the functions represented by f(), g() and h(), 

respectively. Right) The procedure for removing the input SNPs. The removal order is shown at the top and then three 

versions of the inputs are displayed with the first showing the inclusion of all the SNPs and then the next two with the 

removed SNPs in order. The subscript k represents the k
th 

sample and the superscript a representation of which SNPs are 

included/excluded. 

For all choices of removed SNPs we directly generate the PRS without the relevant SNPs to show how 

the gap between the PRS on all 67 SNPs and the reduced number of SNPs varies. We then train the 

three models (linear predictor, AE-MLP and MLP) with the reduced number of SNPs as the input and 

the PRS (generated with the full set of SNPs) as the label.  

2.5) Additional MLP models for finding model performance limitations. 

A further objective is to understand whether limitations in the MLP predictive power with missing 

SNPs is due to the quality of the models or the information content of the inputs. The UKBB dataset 

is large and the number of inputs small so neither data quantity nor overfitting should limit the 

model performance. Therefore, if the models cannot recreate the original PRS it should be due either 

to the model or the amount of information in the input SNPs. 

We test whether the constraint on performance is due to the models by exploring variants on the 

MLP. A MLP is known to be a universal function approximator (24) so can, in principle, find the 

optimal mapping from a set of inputs to desired output. If we can find no improvement in model 

performance by searching through different model variant it provides evidence that the constraint is 

the information content of the input SNPs.  

We focus on one specific set of SNPs so that we do not have an unfeasibly large number of models to 

train. We take the 52 SNPs from the second random permutation (the middle plot of Figure 8) and 

train multiple model variants altering important aspects of the model to attempt to improve 

performance. 

The choice of hyperparameters can substantially improve model performance, two important ones 

are batch size and learning rates. Due to the large number of models we needed to train we did not 

do a search through these and chose a learning rate and batch size which produced training and 

validation curves with iterations that converge. For this one SNP subset we do a grid search through 

the learning rates and batch sizes to ascertain whether any improvements can be made. We select 

the best performing model by its performance on the validation set. In the results these models are 

referred to as Hyperparams. 
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Figure 4. Left) Schematic example of the skip connection model. The input layer is connected to the first hidden layer (HL1) 

as standard but also the input neurons are directly connected to the final hidden layer (HL2). There are no weights applied to 

the skip connections.  Right) Example of the expansion of the inputs when including direct pairwise terms. Each input is 

multiplied individually by all other inputs and then each of those values are concatenated together with the individual 

values. In the example there are three individual input SNPs which when combined with the pairwise terms creates a 6-

dimensional vector. 

There may be an issue with model capacity if there are a larger number of required functions needed 

than is possible with the current model architecture and design. There may also be difficulties with 

correctly assigning weights throughout the network. To test these issues we create four model 

architectures by altering the number of layers and number of neurons within each layer leaving the 

ReLU activation functions in the hidden layers and the linear output neuron the same. The first is the 

original MLP architecture described earlier with [50, 30, 20] neurons in each hidden layer; the second 

has  one hidden layer with 200 neurons; for the third the number of hidden layers is 7 with [55, 50, 

40, 30, 25, 15, 5] neurons within each layer; the final model also has 7 hidden layers with [200, 160, 

120, 90, 70, 50, 10] neurons in each layer. Between these different architectures we should be able 

to assess whether the model capacity or the difficulty in training deeper models produces limitations 

on predictive quality. In the results section these four model architectures are labelled as Capacity 1-

4 respectively. 

An important advance in improving deep learning models was the use of connections between non-

adjacent layers (25). To test if these skip connections can improve performance we add links from the 

input layer to the final hidden layer (with 20 neurons), keeping the rest of the number of layers and 

neurons the same as the standard MLP. A schematic of this skip-connection approach is shown in the 

left plot of Figure 4. These skip connections alter the number of neurons in the last hidden layer from 

20 to 20+52. This should ensure that any information lost is returned before the final mapping. In the 

results this model is labelled Skip. 

The final model variant is to alter the input SNPs to include all possible pairwise combinations. We 

leave in the 52 input SNPs and append all combinations of the pairs multiplied together. This adds in 

an addition 1,326 input neurons to give a total of 1,378 with the input now altered to 

(x1,x2,…x52,x1x2,x1x3,…,x51x52). While this approach adds no additional information for the model it 

should make it easier for it to find relationships between pairwise interactions. The approach is 

shown in the right of Figure 4. In the results this model is called Pairwise. 

One of the most effective ways to improve model performance is to utilise ensembles or averages of 

multiple models, ideally as diverse models as possible. We therefore also explore whether combining 

the predictions of the different models allows for any improvement in overall performance. 
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2.6) Transferability and longevity of the models 

A potential advantage of the neural network approach to PRS generation is the ease of transferring 

models and their longevity. The importance of these two factors become more significant when the 

models become more complicated as code complexity will also increase. As PRSs are developed in 

one coding language they may not be accessible to people not familiar with that specific language. In 

addition, coding languages and other technology change over time and the code needs to be 

maintained to ensure it continues to work effectively.  

Our MLP is a combination of matrix multiplications with the ReLU function. The standard MLP 

consists of four matrices with associated bias vectors. To generate the final MLP-PRS (������ from the 

input SNP vector from the ���  sample ��
��� � �
��  requires four steps:  

�


��� 
 �  ��

���!
 � "
# 

��

��� 
 �  �


���!� � "�# 

��

��� 
 �  ��

���!� � "�# 

����� 
 �  ��

���!� � "�# 

 

where f(x) is the ReLU function ��
� 
 $%
�0, 
� and the matrices are of sizes: !
 � ����� , 

!� � ������
, !� � ������ , !� � ������and biases: "
 � �
��� , "� � �
���

, "� � �
��� , "� � �
���. 

The number of neurons in each matrix is '
 
 50, '� 
 30,  '� 
 20 and '� 
 1.  
The storage of the parameters can be done in simple formats such as basic text files which is unlikely 

to become obsolete so there should be longevity in use of these models. Matrix multiplications are 

also simple to perform in almost all programming languages and other tools such as spreadsheets so 

should be highly accessible. Any changes in programming languages can easily be adapted to 

perform the matrix calculations. The only other information that needs to be sent with the matrices 

and biases is the list of ordered SNPs to match the input vectors along with the alleles. 

3) Results 

3.1 Generation of PRSs using MLPs 

In Table 1 we show test set Spearman rank correlation coefficient (Spearman rank) and root mean 

squared errors (RMSE) for the standard MLP for the four PRSs when models are trained separately. 

For context of the RMSE values the T1D10, T1D30, T1D67 and CD42 mean scores are 9.2, 12.6, 10.1 

and 2.4 respectively. We also show the area under the receiver operating characteristic curve (AUC) 

between the cases and population test sets for the PRS (PRS AUC) and the MLP (MLP AUC). The MLP 

can estimate the PRS to a high degree for all the PRSs and produce the same level of discrimination 

performance.  

Table 1. Metrics for the four individual MLPs trained separately on the PRSs. We show the Spearman rank correlation 

coefficient (Spearman Rank) and RMSE between the MLP estimates and PRSs. Also displayed are the area under the receiver 

operating characteristic curves (AUC) between cases and population test sets for the PRS (PRS AUC) and the MLP (MLP 

AUC). Confidence intervals are generated by bootstrapping and reported at the 95% level. 

PRS Spearman rank RMSE PRS AUC MLP AUC 

T1D10 0.999 (0.999-0.999) 0.052 (0.051-0.053) 0.855 (0.837-0.873) 0.855 (0.837-0.879) 
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T1D30 1.0 (1.0-1.0) 0.055 (0.054-0.057) 0.865 (0.846-0.882) 0.865 (0.844-0.885) 

T1D67 0.997 (0.997-0.997) 0.175 (0.172-0.179) 0.919 (0.904-0.932) 0.919 (0.902-0.931) 

CD42 0.998 (0.998-0.998) 0.105 (0.102-0.107) 0.874 (0.866-0.884) 0.873 (0.861-0.882) 

 

To explore the robustness of model training we show, in Figure 5, how the validation error falls when 

training on the T1D67. We show plots of the validation losses against iteration for different learning 

rates (left), different batchsizes (middle) and different model architectures (right). For both varying 

learning rates and varying batchsizes the model approaches a similar level of performance. The 

number of neurons in each layer for the five models is: model 1 (the standard MLP) has (67, 50, 30, 

20, 1), model 2 has the same number of layers but fewer neurons (67, 20, 10, 5, 1), model 3 has the 

same number of layers with more neurons (67, 100, 60, 40, 1), model 4 has only one hidden layer 

(67, 50, 1), and model 5 has more hidden layers (67, 50, 40, 30, 20, 10, 1). Model four does not find a 

local minimum comparable to the other models.  

 

Figure 5 Examples of validation errors in training runs for different hyperparameter choices. Left) Validation losses for 

different batchsizes (BS) for the standard MLP model, all with a learning rate of  Middle) Validation losses for 

different learning rates (LR) for the standard MLP model with a batchsize of 20. Right) Validation losses for different model 

architectures all trained with a batchsize of 20 and learning rate of   

In Figure 6 we show model performance at estimating the T1D67 with changing size of the training 

set. The left plot shows the AUC between the cases and population test sets. The middle and right 

plots show the Spearman rank correlation coefficient and RMSE between the model predictions and 

the T1D67 on the population test set, respectively. The original dataset has around 400,000 samples 

but prediction quality is only modestly reduced as the number of samples falls below 10,000. 

 

Figure 6 The performance of the standard MLP model at predicting the PRS67 with reduced numbers of training samples. 

Uncertainty estimates are produced by bootstrapping and reported at the 95% level. Left) The AUC for separation of the test 

set drawn from the population compared to the 387 T1D samples. Middle) The Spearman rank correlation coefficient for the 
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MLP predictions compared to the PRS67 values for the population test set. Right) The root mean squared error (RMSE) for 

the MLP predictions compared to the PRS67 values for the population test set. 

In Figure 7 we show how one model (the multi-predictor MLP) can estimate all four PRSs. The left 

plot shows the four validation losses (one for each PRS) during training of the model. The right plot 

shows the AUCs for the four models compared with the AUCs from the PRS. The prediction 

performance (as measured by AUC) is the same for the multi-predictor MLP as the four individual 

PRSs.  

 

Figure 7 The performance of the multi-predictor MLP. Left) The validation losses (mean squared errors) of the multi-

predictor MLP for each of the predicted PRSs. Right) The AUCs with uncertainties for the original PRSs and the multi-

predictor MLP (denoted as MLP). 

3.2 Estimating risk scores with missing input SNPs 

Figure 8 we show how the Spearman rank correlation coefficient changes with reduced numbers of 

SNPs for the T1D67 PRS, linear, AE-MLP and MLP models for different random permutations of 

removal of SNPs. The MLP and AE-MLP produce similar results for all SNP subsets. The linear 

predictions perform slightly worse than the MLP and AE-MLP when the number of SNPs being 

removed is not too large and tend to converge as the remaining number of SNPs is small. The MLP 

either performs comparably or better than the PRS. For different choices of removal of SNPs there is 

considerable variation in performance between the PRS and MLP. We also show the AUC between 

cases and population test sets for the PRS and MLP in the bottom plots. 
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Figure 8. Top) Change in Spearman rank correlation coefficient for the T1D67, linear predictor, MLP and AE-MLP models 

with reducing number of SNPs. The three plots show different random permutations of removal of the SNPs. Bottom) The 

change in AUC for the removal of SNPs for the T1D67 and MLP. The y-axis varies significantly for different permutations. 

In Figure 9 we show one example of the potential use of the MLP approach for one subset of 57 

SNPs. On the left plot we show the distributions of the risk scores for the PRS and the MLP (both with 

57 input SNPs). The left violin plot of each pair shows the non-T1D population test set and the right 

shows the T1D test set. The middle plot shows the PRS generated with 57 SNPs against the PRS67 

with red dots showing non-T1D samples from the population test set (a random sample of 387 for 

viewing clarity) and blue crosses the T1D samples. The right plot shows the same results but for the 

MLP. With 57 available input SNPs the PRS and MLP produce AUCs of 0.798 (95% CI 0.779-0.818) and 

0.847 (95% CI 0.828-0.864) respectively.  

 

Figure 9. Example use case with 57 SNPs (10 removed). The AUCs for PRS and MLP on the reduced SNPs are 0.798 (95% CI 

0.779-0.818) and 0.847 (95% CI 0.828-0.864) respectively. Left) Distributions of the non-T1D (left of the pair of plots) and 

T1D (right of the pair of plots) for the PRS (left pair) and the MLP (right pair). Middle) Plot of the PRS generated with 57 

SNPs against the PRS with all 67 SNPs. Red dots are a random selection of 387 non-T1D scores and blue crosses the 387 T1D 

scores. Right) The same plots as the middle set but for the MLP. 
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The AE-MLP and MLP show very similar performance (see Figure 8) when input SNPs are unavailable. 

This suggests that the mechanism for the MLP is to estimate values (probabilities) of missing SNP 

values. We therefore trained the AE for all 67 SNPs with one held out each time, producing a 

prediction for each of the removed SNPs when all other 66 SNPs are available. We measure the 

performance for each removed SNP by the Pearson correlation coefficient and show a histogram of 

the results in the left plot of Figure 10. The most common result is that the AE cannot make any 

reasonable prediction of the SNPs (correlation below 0.1) but for some SNPs the AE performs well. 

The middle plot shows the AE performance on three types of SNPs in the 67 SNP PRS: those related 

to the HLA-DQ, HLA and non-HLA aspects of the genome. The AE performs well on the HLA-DQ SNPs, 

worse on the HLA SNPs and poorly on the non-HLA SNPs. As a demonstration of the capacity of the 

MLP to improve performance when the HLA-DQ SNPs are removed we train an MLP model removing 

a random permutation of those 14 SNPs. In the right plot of Figure 10 we show how the MLP 

performs compared to the PRS when these SNPs are removed.  

 

Figure 10. Left) A histogram showing the Pearson correlation coefficient between predicted and actual SNP values when we 

trained an AE with just the one SNP removed (67 models in total). Middle) The correlation of the AE predictions for SNPs in 

the HLA-DQ, HLA and non-HLA regions. Right) The AUC of the PRS and MLP against SNP number when the 14 SNPs in the 

HLA-DQ are removed in a random permutation.  

We also show that this approach works when applied to the T1DGC dataset the model has not been 

trained on. In Figure 11 we show how the PRS and MLP performs for the reduction in SNP numbers 

as taken at random from the HLA-DQ set. In the left plot we show the AUC between the T1D and 

non-T1D partitions. The middle plot shows ROC curves for the results given by SNP number 57. The 

right plot shows violin plots of the risk scores produced by the PRS and MLP with 57 remaining SNPs.  

 

Figure 11. Results from applying models trained on the UKBB data to the T1DGC dataset. Left) AUCs between cases and 

controls when removing (at random) HLA-DQ SNPs. The vertical line is the SNP set results then shown in the middle and 

right plots. Middle) ROC curves of the MLP and PRS when 57 SNPs remain. Right) Distributions of the PRS and MLP scores for 

the controls and cases with 57 SNPs.  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.23299972doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.14.23299972
http://creativecommons.org/licenses/by/4.0/


3.3) Exploring prediction quality limitations with missing SNPs 

To investigate whether it is possible to improve on the baseline MLP performance with missing SNPs 

we consider one subset of 52 SNPs (the 52 SNP subset shown in the middle plot of Figure 8) and train 

the model variants discussed in Section 2.5. The metrics with uncertainties for these models are 

shown in Figure 12. All the additional models show similar performance with no statistically 

significant improvements over the standard MLP. In addition, a simple ensemble approach was 

performed taking the average of predictions from sets of all the models and no significant 

improvement in performance was observed. 

 

Figure 12. The performance of the additional models discussed in Section 2.5. The Orig denoted model is the standard MLP 

and the other models were named in Section 2.5. The Spearman rank correlation coefficient (Spearman rank) and RMSE are 

to the original PRS.   

In Figure 13 we show predictions from a random 500 samples from the test set and plot the 

additional model predictions against the original model (Orig) predictions. The similarity between all 

additional models and the original predictions are high.  
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Figure 13. A random selection of 500 predictions on the test set for the additional models against the standard MLP (Orig). 

All models were trained on the same 52 input SNPs. 

4) Discussion 

We have shown that neural networks can be used to generate PRSs that match those of specifically 

written programmes when all input SNPs are available and that one NN-PRS can generate multiple 

PRSs with no loss of performance. One benefit of a neural network generated PRS (NN-PRS) is these 

can be easily transferred for use in other contexts. Instead of rewriting code the NN-PRS is a 

combination of matrix multiplications with a ReLU. To produce the four PRSs all that is required is the 

ordered list of input SNPs along with the weights. The PRSs can be generated in many different 

programming languages including using spreadsheets. This approach also has considerable longevity 

because the mapping from the input SNPs to the output PRS is via matrices which can be stored in 

simple formats such as a text file. There is therefore limited risk of changes in computing, 

programming languages, or updated technology which would make this form of model storage 

obsolete. 

A second use of a NN-PRS is when considering the integration with other data to produce further 

predictive models. A standard PRS produces just one risk score output but the NN-PRS has a latent 

layer before the output neuron which encodes the input SNP information in a reduced dimensional 

vector rather than a scalar. For predictive models this latent encoding may prove more informative 

than just the summary scalar. Further models could use the latent vector as in input which, when 

combined with other data, could provide improved model performance. 

Another use is in the burgeoning field of self-supervised learning (SSL). In SSL deep learning model 

are pretrained on pretext tasks so that when the model is finally trained on the desired downstream 

task it enhances its performance. A PRS has the potential to be a useful pretext task for a model to 

set the model weights effectively so the performance on the real task improves. This approach can 

either use the entire network or take parts of it as the pretrained parts for another model such as an 

improved risk generator. 

PRSs are often produced when some of the input SNPs are unavailable. An neural network PRS (NN-

PRS) has the potential to improve the quality of the risk score in these circumstances. We tested both 
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an MLP and an AE-MLP on their capability to compensate for missing input SNPs, both performed at 

the same level. This similarity in performance suggests that the neural networks are predicting the 

scores of the missing SNPs (with some probability). Due to this similarity the performance of the AE 

at predicting missing SNPs shows when the NN-PRS will outperform the PRS with missing SNPs. 

The AE can estimate some of the missing SNPs, with others not predictable. The NN-PRS therefore 

tends to operate at the equivalent level as the PRS (if it cannot estimate the missing SNPs) or 

outperforms the PRS. Most of the SNPs that are predictable tend to be related to the HLA-DQ and if 

SNPs are missing there then the MLP is likely to improve on performance. 

An example use-case of the NN-PRS when used with missing SNPs was shown where the AUC of T1D 

to non-T1D was statistically significantly higher. In either research or clinical settings the difference in 

performances may be worth using the NN-PRS over a standard PRS. 

We also demonstrated that these results are not due to overfitting to the specific training dataset. 

We applied the trained models to the T1DGC dataset, as an independent test set, and showed results 

that are very similar to those from UKBB.  

One challenge with the missing SNP NN-PRS is that the potential combination of missing SNPs for a 

67-SNP PRS is large and each SNP subset has to be trained separately. If there are a collection of SNPs 

that are likely to be missing then it would be possible to train a collection of models for those specific 

missing SNPs but it is not generalisable beyond that. 

The alternative use-case is generation of the NN-PRS for each specific set of missing SNPs. This type 

of on-the-fly analysis is possible for two reasons. First the models are not difficult to train, we 

demonstrated that multiple different hyperparameter choices: learning rates, batchsizes and model 

architectures all produce similar final performance as long as the model architecture has a 

reasonable capacity. Consequently, a set of models could be set up to train automatically with the 

best automatically selected on a validation set. As the models are small and computationally 

inexpensive the multi-model approach is not costly. Secondly, we showed that the amount of training 

data needed is in the thousands which would only require a few MB of data storage. For a final use-

case of this approach data could be bundled into the software package, models trained automatically 

on the data with known output PRS. The quality of the model could be directly provided to the user 

via the validation set and models produced for those specific available SNPs. Alternatively, anyone 

with access to a reasonable sized dataset could train these models specifically on their data for use 

on other datasets where the full set of SNPs is not available. 

We also investigated the limitations of the NN-PRS to predict PRSs when SNPs are missing. We 

explored a range of variations to the MLPs trained on one specific SNP subset. We found no 

statistically significant improvement in performance via any of the approaches we took including the 

use of averages. Moreover, the final predictions made by all the models are very similar which 

suggests a convergence of model estimates. This similarity in performance provides evidence that 

the models are producing as good a set of predictions as are possible to make. As NNs are universal 

function approximators, and there are many more samples than input dimensions, this therefore 

suggests that there are no models that could further improve when the SNPs are missing. To further 

improve the prediction of the PRSs with missing SNPs likely requires addition inputs to the model 

rather than any alterations to the models. 

5) Conclusions 
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MLPs can be easily trained to generate complex PRSs with equivalent performance to the coded 

models. A single MLP can produce multiple PRSs. These models are combinations of matrices with 

simple non-linearities that can be run on almost any analysis platform and require only simple 

storage. This approach should enable more researchers/clinicians to generate PRSs and effectively 

requires no maintenance of code. 

When there are missing input SNPs the MLP can either match or improve on PRS performance. The 

level of improvement depends on the ability of the model to predict the values of the missing SNPs 

(with much higher performance for the HLA-DQ SNPs) combined with the importance of the SNP. 

The models require modest amounts of training data to produce high performance and the training 

required does not need significant hyperparameter tuning. Therefore, these models on missing SNPs 

can be trained as they are needed depending on which specific SNPs are missing.  

The evidence is that no further improvements in PRS estimation from missing SNPs is possible 

without the inclusion of additional information. Multiple variants of the models were trained all 

which produce similar performance and very similar specific predictions.  
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