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Abstract  41 

Background: The COVID-19 pandemic underscored the need for rapid and accurate diagnostic tools. In 42 

August 2020, the Abbot BinaxNOW COVID-19 Antigen Card test became available as a timely and 43 

affordable alternative for SARS-CoV-2 molecular testing, but its performance may vary due to factors 44 

including timing and symptomatology. This study evaluates BinaxNOW diagnostic performance in 45 

diverse epidemiological contexts. 46 

Methods: Using RT-PCR as reference, we assessed performance of the BinaxNOW COVID-19 test for 47 

SARS-CoV-2 detection in anterior nasal swabs from participants of two studies in Puerto Rico from 48 

December 2020 to May 2023. Test performance was assessed by days post symptom onset, collection 49 

strategy, vaccination status, symptomatology, repeated testing, and RT-PCR cycle threshold (Ct) values.  50 

Results: BinaxNOW demonstrated an overall sensitivity of 84.1% and specificity of 98.8%. Sensitivity 51 

peaked within 1–6 days after symptom onset (93.2%) and was higher for symptomatic (86.3%) than 52 

asymptomatic (67.3%) participants. Sensitivity declined over the course of infection, dropping from 53 

96.3% in the initial test to 48.4% in testing performed 7–14 days later. BinaxNOW showed 99.5% 54 

sensitivity in participants with low Ct values (≤25) but lower sensitivity (18.2%) for participants with 55 

higher Cts (36–40). 56 

Conclusions: BinaxNOW demonstrated high sensitivity and specificity, particularly in early-stage 57 

infections and symptomatic participants. In situations where test sensitivity is crucial for clinical decision-58 

making, nucleic acid amplification tests are preferred. These findings highlight the importance of 59 

considering clinical and epidemiological context when interpreting test results and emphasize the need for 60 

ongoing research to adapt testing strategies to emerging SARS-CoV-2 variants. 61 

 62 
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Introduction 64 

As of October 2023, the COVID-19 pandemic has led to 771 million confirmed cases of COVID-65 

19 and 7 million deaths globally, with Puerto Rico reporting almost 1.3 million COVID-19 cases and 66 

6,000 associated deaths.1 Rapid identification of SARS-CoV-2 infection and subsequent measures to 67 

reduce transmission are central to an effective public health response to COVID-19.2 However, the broad 68 

spectrum of clinical manifestations of SARS-CoV-2 infection poses a challenge to the rapid identification 69 

of infections and the implementation of effective measures to reduce transmission.2-4 Concurrently, the 70 

pandemic prompted the development of novel therapies 5-8 that are designed to shorten COVID-19 71 

symptom duration. Early identification of SARS-CoV-2 infection is crucial for the timely and appropriate 72 

administration of therapies, particularly for people at higher risk for severe disease. Many of the novel 73 

treatments developed during the pandemic require initiation within a specific window after symptom 74 

onset. However, the challenges posed by the broad spectrum of clinical manifestations, including initially 75 

asymptomatic and mild cases that can progress to severe disease, make early and accurate detection of 76 

SARS-CoV-2 infection essential for effective treatment and prevention strategies. 77 

To identify infected individuals for isolation and appropriate medical therapy, rapid and accurate 78 

COVID-19 tests continue to play a crucial role, including those used in clinical and laboratory settings. 79 

Although RT-PCR-based testing is frequently available in clinical and laboratory settings for infection 80 

detection, its utility can be limited by the expertise required for proper sample management and reporting 81 

delays due to the time needed for transport and testing at laboratory facilities.9,10 In many communities, 82 

point-of-care rapid antigen tests were deployed to enhance the accessibility and efficiency of SARS-CoV-83 

2 infection detection. Among the available commercial lateral flow antigen tests, the BinaxNOW Antigen 84 

Card test has undergone particularly extensive evaluation, demonstrating consistent specificity (>97%) 85 

across multiple cohort studies.11-15 However, sensitivity estimates varied widely in different reports, with 86 

potential factors including timing of specimen collection, symptom presence, collection methodology, and 87 

viral replication levels, necessitating further validation.  88 
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In December 2020, BinaxNOW testing was introduced alongside RT-PCR testing for SARS-89 

CoV-2 in a community cohort and two clinical surveillance sites in Puerto Rico. We evaluated how the 90 

performance of BinaxNOW varied by days post onset of symptoms, symptomatology, predominant 91 

SARS-CoV-2 variant, vaccination status, collection strategy, repeated tests, and RT-PCR cycle thresholds 92 

(Ct). This study leverages its large sample size, including specimens collected at various time points from 93 

a unique population in Puerto Rico, to provide a comprehensive evaluation of the BinaxNOW Antigen 94 

Card test’s performance, contributing to filling an information gap in the use of point-of-care rapid 95 

antigen tests for SARS-CoV-2 infection detection. Our findings contribute to a deeper understanding of 96 

the test’s efficacy and role in augmenting current diagnostic strategies. 97 

 98 

Methods 99 

Study Design and Data Collection 100 

The data analyzed is derived from two observational studies in Puerto Rico: the Communities 101 

Organized to Prevent Arboviruses (COPA) study and the Sentinel Enhanced Dengue Surveillance System 102 

(SEDSS), both of which are conducted by the Ponce Health Sciences University (PHSU) and the US 103 

Centers for Disease Control and Prevention’s (CDC) Dengue Branch (DB). 104 

COPA is a community-based cohort study established in Ponce, Puerto Rico, in 2018. Study 105 

enrollment and data collection activities are described elsewhere.16-18 Briefly, study activities include 106 

annual interviews and serum collection for arbovirus testing among approximately 3,800 participants. 107 

Beginning in April 2020, anterior nasal swabs for SARS-CoV-2 RT-PCR testing were collected from 108 

participants that reported experiencing COVID-like symptoms (i.e., fever, cough, sore throat, difficulty 109 

breathing, diarrhea, body pain, or loss of taste/smell) or within the last 7 days of their annual visits. 110 

Additionally, an acute illness surveillance component was initiated via weekly text messages asking 111 

participants to report if they or a household member experienced COVID-like symptoms in the past 7 112 

days. Symptomatic participants, as well as those with a prior positive lab test for SARS-CoV-2 in the last 113 

7-21 days and their household contacts, were offered visits for anterior nasal swab collection for SARS-114 
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CoV-2 RT-PCR testing. Beginning in December 2020, concurrent collection of a second anterior nasal 115 

swab for testing by the BinaxNOW COVID-19 Antigen Card test was offered to all participants with a 116 

swab collected for SARS-CoV-2 RT-PCR testing. All nasal swabs were collected by study staff, and 117 

BinaxNOW testing was performed within one hour of collection at the study site. Our analyses include 118 

COPA participants who were tested for SARS-CoV-2 between December 2020 and May 2023 using both 119 

BinaxNOW and RT-PCR assays. COPA participants may have been tested multiple times in the study 120 

period, including during the same and separate illness or exposure events. 121 

Established in May 2012, SEDSS is an active surveillance system that monitors acute febrile and 122 

respiratory illnesses in two emergency departments in Ponce, Puerto Rico. In 2018, an additional site was 123 

established in an emergency department in San Juan.21-23 Patients were eligible for enrollment if they 124 

demonstrated fever upon presentation or within the past week (oral temperature ≥38°C, axillary 125 

temperature ≥38.5°C), or cough/dyspnea within the last 14 days (with or without fever). Nasopharyngeal 126 

swabs collected at enrollment from participants in SEDSS were tested for SARS-CoV-2 using RT-PCR. 127 

Two collection approaches were employed for BinaxNOW testing in one of the two participating 128 

emergency departments: staff-collected and participant-collected (self-testing) anterior nasal swabs. 129 

Participants underwent staff-collected, self-collected, or both staff- and self-collected anterior nasal 130 

swabbing concurrently. Participants were provided with clear and simple instructions for self-collection 131 

and testing, including applying drops to the test card, swabbing both nostrils, and following specific steps 132 

for test card handling.25 Our analyses included SEDSS participants in the San Juan or Ponce sites tested 133 

for SARS-CoV-2 between January and April 2021 using both BinaxNOW and RT-PCR assays. 134 

For both COPA and SEDSS, the RT-PCR assays used included the CDC Real-Time Reverse 135 

Transcription PCR Panel for tests performed before December 2021 and the CDC Influenza SARS-CoV-136 

2 (Flu SC2) Multiplex Assay for tests performed December 2021 and later.19,20 137 

 138 

Statistical Analysis 139 
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 We reported frequencies of demographic characteristics (age group, sex, ethnicity, race, and 140 

Hispanic/Latino), reported chronic medical conditions, COVID-19 vaccine doses, and number of RT-141 

PCR/BinaxNOW tests among all COPA and SEDSS participants with one or more RT-PCR/BinaxNOW 142 

test result data available.  143 

 Using the SARS-CoV-2 RT-PCR result as our reference standard, we calculated measures of 144 

diagnostic accuracy of BinaxNOW tests including sensitivity, specificity, positive predictive value, 145 

negative predictive value, positive likelihood ratio, negative likelihood ratio, and the number needed to 146 

diagnose (NND) of BinaxNOW tests compared to RT-PCR tests. Definitions of these measures are given 147 

in Table S1. We calculated 95% confidence intervals (CI) for all measures. We used McNemar’s test to 148 

evaluate differences in proportions of discordant pairs (i.e., the differences between false positives and 149 

false negatives) between BinaxNOW and the reference standard, RT-PCR.26 It helps determine if one test 150 

is more likely to produce false positives or false negatives compared to the other. To assess 151 

discrimination, we calculated the area under the receiver operating characteristic curve (AUC-ROC). 152 

AUC-ROC summarizes the trade-off between sensitivity and specificity, where an AUC of 1 indicates 153 

perfect discrimination, and 0.5 indicates no discrimination.  154 

We evaluated the performance of BinaxNOW compared to RT-PCR overall across all participants 155 

as well as by days post symptom onset (0, 1–3, 4–6, 7+ days), symptom status (asymptomatic, 156 

symptomatic), collection strategy (staff-collected, self-collected), number of COVID-19 vaccine doses 157 

received prior to testing (0, 1, 2, 3 doses), primary SARS-CoV-2 variant (pre-Delta, Delta, Omicron) 158 

circulating at time of sample collection, and Ct values of positive RT-PCR tests (≤25, 26–30, 31–35, 36–159 

40). The classification of primary circulating SARS-CoV-2 variant was based on the time period from 160 

their earliest detection in Puerto Rico until the detection of a new major variant: pre-Delta (cases through 161 

May 31, 2021), Delta (June 1 to November 30, 2021), and Omicron (after December 1, 2021).27 162 

For COPA participants with repeated tests, we evaluated BinaxNOW performance for their initial 163 

test as well as the repeated test 7–14 days after the initial test. We further stratified this analysis by 164 

participant symptom status for the initial and repeated tests. We performed a sensitivity analysis for the 165 
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repeated tests by restricting to participants who had testing within 6 days of symptom onset to ensure the 166 

repeated test was not for a different infection. For repeated tests among COPA participants, tests 167 

separated by ≥90 days were considered as part of separate illness episodes, and tests within 7–14 days of 168 

each other were considered part of the same illness episode.28 The few COPA participant tests performed 169 

between 15–89 days of another test were excluded from the analysis. In SEDSS, when both self-collected 170 

and hospital staff-collected swabs were tested, all tests, including the RT-PCR test, were conducted on the 171 

same day and included in the analyses. 172 

We fit cubic splines to further understand the relationships between sensitivity and specificity of 173 

BinaxNOW by days post onset of symptoms and total number of symptoms. All analyses were done using 174 

R software, version 4.3.1 (R Foundation for Statistical Computing, Vienna, Austria). 175 

 176 

Results 177 

 There were 1,207 total participants with results from paired BinaxNOW and RT-PCR tests: 943 178 

(78.1%) from COPA and 264 (21.9%) from SEDSS (Table 1). The median age of all participants was 36 179 

years (IQR: 17, 49), 57.4% were female, 99.7% were Hispanic/Latino, and 56.3% had reported past 180 

diagnosis with one or more chronic medical conditions. Of 799 COPA participants with available 181 

COVID-19 vaccine data, 92.5% had received at least two doses, whereas 5.8% remained unvaccinated. 182 

All SEDSS participants were unvaccinated and tested before vaccines became widely available in Puerto 183 

Rico. Among the 264 SEDSS participants, 58 (22.0%) underwent both staff-collected/tested and 184 

participant-collected/tested BinaxNOW tests, resulting in a total of 322 BinaxNOW tests. In COPA, there 185 

were 1,208 BinaxNOW tests from the 943 participants from December 2020 to May 2023. Of the 1,530 186 

total tests from SEDSS and COPA, 404 (26.4%) were positive for SARS-CoV-2 on the BinaxNOW test 187 

and 465 (30.4%) were positive by RT-PCR. 188 

 Across all participants (n=1,530 paired tests), the overall sensitivity of BinaxNOW compared to 189 

RT-PCR was 84.1% (95% CI: 80.4%–87.3%), specificity was 98.8% (95% CI: 97.9%–99.3%), positive 190 

predictive value was 96.8% (95% CI: 94.6%–98.3%), and negative predictive value was 93.4% (95% CI: 191 
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91.8%–94.8%) (Table 2). We further examined the diagnostic performance at different time intervals 192 

following symptom onset. Sensitivities at 1–3 days post onset (92.1%) and 4–6 days post onset (94.2%) 193 

were significantly higher than at ≥7 days post onset (70.2%) (p<0.001). Specificity remained consistently 194 

above 98% across all days post-onset. The sensitivity of the BinaxNOW test peaked between 1 and 6 days 195 

post-onset and waned thereafter (Figure 1). 196 

 The sensitivity of BinaxNOW was higher for symptomatic (86.3%) than for asymptomatic 197 

(67.3%) participants, whereas specificity estimates were the same (98.8%) for both groups. Sensitivity did 198 

not significantly vary by the number of symptoms reported (Figure S1). For symptomatic participants, 199 

one correct diagnosis was obtained for every 1.2 patients tested with BinaxNOW on average during the 200 

study period (NND = 1.2, 95% CI: 1.1–1.2) (Table 3). For asymptomatic participants, one correct 201 

diagnosis was obtained for every 1.5 patients tested with BinaxNOW on average during the study period 202 

(NND = 1.5, 95% CI: 1.3–2.0). The sensitivity and specificity of BinaxNOW showed consistent 203 

performance across participants regardless of the number of COVID-19 vaccine doses received, with 204 

overlapping confidence intervals for all groups (Table 2). 205 

We evaluated the diagnostic performance of BinaxNOW using swabs collected and tested by 206 

participants, as well as those collected and tested by study staff. BinaxNOW testing of self-collected and 207 

staff-collected anterior nasal swabs from SEDSS showed sensitivities of 85.2% and 79.3%, respectively, 208 

and 100% specificity (Table 2). BinaxNOW testing of staff-collected anterior nasal swabs from COPA 209 

had 84.3% sensitivity and 98.4% specificity. BinaxNOW tests in anterior nasal swabs collected by both 210 

participants (AUC-ROC = 0.926) and staff (AUC-ROC = 0.913) showed a strong ability to discriminate 211 

between true positives and true negatives (Table 3). Among individuals positive by RT-PCR, SEDSS 212 

participants had lower median Ct values (23, IQR: 21–30) compared to symptomatic COPA participants 213 

(27, IQR: 23–31) (p=0.004) and a higher median number of symptoms (9, IQR: 5–12) compared to 214 

symptomatic COPA participants (1, IQR: 1–1) (p<0.001). In the COPA cohort, sensitivity was 55.4% 215 

(95% CI: 44.1%–66.3%) for 83 positive RT-PCR tests from asymptomatic participants and 86.8% (95% 216 

CI: 82.8%–90.1%) for 355 positive RT-PCRs from symptomatic participants (Figure S2). 217 
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There were 184 participants who had repeated tests within a single illness or exposure event (7–218 

14 days after the initial test). In the initial test, BinaxNOW demonstrated high sensitivity (96.3%) and 219 

specificity (96.0%) for detecting SARS-CoV-2 (Table 2). During subsequent sample collection and 220 

testing 7–14 days later, sensitivity decreased to 48.4%, while specificity remained high at 97.9% (p-value 221 

from McNemar’s test < 0.001). Restricting to 134 participants who had the initial test within 6 days of 222 

symptom onset, the sensitivity was 96.1% for the initial test and 48.8% for the repeated test 7–14 days 223 

later. The initial test showed strong overall performance (AUC-ROC = 0.961), whereas the follow-up 224 

testing showed a decline in accuracy for identifying positive cases over time (AUC-ROC = 0.731) (Table 225 

3). Sensitivity dropped significantly for participants initially symptomatic (98.7%) and later 226 

asymptomatic (23.1%) (Figure 2, Table S2). Conversely, sensitivity increased for those initially 227 

asymptomatic (50.0%) and later symptomatic (100%), but this difference was not statistically significant 228 

possibly due to the limited sample size.   229 

The sensitivity of BinaxNOW varied significantly depending on the Ct values from positive RT-230 

PCR tests. For Ct values ≤25, paired BinaxNOW tests showed 99.5% sensitivity in correctly identifying 231 

positive cases (Table 4). Conversely, as Ct values increased, test accuracy declined, reaching only 18.2% 232 

for Ct values between 36–40.  233 

 234 

Discussion  235 

Our results demonstrated an overall 84.1% sensitivity for the Abbot BinaxNOW COVID-19 236 

Antigen Card Test which falls within the upper range of previously reported BinaxNOW sensitivities 237 

(50–85%) among other studies.11-14,29 The test also demonstrated high specificity (98.8%), positive 238 

predictive value (96.8%), and negative predictive value (93.4%). Test sensitivity was highest 1–6 days 239 

post onset and decreased significantly thereafter. These findings are in agreement with other studies, 240 

highlighting the importance of timing in SARS-CoV-2 antigen testing.30,31  241 

Our findings regarding BinaxNOW test performance in symptomatic and asymptomatic 242 

individuals also align with those from other studies,11-14 showing substantially higher test sensitivity in 243 
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symptomatic compared to asymptomatic individuals, while maintaining a high level of specificity for 244 

both groups. We did not find a clear dose-response relationship between the number of symptoms 245 

experienced and sensitivity, but the point estimate for test sensitivity was highest (91.5%) among 246 

participants with ten or more symptoms. Symptom type and indicators of disease severity, such as low 247 

oxygen saturation levels, tachypnea, or requiring hospitalization, rather than simply the number of 248 

symptoms reported, may have a greater influence on diagnostic accuracy.32 These results corroborate 249 

previous research and highlight the challenges of detecting SARS-CoV-2 infections in asymptomatic 250 

cases.11-14 Clinicians should consider these factors and follow CDC guidelines for using antigen tests, 251 

including repeat testing for asymptomatic individuals who were exposed, considering other etiologies for 252 

symptomatic individuals, and repeating testing with RT-PCR in situations where sensitivity is of 253 

paramount importance according to CDC recommendations.33  254 

Following infection, SARS-CoV-2 viral replication and shedding precede symptoms, with peak 255 

viral titers occurring near the day of symptom onset and declining thereafter.34 This trend is supported by 256 

studies indicating that antigen testing demonstrates higher sensitivity early in infection when viral loads 257 

are high, while repeated sampling over the illness course correlates with decreasing sensitivity.11,30,31,35,36 258 

Ct values from RT-PCR tests also provide quantity of viral genetic material in the sample (as an 259 

approximate proxy for viral load) with increasing Ct values reflecting decreasing viral genetic 260 

material.3738 Our study used the same RT-PCR assay for SEDSS participants, but two different RT-PCR 261 

assays were used in COPA, which precludes direct comparison of Ct values due to variation in sensitivity, 262 

chemistry of reagents, gene targets, cycle parameters, and others.37 BinaxNOW test showed peak 263 

sensitivity (99.5%) when the Ct values of paired RT-PCR tests were 25 or lower, suggesting a higher 264 

concentration of viral genetic material, typically indicative of early-stage infection. This is consistent with 265 

our findings of reduced sensitivity 7 or more days after symptom onset, as well as those showing a 266 

significant decline in sensitivity with repeated testing conducted in samples collected 7–14 days after 267 

initial testing. These findings emphasize the importance of testing during the early infection stage and 268 

maximizing the utility of isolation and treatment, when indicated. However, BinaxNOW test sensitivity 269 
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drops significantly (18.2%) for cases with Ct values between 36–40, suggesting a diminished capacity to 270 

detect positive SARS-CoV-2 cases among individuals with lower viral genetic material concentrations 271 

during later stages of infection.  272 

Compared to ancestral variants, Delta and Omicron are characterized by their shorter incubation 273 

periods, serial intervals, enhanced immune evasion, and heightened transmissibility.39-41 Studies have 274 

yielded mixed results in viral load patterns for these variants, with some reporting higher viral loads for 275 

Delta,42,43 whereas others report higher viral loads for Omicron BA.1.44,45 The limited number of tests 276 

during the Delta variant dominant period in our study precluded robust comparisons of sensitivity 277 

between SARS-CoV-2 variants, and there were overlapping confidence intervals for sensitivity across the 278 

variants. One study reported lower BinaxNOW COVID-19 Antigen test sensitivity for infections with the 279 

Omicron variant compared to those with the Delta variant,46 and another found no significant difference 280 

in sensitivity between the two variants.47 The impact of infection prevalence, such as the lower prevalence 281 

in the Delta period, may have affected the results. Lower prevalence can lead to higher false-negative 282 

rates as the proportion of true negatives in the population increases, influencing the balance of sensitivity 283 

and specificity. Sensitivity and specificity of the BinaxNOW test remained consistent across participants 284 

regardless of their COVID-19 vaccination status, similar to other studies.29,48 285 

Test timing, the patient’s clinical presentation, and the prevalence of SARS-CoV-2 infection in 286 

the community should be considered when interpreting results and making diagnostic decisions. This 287 

approach aligns with CDC guidance on COVID-19 testing.49 Different settings require tailored testing 288 

strategies. Healthcare settings attending to immunocompromised individuals may rely on highly sensitive 289 

RT-PCR tests to accurately detect prolonged viral shedding. Conversely, antigen tests may provide 290 

sufficient diagnostic accuracy in most settings, particularly when timely results are essential for public 291 

health intervention or treatment.  292 

Our study evaluated the performance of BinaxNOW COVID-19 Antigen test for both self-293 

collected and staff-collected anterior nasal swab samples. We observed high sensitivities (85.2% and 294 

83.9%) and specificities (>98%) for both collection methods, consistent with the literature emphasizing 295 
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the feasibility and reliability of self-collection methods.50,51 Sensitivity among participants from the 296 

hospital-based surveillance site (SEDSS) (83.1%) was not significantly different than among 297 

symptomatic participants from the community-based cohort (COPA) (86.8%), but was significantly 298 

higher than asymptomatic COPA participants (55.4%). 299 

 This study had several limitations. Our population was composed primarily of individuals that 300 

identified as Hispanic/Latino and Puerto Rican between the ages of 0 and 50 years, which may not fully 301 

represent diverse populations or epidemiological conditions found elsewhere. BinaxNOW performance 302 

may vary in populations with different demographic characteristics, vaccination rates, or healthcare 303 

access. Additionally, participants in our study, comprising individuals seeking medical attention or 304 

enrolling in a community-based cohort study, may differ from non-participants regarding healthcare-305 

seeking behavior, symptom severity, proximity to healthcare facilities, access to healthcare, 306 

socioeconomic factors, and risk perception, potentially introducing selection bias. Our study included pre-307 

Delta, Delta, and Omicron (time period covering BA.1 through XBB.1.552) variants. However, our study 308 

population had low SARS-CoV-2 transmission prior to the Omicron variant. More recent Omicron 309 

subvariants like EG.5 and FL.1.5.1 may have viral mutations that affect BinaxNOW performance. 310 

Furthermore, our study used the dominant variant period as a proxy for the actual variant of the 311 

individual, potentially misclassifying cases due to variability within these periods. Lastly, our study 312 

focused on a rapid antigen test for SARS-CoV-2 from a single manufacturer. Our findings may not apply 313 

to other antigen tests with potentially different performance characteristics. 314 

 315 

Conclusions  316 

Our study provides valuable insights into the diagnostic performance of BinaxNOW COVID-19 317 

Antigen Card Test in different epidemiological contexts. While demonstrating high sensitivity and 318 

specificity, our findings highlight the influence of factors such as symptomatology, viral load, and timing 319 

of specimen collection on test accuracy. BinaxNOW remains a valuable tool for home use and early 320 

infection identification, offering numerous advantages, including low cost, extended shelf life, 321 
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temperature stability, ease of use, and the ability to identify individuals with high viral loads. However, 322 

its application should be considered alongside clinical and epidemiological context.33 Future research 323 

should continue to explore the evolving landscape of SARS-CoV-2 variants and the performance of rapid 324 

antigen tests across diverse populations to further enhance our understanding and response to COVID-19. 325 

 326 
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Figure Titles and Legends 488 

Figure 1. Sensitivity and specificity of BinaxNOW Antigen test compared to RT-PCR by days post 489 

onset of symptoms (N = 1181 paired tests from 921 participants with 0 to 16 days post onset). The 490 

blue line represents a cubic spline and grey bands indicate 95% confidence intervals of the model fit. 491 

Vertical bars are 95% confidence intervals of BinaxNOW sensitivity and specificity for each days-post-492 

onset subgroup. There were 1181 tests of both BinaxNOW and RT-PCR. 493 

Figure 2. Sensitivity of BinaxNOW Antigen test compared to RT-PCR for initial tests and repeated 494 

tests 7–14 days later by symptom status for the initial and repeated tests (N = 368 paired tests from 495 

184 participants). Additional diagnostic accuracy measures are shown in S2 Table. There were 368 tests 496 

of both BinaxNOW and RT-PCR. 497 
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Table 1. Demographic characteristics of participants from COPA and SEDSS, 2020–
2023. 

 Overall COPA SEDSS 
 N = 1207 N = 943 N = 264 

Age in years (median [IQR])   36 [16, 49] 36 [16, 47] 36 [19, 58] 
Age group in years (%) (N = 1207)    
   0–10  149 (12.3) 96 (10.2) 53 (20.1) 
   11–20  222 (18.4) 208 (22.1) 14 (5.3) 
   21–30  146 (12.1) 102 (10.8) 44 (16.7) 
   31–40  180 (14.9) 142 (15.1) 38 (14.4) 
   41–50 263 (21.8) 237 (25.1) 26 (9.8) 
   51+ 247 (20.5) 158 (16.8) 89 (33.7) 
Sex (%) (N = 1206)    
   Female  692 (57.4) 552 (58.6) 140 (53.0) 
   Male 514 (42.6) 390 (41.4) 124 (47.0) 
Hispanic/Latino (%) (N = 1171)    
   Yes 1168 (99.7) 912 (100.0) 256 (98.8) 
   No 3 (0.3) 0 (0) 3 (1.2) 
Ethnicity (%) (N = 1170)    
   Puerto Rican 1152 (98.5) 900 (98.8) 252 (97.3) 
   Other 18 (1.5) 11 (1.2) 7 (2.7) 
Race (%) (N = 1118)    
   Black 122 (10.9) 93 (10.4) 29 (12.9) 
   Mixed 101 (9.0) 85 (9.5) 16 (7.1) 
   White 849 (75.9) 685 (76.7) 164 (72.9) 
   Other 46 (4.1) 30 (3.4) 16 (7.1) 
Chronic medical conditions (%) (N = 1205)    
   Yes 679 (56.3) 531 (56.3) 148 (56.5) 
   No 526 (43.7) 412 (43.7) 114 (43.5) 
COVID-19 vaccine doses recorded on final 
visit (%) (N = 1063) 

   

   0 310 (29.2) 46 (5.8) 264 (100) 
   1 14 (1.5)  14 (1.8)  0 (0) 
   2 290 (30.5)  290 (36.3)  0 (0) 
   3 435 (45.7)  435 (54.4)  0 (0) 
   4 14 (1.5)  14 (1.8)  0 (0) 
Symptomatic during study (%) (N = 1203)    
   Yes 1030 (85.6) 770 (81.7) 260 (100) 
   No 173 (14.4) 173 (18.3) 0 (0) 
Days from symptom onset to testing 
(median [IQR]) (N = 923) 

4 [2, 6] 4 [3, 7] 2 [1, 4] 

Number of RT-PCR/BinaxNOW tests (%) (N 
= 1207) 

   

   1 733 (60.7) 527 (55.9) 206 (78.0) 
   2 318 (26.3) 260 (27.6) 58 (22.0)a 
   3 94 (7.8) 94 (10.0) 0 (0.0) 
   ≥4 62 (5.1) 62 (6.6)b 0 (0.0) 
IQR: interquartile range; COPA: Communities Organized to Prevent Arboviruses; SEDSS: Sentinel 
Enhanced Dengue Surveillance System; RT-PCR: reverse transcription polymerase chain reaction. 
a All repeat testing for SEDSS participants was performed on the same day with one swab collected by 
a healthcare provider and another self-collected swab. 
b For repeated tests among COPA participants, tests separated by ≥90 days were considered as part of 
separate illness episodes, and tests within 7–14 days of each other were considered part of the same 
illness episode. COPA participant tests performed between 15–89 days of another test were excluded 
from the analysis. 
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Table 2. Comparison of BinaxNOW and RT-PCR (N = 1530 paireda tests from 1207 participants unless stated otherwise). 

 

True 
Positive,  

n (%) 

True 
Negative,  

n (%) 

False 
Positive,  

n (%) 

False 
Negative,  

n (%) 
Sensitivity  
% (95% CI) 

Specificity  
% (95% CI) 

Positive 
Predictive Value  

% (95% CI) 

Negative 
Predictive Value  

% (95% CI) 

McNemar’s 
Chi Square 

P valueb 
Overall  391 (25.6) 1052 (68.8) 13 (0.8) 74 (4.8) 84.1 (80.4, 87.3) 98.8 (97.9, 99.3) 96.8 (94.6, 98.3) 93.4 (91.8, 94.8) <0.001 
Days post onsetc 

0 15 (20.0) 55 (73.3) 0 (0) 5 (6.7) 75.0 (50.9, 91.3) 100 (93.5, 100) 100 (78.2, 100) 91.7 (81.6, 97.2) 0.074 
1–3  129 (26.9) 337 (70.2) 3 (0.6) 11 (2.3) 92.1 (86.4, 96.0) 99.1 (97.4, 99.8) 97.7 (93.5, 99.5) 96.8 (94.4, 98.4) 0.061 
4–6 145 (40.4) 201 (56.0) 4 (1.1) 9 (2.5) 94.2 (89.2, 97.3) 98.0 (95.1, 99.5) 97.3 (93.3, 99.3) 95.7 (92.0, 98.0) 0.267 
≥7 85 (30.6) 154 (55.4) 3 (1.1) 36 (12.9) 70.2 (61.3, 78.2) 98.1 (94.5, 99.6) 96.6 (90.4, 99.3) 81.1 (74.7, 86.4) <0.001 

Symptomatologyd          
Asymptomatic  37 (11.9) 252 (81.3) 3 (1.0) 18 (5.8) 67.3 (53.3, 79.3) 98.8 (96.6, 99.8) 92.5 (79.6, 98.4) 93.3 (89.7, 96.0) 0.002 
≥1 symptom 353 (29.0) 797 (65.5) 10 (0.8) 56 (4.6) 86.3 (82.6, 89.5) 98.8 (97.7, 99.4) 97.2 (95.0, 98.7) 93.4 (91.6, 95.0) <0.001 
1–3 symptoms 266 (30.5) 556 (63.8) 9 (1.0) 41 (4.7) 86.6 (82.3, 90.2) 98.4 (97.0, 99.3) 96.7 (93.9, 98.5) 93.1 (90.8, 95.0) <0.001 
4–6 symptoms 24 (19.4) 92 (74.2) 0 (0) 8 (6.5) 75.0 (56.6, 88.5) 100 (96.1, 100) 100 (85.8, 100) 92.0 (84.8, 96.5) 0.013 
7–9 symptoms 20 (19.4) 80 (77.7) 0 (0) 3 (2.9) 87.0 (66.4, 97.2) 100 (95.5, 100) 100 (83.2, 100) 96.4 (89.8, 99.2) 0.248 
≥10 symptoms 43 (36.8) 69 (59.0) 1 (0.9) 4 (3.4) 91.5 (79.6, 97.6) 98.6 (92.3, 100) 97.7 (88.0, 99.9) 94.5 (86.6, 98.5) 0.371 

Collection strategy 

Self, SEDSS 46 (34.3) 80 (59.7) 0 (0) 8 (6.0) 85.2 (72.9, 93.4) 100 (95.5, 100) 100 (92.3, 100) 90.9 (82.9, 96.0) 0.013 
Staff, SEDSS 23 (12.2) 159 (84.6) 0 (0) 6 (3.2) 79.3 (60.3, 92.0) 100 (97.7, 100) 100 (85.2, 100) 96.4 (92.3, 98.7) 0.041 
Self + Staff, SEDSS 69 (21.4) 239 (74.2) 0 (0) 14 (4.3) 83.1 (73.3, 90.5) 100 (98.5, 100) 100 (94.8, 100) 94.5 (90.9, 96.9) 0.001 
Staff, COPA 322 (26.7) 813 (67.3) 13 (1.1) 60 (5.0) 84.3 (80.2, 87.8) 98.4 (97.3, 99.2) 96.1 (93.5, 97.9) 93.1 (91.2, 94.7) <0.001 
Staff, SEDSS + COPA 345 (24.7) 972 (69.6) 13 (0.9) 66 (4.7) 83.9 (80.0, 87.4) 98.7 (97.8, 99.3) 96.4 (93.9, 98.1) 93.6 (92.0, 95.0) <0.001 

Repeated testse 
Initial test 105 (57.1) 72 (39.1) 3 (1.6) 4 (2.2) 96.3 (90.9, 99.0) 96.0 (88.8, 99.2) 97.2 (92.1, 99.4) 94.7 (87.1, 98.5) 1 
Repeated test 7–14 
days after initial test 29 (15.8) 122 (66.3) 3 (1.6) 30 (16.3) 49.2 (35.9, 62.5) 97.6 (93.1, 99.5) 90.6 (75.0, 98.0) 80.3 (73.0, 86.3) <0.001 

Number of vaccine 
dosesf         

 

Unvaccinated 99 (19.9) 378 (75.9) 0 (0) 21 (4.2) 82.5 (74.5, 88.8) 100 (99.0, 100) 100 (96.3, 100) 94.7 (92.1, 96.7) <0.001 
1 dose 7 (16.3) 33 (76.7) 1 (2.3) 2 (4.7) 77.8 (40.0, 97.2) 97.1 (84.7, 99.9) 87.5 (47.3, 99.7) 94.3 (80.8, 99.3) 1 
2 doses 100 (22.9) 310 (71.1) 2 (0.5) 24 (5.5) 80.6 (72.6, 87.2) 99.4 (97.7, 99.9) 98.0 (93.1, 99.8) 92.8 (89.5, 95.3) <0.001 
3 doses 144 (38.6) 201 (53.9) 8 (2.1) 20 (5.4) 87.8 (81.8, 92.4) 96.2 (92.6, 98.3) 94.7 (89.9, 97.7) 91.0 (86.4, 94.4) 0.038 
4 doses 2 (22.2) 6 (66.7) 1 (11.1) 0 (0) 100 (15.8, 100) 85.7 (42.1, 99.6) 66.7 (9.4, 99.2) 100 (54.1, 100) 1 

Predominant SARS-CoV-2 variant   
Pre-Delta 80 (16.7) 379 (79.1) 0 (0) 20 (4.2) 80.0 (70.8, 87.3) 100 (99.0, 100) 100 (95.5, 100) 95.0 (92.4, 96.9) <0.001 
Delta 7 (4.2) 156 (94.0) 0 (0) 3 (1.8) 70.0 (34.8, 93.3) 100 (97.7, 100) 100 (59.0, 100) 98.1 (94.6, 99.6) 0.248 
Omicron 304 (34.4) 517 (58.4) 13 (1.5) 51 (5.8) 85.6 (81.5, 89.1) 97.5 (95.8, 98.7) 95.9 (93.1, 97.8) 91.0 (88.4, 93.2) <0.001 

RT-PCR: reverse transcription polymerase chain reaction; CI: confidence interval 
a There were 1530 tests of both BinaxNOW and RT-PCR. 
b We used McNemar’s test to evaluate differences in proportions of discordant pairs (i.e., the differences between false positives and false negatives) between BinaxNOW and the reference standard, RT-PCR. It 
helps determine if one test is more likely to produce false positives or false negatives compared to the other. 
c N = 1192 tests from 923 participants—284 participants were missing symptom onset dates. 
d N = 1526 tests from 1203 participants—4 participants were missing symptom data. Symptoms included tiredness, cough, loss of smell, dyspnea, myalgia, throat pain, chest pain, nausea/vomiting, diarrhea, 
abdominal pain, nasal congestion, chills, conjunctivitis, skin changes, rash, arthralgia, eye pain, bleeding, irritability, and calf pain. 
e N = 368 tests from 184 participants. Restricted to participants who had repeated tests. 
f N = 1359 tests from 1063 participants—144 participants were missing vaccination data. 
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Table 3. Performance of BinaxNOW compared to RT-PCR (N = 1530 paireda tests from 1207 participants unless stated otherwise). 

 
Positive likelihood 

ratio (95% CI) 

Negative 
likelihood ratio 

(95% CI) 
Correctly classified 
proportion (95% CI) 

Apparent positivity 
(95% CI) 

True positivity 
(95% CI) 

Number 
needed to 

diagnose (95% 
CI) 

AUC-
ROC 

Overall 68.89 (40.07, 118.41) 0.16 (0.13, 0.20) 0.943 (0.930, 0.954) 0.264 (0.242, 0.287) 0.304 (0.281, 0.328) 1.2 (1.2, 1.3) 0.914 
Days post onsetb 

0 Inf 0.25 (0.12, 0.53) 0.933 (0.851, 0.978) 0.200 (0.116, 0.308) 0.267 (0.171, 0.381) 1.3 (1.1, 2.3) 0.875 
1–3  104.43 (33.81, 322.51) 0.08 (0.04, 0.14) 0.971 (0.952, 0.984) 0.275 (0.236, 0.317) 0.292 (0.251, 0.335) 1.1 (1.0, 1.2) 0.956 
4–6  48.25 (18.27, 127.44) 0.06 (0.03, 0.11) 0.964 (0.939, 0.981) 0.415 (0.364, 0.468) 0.429 (0.377, 0.482) 1.1 (1.0, 1.2) 0.961 
≥7 36.76 (11.91, 113.43) 0.30 (0.23, 0.40) 0.860 (0.813, 0.898) 0.317 (0.262, 0.375) 0.435 (0.376, 0.496) 1.5 (1.3, 1.8) 0.842 

Symptomatologyc 
Asymptomatic  57.18 (18.29, 178.78) 0.33 (0.23, 0.48) 0.932 (0.898, 0.958) 0.129 (0.094, 0.172) 0.177 (0.137, 0.225) 1.5 (1.3, 2.0) 0.830 
≥1 symptom  69.65 (37.58, 129.11) 0.14 (0.11, 0.18) 0.946 (0.931, 0.958) 0.299 (0.273, 0.325) 0.336 (0.310, 0.364) 1.2 (1.1, 1.2) 0.925 
1–3 symptoms 54.39 (28.41, 104.15) 0.14 (0.10, 0.18) 0.943 (0.925, 0.957) 0.315 (0.285, 0.347) 0.352 (0.320, 0.385) 1.2 (1.1, 1.3) 0.925 
4–6 symptoms Inf 0.25 (0.14, 0.46) 0.935 (0.877, 0.972) 0.194 (0.128, 0.274) 0.258 (0.184, 0.344) 1.3 (1.1, 1.9) 0.875 
7–9 symptoms Inf 0.13 (0.05, 0.37) 0.971 (0.917, 0.994) 0.194 (0.123, 0.284) 0.223 (0.147, 0.316) 1.2 (1.0, 1.6) 0.935 
≥10 symptoms 64.04 (9.13, 449.18) 0.09 (0.03, 0.22) 0.957 (0.903, 0.986) 0.376 (0.288, 0.470) 0.402 (0.312, 0.496) 1.1 (1.0, 1.4) 0.950 

Collection strategy        
Self, SEDSS Inf 0.15 (0.08, 0.28) 0.940 (0.886, 0.974) 0.343 (0.263, 0.430) 0.403 (0.319, 0.491) 1.2 (1.1, 1.5) 0.926 
Staff, SEDSS Inf 0.21 (0.10, 0.42) 0.968 (0.932, 0.988) 0.122 (0.079, 0.178) 0.154 (0.106, 0.214) 1.3 (1.1, 1.7) 0.897 
Self + Staff, SEDSS Inf 0.17 (0.10, 0.27) 0.957 (0.928, 0.976) 0.214 (0.171, 0.263) 0.258 (0.211, 0.309) 1.2 (1.1, 1.4) 0.916 
Staff, COPA 53.56 (31.18, 92.00) 0.16 (0.13, 0.20) 0.940 (0.925, 0.952) 0.277 (0.252, 0.303) 0.316 (0.290, 0.343) 1.2 (1.2, 1.3) 0.914 
Staff, SEDSS + COPA 63.60 (37.00, 109.32) 0.16 (0.13, 0.20) 0.943 (0.930, 0.955) 0.256 (0.234, 0.280) 0.294 (0.271, 0.319) 1.2 (1.2, 1.3) 0.913 

Repeated testsd 
Initial test 24.08 (7.94, 73.03) 0.04 (0.01, 0.10) 0.962 (0.923, 0.985) 0.587 (0.512, 0.659) 0.592 (0.518, 0.664) 1.1 (1.0, 1.3) 0.961 
Repeated test 7–14 
days after initial test 20.48 (6.50, 64.53) 0.52 (0.40, 0.67) 0.821 (0.757, 0.873) 0.174 (0.122, 0.237) 0.321 (0.254, 0.393) 2.1 (1.6, 3.4) 0.734 

Number of vaccine dosese 
Unvaccinated Inf  0.18 (0.12, 0.26) 0.958 (0.936, 0.974) 0.199 (0.165, 0.237) 0.241 (0.204, 0.281) 1.2 (1.1, 1.4) 0.913 
1 dose 26.44 (3.72, 188.16) 0.23 (0.07, 0.78) 0.930 (0.809, 0.985) 0.186 (0.084, 0.334) 0.209 (0.100, 0.360) 1.3 (1.0, 4.1) 0.874 
2 doses 125.81 (31.52, 502.14) 0.19 (0.14, 0.28) 0.940 (0.914, 0.961) 0.234 (0.195, 0.277) 0.284 (0.242, 0.329) 1.2 (1.1, 1.4) 0.900 
3 doses 22.94 (11.60, 45.37) 0.13 (0.08, 0.19) 0.925 (0.893, 0.950) 0.408 (0.357, 0.459) 0.440 (0.389, 0.492) 1.2 (1.1, 1.3) 0.920 
4 doses 7.00 (1.14, 42.97) 0.00 (0.00, 0.00) 0.889 (0.518, 0.997) 0.333 (0.075, 0.701) 0.222 (0.028, 0.600) 1.2 (-2.4, 1.0) 0.929 

Predominant SARS-CoV-2 variant  
Pre-Delta Inf 0.20 (0.14, 0.30) 0.958 (0.936, 0.974) 0.167 (0.135, 0.203) 0.209 (0.173, 0.248) 1.2 (1.1, 1.4) 0.900 
Delta Inf 0.30 (0.12, 0.77) 0.982 (0.948, 0.996) 0.042 (0.017, 0.085) 0.060 (0.029, 0.108) 1.4 (1.1, 3.1) 0.850 
Omicron 34.91 (20.37, 59.82) 0.15 (0.11, 0.19) 0.928 (0.909, 0.944) 0.358 (0.327, 0.391) 0.401 (0.369, 0.434) 1.2 (1.1, 1.3) 0.916 

RT-PCR: reverse transcription polymerase chain reaction; CI: confidence interval; AUC-ROC: Area Under the Receiver Operating Characteristic Curve  
a There were 1530 tests of both BinaxNOW and RT-PCR. 
b N = 1192 tests from 923 participants—284 participants were missing symptom onset dates. 
c N = 1526 tests from 1203 participants—4 participants were missing symptom data. Symptoms included tiredness, cough, loss of smell, dyspnea, myalgia, throat pain, chest pain, nausea/vomiting, 
diarrhea, abdominal pain, nasal congestion, chills, conjunctivitis, skin changes, rash, arthralgia, eye pain, bleeding, irritability, and calf pain. 
d N = 368 tests from 184 participants. Restricted to participants who had repeated tests. 
e N = 1359 tests from 1063 participants—144 participants were missing vaccination data. 
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Table 4. Sensitivity of BinaxNOW by Ct values of RT-PCR 
tests (N = 464 paireda tests from 435 participants). 

Ct value 

Positive 
PCR tests 

N 

Positive 
BinaxNOW 

tests 
N (%) 

Negative 
BinaxNOW 

tests 
N (%) 

≤25 198 197 (99.5) 1 (0.5) 
26–30 121 113 (93.4) 8 (6.6) 
31–35 101 72 (71.3) 29 (28.7) 
36–40 44 8 (18.2)   36 (81.8) 
RT-PCR: reverse transcription polymerase chain reaction. 
a This table includes positive RT-PCR tests and corresponding BinaxNOW test 
results. Of 465 total positive RT-PCR tests, 1 was missing a Ct value, therefore 
the sample size includes 464 tests of both BinaxNOW and RT-PCR. 
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