It is made available under a CC-BY-ND 4.0 International license .

1 Integration of pharmacists' knowledge into a predictive model for teicoplanin dose

2 planning

- 3
- 4 Tetsuo Matsuzaki^a, Tsuyoshi Nakai^{a,b}, Yoshiaki Kato^a, Kiyofumi Yamada^a, and Tetsuya
 5 Yagi^{c,*}
- 6
- ⁷ ^aHospital Pharmacy, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
- ⁸ ^bDepartment of Pharmacotherapeutics and Informatics, Fujita Health University School of
- 9 Medicine, Toyoake, 470-1192, Japan
- ¹⁰ ^cDepartment of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, 466-8560,

11 Japan

- 13 Running title: A predictive model for teicoplanin dosing
- 14
- ¹⁵ ^{*}Corresponding author: Tetsuya Yagi
- 16 Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, 466-8560,
- 17 *Japan*

It is made available under a CC-BY-ND 4.0 International license .

18

- 19 E-mail: tyagi@med.nagoya-u.ac.jp
- 20 Phone: +81-52-744-2955
- 21 Fax: +81-52-744-2801

22

- 23 Word count for the abstract: 250 words
- Word count for the text: 3332 words

It is made available under a CC-BY-ND 4.0 International license .

26 Abstract

27

28	Teicoplanin is an important antimicrobial agent for methicillin-resistant Staphylococcus
29	aureus infections. To enhance its clinical effectiveness while preventing adverse effects,
30	therapeutic drug monitoring (TDM) of teicoplanin trough concentration is recommended.
31	Given the importance of the early achievement of therapeutic concentrations for treatment
32	success, initial dosing regimens are deliberately designed based on patient information.
33	Considerable effort has been dedicated to developing an optimal initial dose plan for
34	specific populations; however, comprehensive strategies for tailoring teicoplanin dosing
35	have not been successfully implemented. The initial dose planning of teicoplanin is
36	conducted at the clinician's discretion and is thus strongly dependent on the clinician's
37	experience and expertise.
38	The present study aimed to use a machine learning (ML) approach to integrate clinicians'
39	knowledge into a predictive model for initial teicoplanin dose planning. We first confirmed

40 that dose planning by pharmacists dedicated to TDM (hereafter TDM pharmacists) 41 significantly improved early therapeutic target attainment for patients without an intensive 42 care unit or high care unit stay, providing the first evidence that dose planning of

It is made available under a CC-BY-ND 4.0 International license .

43	teicoplanin by experienced clinicians enhances early teicoplanin therapeutic exposure. Next,
44	we used a dataset of teicoplanin initial dose planning by TDM pharmacists to train and
45	implement the model, yielding a model that emulated TDM pharmacists' decision-making
46	for dosing. We further applied ML to cases without TDM pharmacist dose planning and
47	found that the target attainment rate of the initial teicoplanin concentration markedly
48	increased. Our study opens a new avenue for tailoring the initial dosing regimens of
49	teicoplanin using a TDM pharmacist-trained ML system.
50	

51 Keywords: Machine learning (ML), Teicoplanin, Initial dosing regimen, TDM

It is made available under a CC-BY-ND 4.0 International license .

53 Importance

54	Teicoplanin is used for treating methicillin-resistant Staphylococcus aureus infections.
55	Given the importance of early adequate teicoplanin exposure, initial dosing regimens are
56	adjusted for patient characteristics. However, tailoring teicoplanin dosing is challenging for
57	most clinicians. In this study, we first showed that initial dosing regimens by pharmacists
58	dedicated to therapeutic drug monitoring significantly improved early achievement of
59	targeted concentration. In addition, we leveraged machine learning approach to develop the
60	predictive model that tailors initial dosing regimens at the levels of experienced
61	pharmacists. The target attainment rate of patients without experienced pharmacists' dose
62	planning was significantly increased by applying the model. Therefore, machine learning
63	approach may provide new avenues for tailoring initial teicoplanin dosing.

It is made available under a CC-BY-ND 4.0 International license .

65 1. Introduction

67	Teicoplanin is a glycopeptide antibiotic with clinical efficacy in the treatment of
68	methicillin-resistant Staphylococcus aureus (MRSA) infections, along with vancomycin (1,
69	2). With a growing body of evidence supporting the relationship between teicoplanin
70	exposure and response, therapeutic drug monitoring (TDM) is routinely used to maximize
71	clinical effectiveness while preventing adverse effects, such as nephrotoxicity and
72	thrombocytopenia (3, 4). Trough concentration of teicoplanin is considered a key predictor
73	of its effectiveness and adverse effects: trough levels of 15-30 mg/L are recommended for
74	the treatment of noncomplicated MRSA infections, whereas trough levels of 20-40 mg/L
75	have been recently suggested for serious and/or complicated MRSA infections, such as
76	endocarditis and osteomyelitis (2).
77	Initial teicoplanin dosing starts with multiple loading doses (three to four times, in general),
78	followed by a series of maintenance doses (2, 5, 6). Loading and maintenance doses are
79	adjusted for patient characteristics, such as age, sex, body weight (BW), body mass index
80	(BMI), serum albumin level, and renal function. Given the importance of the early
81	achievement of therapeutic exposure for clinical success, numerous efforts have been made

82	to implement initial dosing nomograms to achieve early attainment of therapeutic
83	concentration levels (5-7). However, because these nomograms were developed and
84	validated for a specific population, their robustness against population changes is limited.
85	To date, the dosing nomograms for individually optimized initial dosing remain
86	controversial, which poses a challenge for the initial dose planning of teicoplanin. In
87	clinical settings, decision-making for initial teicoplanin dosing regimens is often based on
88	the clinician's experience and expertise (hereafter knowledge) (8-10).
89	Machine learning (ML), a type of artificial intelligence, provides a set of tools that improve
90	the discovery and decision-making for specific questions with abundant and
91	multidimensional data. A growing body of evidence suggests that ML is a promising
92	approach for medical research and clinical care (11, 12). Recently, ML approaches have
93	been adopted to facilitate TDM studies. Imai et al. developed a nomogram for an initial
94	vancomycin dosing regimen by integrating a dataset of patients treated with vancomycin
95	into ML (13, 14). We previously adopted imitation learning, which is an ML technique that
96	leverages expert demonstrations to learn policies (15). In this study, we defined experts as
97	pharmacists who were experienced in TDM practice and used the dataset of the initial
98	dosing regimen designed by experts to integrate experts' knowledge into the ML model

(16). This straightforward approach has yielded a predictive model that designs initial 99 100 dosing regimens akin to those of pharmacists, exemplifying the potential of ML techniques for integrating expert knowledge into the model. 101 102 In the present study, we aimed to extend this approach to teicoplanin. Using a dataset of 103 dose planning by pharmacists dedicated to TDM practice (hereafter TDM pharmacist), we trained ML to predict the TDM pharmacists' initial dose planning of teicoplanin. This 104 approach achieved a predictive model that was comparable to that of TDM pharmacists for 105 target trough attainment. In addition, the target attainment rate of patients without TDM 106 107 pharmacists' dose planning would significantly increase by applying ML. Our study highlights the clinical significance of integrating pharmacist knowledge into predictive 108 109 models using ML techniques.

It is made available under a CC-BY-ND 4.0 International license .

111 **2. Results**

112

113 **2.1 Patients' characteristics**

114 We enrolled patients who received teicoplanin between August 2019 and April 2022 at Nagoya University Hospital. During the study period, 1165 patients received teicoplanin 115 treatment. Of these, 751 patients were excluded because of the following reasons: age <18116 117 years (n = 546), undergoing peritoneal dialysis or hemodialysis (n = 109), receiving TDM pharmacists' intervention after the initial dose (n = 33), resuming teicoplanin treatment 118 within 7 days (n = 31), on extracorporeal membrane oxygenation (ECMO) (n = 16), 119 missing data (n = 9), patient immobility (n = 6), or receiving a single dose for surgical 120 121 prophylaxis (n = 1). The remaining 414 patients were divided into two groups based on whether they received TDM pharmacist intervention (intervention group) or not 122 (nonintervention group). Consequently, 158 and 256 patients were assigned to the 123 intervention and nonintervention groups, respectively (Figure 1 and Tables S1 and S2). 124 125

126 **2.2 Evaluation of therapeutic drug monitoring pharmacists' dose planning**

127 We first evaluated the clinical significance of TDM pharmacists' intervention in teicoplanin

128	treatment. Eighteen of the 158 patients in the intervention group and 37 of the 256 patients
129	in the nonintervention group were excluded from the analysis because of the lack of
130	concentration measurement or description of the sampling time. For the remaining 140
131	patients in the intervention group, we further excluded the patients with deviation from the
132	TDM pharmacists' regimen ($n = 17$), changing regimen after the initial dose ($n = 1$), and
133	blood sampling after the completion of therapy $(n = 1)$.
134	For the remaining 121 and 219 patients in the intervention and nonintervention groups,
135	respectively, we assessed whether blood samples were collected at appropriate time points,
136	that is, 18 h after the last dose (2). The incidence rates of inappropriate blood sampling
137	were 5.0% (6/121) and 16.8% (36/219) in the intervention and nonintervention groups,
138	respectively, indicating the contribution of TDM pharmacists' intervention to proper trough
139	blood sampling (Figure 1 and Table 1). Patients with inappropriate blood sampling in the
140	intervention group $(n = 6)$ were due to the lack of TDM pharmacists' recommendation on
141	the timing for sampling.
142	Next, we excluded these patients with inappropriate blood sampling and then analyzed
143	whether TDM pharmacists' dose planning contributes to target attainment (15-30 mg/L).

144 As shown in Table 2, TDM pharmacist intervention clearly increased the target attainment

It is made available under a CC-BY-ND 4.0 International license .

rate at initial TDM (74.8% [86/115] in the intervention group vs. 57.9% [106/183] in the 145 146 nonintervention group, p = 0.004), accompanied by a decrease in subtherapeutic ranges (14.8% [17/115] in the intervention group vs. 37.2% [68/183] in the nonintervention group, 147 148 Table 2 and Tables S3 and S4). However, we observed a large bias in intensive care unit (ICU) and high care unit (HCU) admissions between the two groups (24.3% [28/115] in the 149 intervention group vs. 55.7% [102/183] in the nonintervention group, p $<1.0 \times 10^{-6}$, Table 150 S5). Thus, we performed subgroup analyses and found no significant increase in target 151 attainment in patients with an ICU/HCU stay (60.7% [17/28] in the intervention group vs. 152 15357.8% [59/102] in the nonintervention group, p = 0.832, Table 2). This reflects the difficulty in predicting the pharmacokinetics of ICU/HCU stay, where frequent and 154 155 dramatic changes in the patients' clinical status are often observed. For patients without an ICU/HCU stay, we found a marked increase in the target attainment rate in the intervention 156 157 group (79.3% [69/87] in the intervention group vs. 58.0% [47/81] in the nonintervention group, p = 0.004, Table 2). Because there were systemic differences in baseline 158 characteristics between the two groups, especially creatinine clearance (CL_{CR}) (p = 0.009, 159Figure S1 and Table 3), we applied propensity score matching to reduce the effects of 160 confounding. The results showed that the increase was also found and remained significant 161

162	after propensity score matching (83.3% [40/48] in the intervention group vs. 60.4% [29/48]
163	in the nonintervention group, $p = 0.013$, Table 4 and Table S6).
164	Overall, these results validate the TDM pharmacists' dose planning, at least for patients
165	without ICU/HCU stay, and underscore the importance of experts' (e.g., TDM pharmacists)
166	intervention for effective and appropriate initial treatment with teicoplanin.
167	
168	2.3 Machine learning (ML) model to determine teicoplanin initial dose
169	Given the increased target achievement by TDM pharmacists' dose planning of teicoplanin
170	for patients without an ICU/HCU stay, we next sought to build an ML model that tailored
171	dosing regimens at the levels of TDM pharmacists. Toward this end, we trained a two-layer
172	neural network with the dataset of TDM pharmacists' dose planning (n = 118, Figure S2
173	and Table S7). Input variables were selected based on the considered information while
174	dose planning: the covariates for teicoplanin pharmacokinetics (age, BW, BMI, CL_{CR} , and
175	serum albumin level) and the timing of dose planning (day of the week [T1–T7] and time of
176	the day [T0]). The latter comes from our practice of adjusting the dosing regimen, such that
177	the initial TDM is performed on weekdays.

178 We divided eligible patients into a training group and a testing group at a 94:24 ratio

(approximately 80:20). Subsequently, the neural network model to predict TDM 179 180 pharmacists' dose planning was trained on the patients in the training group. The prediction accuracies for the loading and maintenance doses (i.e., identical dosing as TDM 181 182 pharmacists) were both 100% on the training dataset, indicating that the model learned how TDM pharmacists decide dosing regimens. However, in the testing trial, the model scored 183 significantly lower prediction accuracies of 54.2% and 62.5% for the loading and 184 185 maintenance doses, respectively (Figure 2A, B, left and Table S9). These results indicate that overfitting occurs, which is most likely attributable to the small datasets (17). Because 186 the current dataset consisted of dose planning by multiple pharmacists, each with varying 187 levels of expertise, possible heterogeneity in dose planning among pharmacists may also 188 189 have contributed to the decrease in accuracy. Next, we retrospectively analyzed the target attainment by ML dose planning using the Bayesian method (2). The original target 190 191 attainment rate in the testing group was 81.0% (17/21). Importantly, the rate was expected 192 to slightly increase when ML was applied (95.3% [20/21], Figure 2C, left and Table 5). We hypothesized that ML complemented the weaknesses of suboptimal TDM pharmacists by 193 learning policies from other pharmacists. Taken together, these results indicate that 194 although dose planning tends to differ from that of TDM pharmacists, ML is competent for 195

It is made available under a CC-BY-ND 4.0 International license .

196 tailoring teicoplanin dosing as TDM pharmacists.

197 /	As a control,	we also	trained th	ne ML	using dose	e planning	by no	on-TDM j	pharmacists	(i.e.,
-------	---------------	---------	------------	-------	------------	------------	-------	----------	-------------	--------

- the cases without intervention, Table S8) and then analyzed the target attainment by this
- 199 ML. As expected from the poor target achievement (Table 2), ML trained on cases without
- 200 intervention failed to maintain the target attainment of TDM pharmacists. The target
- attainment was estimated to decrease from 81.0% (17/21) to 52.4% (11/21) (Figure 2C,
- right, Table 5, and Tables S9 and S10). This decrease was attributed to the subtherapeutic
- doses of teicoplanin; the incidence of subtherapeutic exposure was estimated to increase
- from 4.8% (1/21) to 47.6% (10/21) (Figure 2B, right, Table 5, and Tables S9 and S10). This
- result mirrors the propensity of non-TDM pharmacists to underdose (Tables 2 and 4).
- Taken together, these results suggest that ML model training with the TDM pharmacists'

207 dataset augments model performance in tailoring the teicoplanin dose.

208

209 **2.4 Evaluation of the ML on the external validation dataset**

Finally, we investigated whether ML improved target trough attainment. Toward this end, we retrained the ML with whole dataset of TDM pharmacists' dose planning (n = 118,

Table S7) to improve the prediction. Subsequently, we applied retrained ML to patients in

213	the nonintervention group without an ICU/HCU stay who underwent TDM ($n = 81$, Figure
214	1 and Table S8). For both loading and maintenance doses, the retrained ML scored 100%
215	accuracy on the training dataset (Figure S3). We also calculated feature importance, which
216	is proportional to the contribution of the features to the ML decision. For the loading dose,
217	BW was the most important feature for the ML output (i.e., dose determination). For the
218	maintenance dose, BW, BMI, and CL _{CR} represented major contributions to the ML output.
219	For both loading and maintenance doses, the timing of dose planning (T0-T7) also
220	contributed to the ML decision, which is reminiscent of our practice of adjusting dose
221	planning to perform TDM on weekdays (Figure 3A). The small roles of T6 and T7 (dose
222	planning on Saturday and Sunday, respectively) in dose planning were likely due to the lack
223	of data (both $n = 1$) to optimize the weight parameters (Table S7).
224	The target attainment rate in the nonintervention group was 58.0% (47/81) (Table 2).
225	Notably, if ML dosing regimens were applied, target attainment rates increased from 58.0%
226	to 72.8% (59/81, $p = 0.047$, Figure 3B and Table 6). This increase was mainly attributed to
227	the enhanced dose regimen, which prevented subtherapeutic drug exposure; when applying
228	the ML, subtherapeutic levels at initial TDM were expected to decrease from 37.0%
229	(30/81) to 22.2% (18/81) (Figure 3C and Table 6). Meanwhile, notably, enhanced dose

- planning by ML was accompanied by an incidence of overexposure (e.g., case no. 182,
- Tables S11 and S12). Therefore, ML may increase the risk of adverse effects of teicoplanin,
- such as thrombocytopenia, which is observed when trough concentrations exceed 40 mg/L
- 233 **(2, 18, 19)**.
- Altogether, similar to the dose planning by the TDM pharmacists, the current ML is
- expected to play a role in tailoring dose planning, which contributes to early therapeutic
- exposure and consequently leads to treatment success. The model shown in Figure 3 is
- ²³⁷ freely available at https://github.com/Matsuzaki-T/TEIC_study.git.
- 238

It is made available under a CC-BY-ND 4.0 International license .

239 **3. Discussion**

240

241	A growing body of evidence has suggested that pharmacists' intervention in initial dose
242	planning leads to early adequate drug exposure, indicating the importance of pharmacists'
243	knowledge for tailoring initial dose planning (20, 21). Given the importance of pharmacists'
244	knowledge, we harnessed the power of ML techniques to integrate such knowledge into a
245	predictive model. To validate this hitherto unexplored approach to expedite clinical
246	decisions during the dose planning phase, we previously trained the ML model for
247	vancomycin dose planning using a dataset of dose planning by pharmacists experienced in
248	TDM. The results showed that the target attainment with the dosing regimen by the
249	resultant ML was estimated to be the same as the pharmacists' regimen, indicating that the
250	ML was as competent in tailoring dose planning as well-trained pharmacists (16). This
251	result motivated us to develop a predictive model for another clinically important antibiotic,
252	teicoplanin, which is equally effective but better tolerated than vancomycin, with a lower
253	risk of nephrotoxicity (22, 23).

In this study, we first validated the dose planning for teicoplanin by TDM pharmacists in our hospital (Tables 1, 2, and 4). Compared with vancomycin, evidence that pharmacists'

It is made available under a CC-BY-ND 4.0 International license .

intervention improves clinical outcomes of teicoplanin treatment is limited. One study 256 257demonstrated that pharmacists' intervention improved the attainment of targeted teicoplanin concentrations (24). However, in this study, target achievement was recorded whenever 258 259concentrations reached the therapeutic window during treatment. Therefore, whether pharmacists intervention improved early target attainment was unclear. Although the 260 increase in target attainment rate was limited to patients without an ICU/HCU stay, the 261 262 current study marks the first time that dose planning of teicoplanin by experienced pharmacists led to the achievement of therapeutic windows accompanied by increased 263 adherence to appropriate blood sampling (Tables 1 and 2). These results, along with similar 264 outcomes reported for vancomycin (20, 21), indicate the clinical significance of 265pharmacists' (especially pharmacists experienced in TDM) intervention in the treatment of 266 MRSA infection. 267

The feature importance of the current ML was in accordance with the conventionally employed predictive covariates for dosing (Figure 3A) (9, 25). The timing of dose planning also played a role in the current ML, indicating that our practice of adjusting dose planning in a time-dependent manner was incorporated into the ML.

The prediction accuracy of ML was suboptimal at 54.2% and 62.5% for the loading and

273	maintenance doses, respectively (Figure 2A). In our previous study, ML for vancomycin
274	initial dose planning also showed limited prediction accuracies of 59.1% and 68.2% for the
275	loading and maintenance doses, respectively (16), indicating overfitting. As small datasets
276	are susceptible to overfitting, ML training with larger sample sizes is required (17). The
277	simple architecture of the current neural network, potential heterogeneity in dose planning
278	among TDM pharmacists, and intrinsic difficulty of multiclass classification tasks may
279	have also affected the prediction accuracy (17). Nevertheless, in line with our previous
280	study, ML predicted the dose planning that was expected to reach the target trough levels as
281	the original regimens by pharmacists (Figure 2C and Table 5) (16). These results suggest
282	that the ML learns basic policies for tailoring the teicoplanin dose in a supervised manner.
283	Interestingly, in contrast to the ML trained with dose planning by TDM pharmacists, the
284	ML trained with dose planning without intervention failed to maintain target attainment by
285	TDM pharmacists (Figure 2C and Table 5). The number of cases with subtherapeutic
286	exposure was expected to increase from 4.8% (1/21) to 47.6% (10/21) when ML was
287	applied, mirroring the propensity toward underdosing in cases without intervention (Tables
288	2 and 4). Taken together, these results suggest that imitation learning can be used to tailor
289	antibiotic doses.

290	We also tested an external validation cohort using cases without intervention. The results
291	showed that the target attainment rates increased when applying ML trained with dose
292	planning by TDM pharmacists (Figure 3B and Table 6). This increase was mainly a result
293	of the enhanced loading doses of ML, as cases with subtherapeutic exposure decreased
294	from 37.0% (30/81) to 22.2% (18/81) (Figure 3B and Table 6). These results indicate that
295	ML plays a role in individualizing the initial dosing regimen as TDM pharmacists.
296	Meanwhile, enhanced loading doses by ML were associated with the incidence of
297	overexposure (e.g., case no. 182, Tables S11 and S12). Therefore, at this preliminary stage,
298	the current model should be used with caution. Moreover, notably, the trough
299	concentrations of the ML regimen were estimated using Bayesian prediction accompanied
300	by assumptions regarding the timing of drug administration and blood sampling, which
301	harbors several limitations in evaluating the performance of the current model. The
302	generalizability and clinical utility of this model should be rigorously evaluated in future
303	prospective studies.
304	In addition to the abovementioned limitations, there are a few other limitations to be noted.

First, the current predictive model was derived from a single center with a small sample size, thereby lacking external generalizability. Second, the dose planning by TDM

307	pharmacists in the current study targeted trough levels of 15-30 mg/L; however, recent
308	guidelines have suggested trough levels of 20-40 mg/L for serious and/or complicated
309	MRSA infections (2). Third, although pathophysiological conditions (e.g., hematological
310	malignancy) have been reported to affect the pharmacokinetics of teicoplanin, we did not
311	employ these factors in the ML training phase (26, 27). The next step for developing a more
312	sophisticated ML model for tailoring teicoplanin dosing is to use this information in ML
313	training. Finally, the majority of the study participants were older adults, which may have
314	influenced the prediction performance in younger adults (Table 3).
315	In conclusion, we validated an ML approach to develop a model for tailoring the initial
316	dosing regimen of teicoplanin, which holds promise for complementary dose planning by
317	clinicians. This study, together with our previous work on vancomycin (16), provides a new
318	avenue for achieving early target exposure, which has important ramifications for the
319	successful treatment of invasive MRSA infections.

It is made available under a CC-BY-ND 4.0 International license .

321 **4. Materials and methods**

322

323 4.1 Study participants

324 This was a single-center, retrospective, observational study of hospitalized patients who received intravenous teicoplanin between August 2019 and April 2022 at Nagoya 325 University Hospital. TDM pharmacists were defined as pharmacists dedicated to TDM. 326 327 Patients who commenced teicoplanin treatment with TDM expert-recommended dose regimens during the study period were also included. The exclusion criteria were as 328 329 follows: patients aged <18 years; undergoing peritoneal dialysis or hemodialysis (including continuous hemodiafiltration); undergoing ECMO; receiving intervention by experts after 330 331 the initial dose; restarting teicoplanin treatment within 7 days; who were immobile, which indicates decreased muscle mass and may cause overestimation of CL_{CR}; with surgical 332 333 antibiotic prophylaxis; and with missing data on sex, age, BW, BMI, and serum albumin and creatinine levels. 334

335

4.2 Comparison of appropriate blood samplings and trough concentrations between
 the intervention and nonintervention groups

It is made available under a CC-BY-ND 4.0 International license .

Eligible patients with serum teicoplanin concentrations were enrolled to evaluate the dose 338 339 planning by TDM pharmacists. In this analysis, the patients were divided according to whether they received dose planning by TDM pharmacists. 340 341 Patients with intervention were excluded if the time of blood sampling was not described, protocol deviation occurred, dosing regimen was changed by TDM pharmacists after the 342 initial dose, or blood samples were collected after the completion of teicoplanin treatment. 343 344 Because blood samples for monitoring teicoplanin trough concentrations should be collected at least 18 h after the last dose (2), we monitored the timing of blood sampling. In 345 cases where initial TDM was performed at the recommended time (18 h after the last dose), 346 the target trough achievement (15–30 mg/L) in the intervention group was compared with 347 348 that in the nonintervention group. Propensity scores were calculated using logistic modeling, with TDM pharmacists' dose 349 350 planning as the dependent variable. Independent variables included age, BW, BMI, serum albumin level, CL_{CR} calculated using the Cockcroft–Gault equation (28), and timing of 351 dose planning, which were used as input variables in ML construction. The patients were 352 matched 1:1 using the nearest-neighbor technique, with a caliper distance limited to 10% of 353 the standard deviation of the pooled propensity scores. 354

It is made available under a CC-BY-ND 4.0 International license .

4.3 Building of the neural network model

356 The dataset used in this study included clinical and routine laboratory data, initial dosing 357 regimens, and serum teicoplanin concentration at initial TDM (if measured). Age, BW, BMI, 358 serum albumin level, and CL_{CR} were used as features to predict the initial dosing regimens (loading and maintenance doses). We also used the timing of the dose planning (day of the 359 week [T1–T7] and times of day [T0]) as input variables because TDM pharmacists consider 360 361 dosing regimens so that initial TDM is performed on weekdays as possible. The dataset (n = 118) was divided into training and test datasets in a 94:24 ratio (approximately 80:20). 362 Numeric input variables (age, BW, BMI, serum albumin level, CL_{CR}, and time of day [T0]) 363 in the training data were normalized using the following equation: 364

$$x_{k,i,norm} = \frac{x_{k,i} - \mu_k}{\sigma_k}$$

where $x_{k,i}$ is a value of parameter k in sample *i*, $x_{k,i,norm}$ is a normalized value of parameter k in sample *i*, μ_k is a mean of parameter k, and σ_k is a standard deviation of parameter k.

We applied the same scaling to the input variables in the testing data as in the training data to avoid shifting the distribution of the data. For ICU/HCU stay, the variable takes 1 for ICU/HCU stay and 0 otherwise. On each day of the week, the variables were binarized

371	using one-hot encoding, where T1, T2, T3, T4, T5, T6, and T7 represented Monday,
372	Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday, respectively. Output
373	variables (loading and maintenance doses) were binarized using one-hot encoding.
374	We built a two-layer neural network model for dose planning, as described elsewhere, using
375	Python (29, 30). The structures of the network for the loading and maintenance doses were
376	the same. Briefly, the network was composed of an input layer, a hidden layer, and an
377	output layer (Figure S2). The activation functions in the hidden and output layers were both
378	sigmoid. The number of hidden neurons was set to 15, which was determined by the sum of
379	2/3 of the size of the input layer neurons (n = 13) and output layer neurons for the
380	maintenance dose (n = 7), as previously proposed (31). Because adding the number of
381	output layer neurons to the loading dose $(n = 14)$ did not result in increased predictive
382	accuracy (data not shown), we set the same number of hidden neurons in both ML.
383	

We trained the neural network to minimize empirical loss over the training data. In this study, we employed cross-entropy loss as the loss function *L*, which was parameterized by the weight matrices W1, W2, b1, and b2 (Figure S2):

It is made available under a CC-BY-ND 4.0 International license .

$$L(W1, W2, b1, b2) = -\frac{1}{N} \sum_{x}^{X} \log f(x)$$

388

where *X* is a matrix of the input variables from each training dataset *x*, *N* indicates the number of training data points, and f(x) indicates the score for the correct class.

We optimized each parameter in the model using stochastic gradient descent with an adaptive learning rate using AdaGrad (32):

$$h \leftarrow h + \nabla_{\theta} L(W)^2$$

 $\theta \leftarrow \theta - \frac{\eta}{|h|} \nabla_{\theta} L(W)$

where θ is a parameter of weight matrix and η is a learning rate (in this study, 0.1).

4.4 Feature importance analysis

In the training process, the permutation feature importance (Breiman–Cutler importance) was calculated, as described in previous studies (33, 34). In this process, a single feature value was randomly shuffled while keeping the other input variables constant. Subsequently, decreases in the prediction accuracy, which indicates how the feature contributes to the ML

It is made available under a CC-BY-ND 4.0 International license .

401 decision, were collected for each input variable. We repeated this process 20 times to

402 measure the mean decrease in the prediction accuracy for each feature:

$$PI_{i} = \frac{1}{N} \sum_{j=1}^{N} \left(PA_{original} - PA_{i,j} \right)$$

where PI_i (permutation importance) indicates the permutation importance of feature *i*, N is the number of repetitions (in this study, 20), $PA_{original}$ indicates the original prediction accuracy, and $PA_{i,j}$ indicates the prediction accuracy upon shuffling feature *i*.

406

407 **4.5 Estimation of trough concentration with the regimen using the ML model**

Data, including serum teicoplanin concentrations at appropriate time points (18 h after the last dose), were included in this analysis. If the ML dosing regimen by the ML was identical to the original dosing regimen, the measured serum teicoplanin concentration was defined as the trough concentration with the ML dosing regimen. Otherwise, the serum teicoplanin concentration in the ML regimen was estimated using Bayesian estimation under the following assumptions:

414 (i) If the cumulative number of doses was the same in the original and ML regimens,

415 only the dose was changed.

416	(ii) If the ML recommended an additional loading dose, additional loading doses were					
417		added 8 h after the last dose and every 8 h thereafter.				
418	(iii) If the ML did not recommend a maintenance dose, blood sampling was performed					
419	18 h after the last dose.					
420	(iv)	If the ML recommended maintenance dose, every 24 h maintenance dose was				
421		assumed to be administered at 9:00 a.m. (at least 8 h after the last dose), followed				
422		by TDM sampling at 9:00 a.m. the next day.				
423						
424	4.6 Statistical analyses					
425	We used the Mann-Whitney U test to evaluate continuous data. For categorical data, we					
426	used Fisher's exact test or the chi-squared test. All statistical tests were two-tailed, and p					
427	values < 0.05 were considered statistically significant. Statistical analyses were performed					
428	using the Python Statistics module.					
429						
430	5. Su	pplementary material				
431	Supple	emental material is available online only.				
432						

It is made available under a CC-BY-ND 4.0 International license .

433	The code for the predictive model with pretrained weights and modules reproducing the
434	results of this study is available at https://github.com/Matsuzaki-T/TEIC_study.git.
435	
436	
437	6. Ethics approval
438	This study was conducted with the approval from the Ethic Committee of Nagoya
439	University Hospital (Approval No. 2022-0071).
440	
441	7. Acknowledgements
442	This work was supported by Morinomiyako Medical Research Foundation, the JSPS
443	KAKENHI (Grant Numbers JP 20H03428 and 22K17824), and the Research Funding for
444	Longevity Sciences (22-21) from National Center for Geriatrics and Gerontology
445	(NCGG), Japan.
446	
447	8. Conflict of Interest
448	The authors declare no conflict of interests.

It is made available under a CC-BY-ND 4.0 International license .

450 **References**

451	1.	Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, Mueller BA, Pai MP,
452		Wong-Beringer A, Rotschafer JC, Rodvold KA, Maples HD, Lomaestro BM. 2020.
453		Therapeutic monitoring of vancomycin for serious methicillin-resistant
454		Staphylococcus aureus infections: A revised consensus guideline and review by the
455		American Society of Health-System Pharmacists, the Infectious Diseases Society of
456		America, the Pediatric Infectious Diseases Society, and the Society of Infectious
457		Diseases Pharmacists. Am J Health Syst Pharm 77:835–864.
458	2.	Hanai Y, Takahashi Y, Niwa T, Mayumi T, Hamada Y, Kimura T, Matsumoto K, Fujii
459		S, Takesue Y. 2022. Clinical practice guidelines for therapeutic drug monitoring of
460		teicoplanin: a consensus review by the Japanese Society of Chemotherapy and the
461		Japanese Society of Therapeutic Drug Monitoring. J Antimicrob Chemother
462		77:869–879.
463	3.	Terol MJ, Sierra J, Gatell JM, Rozman C. 1993. Thrombocytopenia due to use of
464		teicoplanin. Clin Infect Dis 17:927.eases.
465	4.	Hanai Y, Takahashi Y, Niwa T, Mayumi T, Hamada Y, Kimura T, Matsumoto K, Fujii
466		S, Takesue Y. 2021. Optimal trough concentration of teicoplanin for the treatment of

467		methicillin-resistant Staphylococcus aureus infection: A systematic review and
468		meta-analysis. J Clin Pharm Ther 46:622–632.
469	5.	Ueda T, Takesue Y, Nakajima K, Ichiki K, Doita A, Wada Y, Tsuchida T, Takahashi Y,
470		Ishihara M, Ikeuchi H, Uchino M, Kimura T. 2016. Enhanced loading regimen of
471		teicoplanin is necessary to achieve therapeutic pharmacokinetics levels for the
472		improvement of clinical outcomes in patients with renal dysfunction. Eur J Clin
473		Microbiol Infect Dis 35:1501–1509.
474	6.	Nakamura A, Takasu O, Sakai Y, Sakamoto T, Yamashita N, Mori S, Morita T,
475		Nabeta M, Hirayu N, Yoshiyama N, Moroki M, Tashiro K, Kannae M. 2015.
476		Development of a teicoplanin loading regimen that rapidly achieves target serum
477		concentrations in critically ill patients with severe infections. J Infect Chemother
478		21:449–455.
479	7.	Ueda T, Takesue Y, Nakajima K, Ichiki K, Ishikawa K, Takai Y, Yamada K, Tsuchida
480		T, Otani N, Takahashi Y, Ishihara M, Takubo S, Ikeuchi H, Uchino M, Kimura T.
481		2020. Clinical efficacy and safety in patients treated with teicoplanin with a target
482		trough concentration of 20 μ g/mL using a regimen of 12 mg/kg for five doses within
483		the initial 3 days. BMC Pharmacol Toxicol 21:50.

484	8.	Thalakada R, Legal M, Lau TTY, Luey T, Batterink J, Ensom MHH. 2012.
485		Development and validation of a novel vancomycin dosing nomogram for achieving
486		high-target trough levels at 2 Canadian teaching hospitals. Can J Hosp Pharm
487		65:180–187.
488	9.	Broeker A, Nardecchia M, Klinker KP, Derendorf H, Day RO, Marriott DJ, Carland
489		JE, Stocker SL, Wicha SG. 2019. Towards precision dosing of vancomycin: A
490		systematic evaluation of pharmacometric models for Bayesian forecasting. Clin
491		Microbiol Infect 25:1286.e1–1286.e7.
492	10.	Oda K, Katanoda T, Hashiguchi Y, Kondo S, Narita Y, Iwamura K, Nosaka K, Jono
493		H, Saito H. 2020. Development and evaluation of a vancomycin dosing nomogram
494		to achieve the target area under the concentration-time curve. A retrospective study. J
495		Infect Chemother 26:444–450.
496	11.	Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B,
497		Madabhushi A, Shah P, Spitzer M, Zhao S. 2019. Applications of machine learning
498		in drug discovery and development. Nat Rev Drug Discov 18:463-477.
499	12.	Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J, Ringel M, Schork N. 2019.
500		Artificial intelligence and machine learning in clinical development: A translational

It is made available under a CC-BY-ND 4.0 International license .

501 perspective. NPJ Digit Med 2:69.

- Imai S, Takekuma Y, Miyai T, Sugawara M. 2020. A new algorithm optimized for
 initial dose settings of vancomycin using machine learning. Biol Pharm Bull
 43:188–193.
- Miyai T, Imai S, Yoshimura E, Kashiwagi H, Sato Y, Ueno H, Takekuma Y,
 Sugawara M. 2022. Machine learning-based model for estimating vancomycin
 maintenance dose to target the area under the concentration curve of 400–600
 mg·h/L in Japanese patients. Biol Pharm Bull 45:1332–1339.
- 509 15. Stefan Schaal. 1999. Is imitation learning the route to humanoid robots? Trends
- 510 Cogn Sci 3:233–242.
- 16. Matsuzaki T, Kato Y, Mizoguchi H, Yamada K. 2022. A machine learning model that
- 512 emulates experts' decision making in vancomycin initial dose planning. J Pharmacol
- 513 Sci 148:358–363.
- D'souza RN, Huang PY, Yeh FC. 2020. Structural analysis and optimization of
 convolutional neural networks with a small sample size. Sci Rep 10:834.
- ⁵¹⁶ 18. Wilson APR. 1997. Safety. In: Teicoplanin; The First Decade. Abingdon, UK, The
- 517 Medicine Group (Education) Ltd.; 134–144.

518	19.	Wilson APR, Griineberg RN, Neub H. 1994. A critical review of the dosage of
519		teicoplanin Europe and the USA. Int J Antimicrob Agents 4 Suppl 1:1–30.
520	20.	Momattin H, Zogheib M, Homoud A, Al-Tawfiq JA. 2015. Safety and outcome of
521		pharmacy-led vancomycin dosing and monitoring. Chemotherapy 61:3–7.
522	21.	Komoto A, Maiguma T, Teshima D, Sugiyama T, Haruki Y. 2018. Effects of
523		pharmacist intervention in vancomycin treatment for patients with bacteremia due to
524		methicillin-resistant Staphylococcus aureus. PLoS One 13:e0203453.
525	22.	Cavalcanti AB, Goncalves AR, Almeida CS, Bugano DD, Silva E. 2010. Teicoplanin
526		versus vancomycin for proven or suspected infection. Cochrane Database Syst Rev
527		16:CD007022.
528	23.	Oda K, Hashiguchi Y, Katanoda T, Nakata H, Jono H, Saito H. 2021. Lowered risk
529		of nephrotoxicity through intervention against the combined use of vancomycin and
530		tazobactam/piperacillin: A retrospective cohort study. Microbiol Spectr 9:e0035521.
531	24.	Okada N, Fushitani S, Azuma M, Nakamura S, Nakamura T, Teraoka K, Watanabe H,
532		Abe M, Kawazoe K, Ishizawa K. 2016. Clinical evaluation of pharmacist
533		interventions in patients treated with anti-methicillin-resistant Staphylococcus aureus
534		agents in a hematological ward. Biol Pharm Bull 39:295-300.

It is made available under a CC-BY-ND 4.0 International license .

535	25.	Vandecasteele SJ, de Vriese AS. 2010. Recent changes in vancomycin use in renal
536		failure. Kidney Int 77:760–764.
537	26.	Byrne CJ, Egan S, Fennell JP, O'Byrne P, Enright H, Deasy E, Ryder SA, D'Arcy
538		DM, McHugh J. 2015. Teicoplanin use in adult patients with haematological
539		malignancy: Exploring relationships between dose, trough concentrations, efficacy
540		and nephrotoxicity. Int J Antimicrob Agents 46:406-412.
541	27.	Byrne CJ, Roberts JA, McWhinney B, Fennell JP, Deasy E, Egan S, Desmond R,
542		Enright H, Ryder SA, D DM. 2017. Variability in trough total and unbound
543		teicoplanin concentrations and achievement of therapeutic drug monitoring targets in
544		adult patients with hematological malignancy. Antimicrob Agents Chemother
545		61:e02466-16.
546	28.	Cockcroft DW, Gault H. 1976. Prediction of creatinine clearance from serum
547		creatinine. Nephron 16:31–41.
548	29.	Lamba A, Cassey P, Segaran RR, Koh LP. 2019. Deep learning for environmental
549		conservation. Curr Biol 29:R977–R982.
550	30.	Kriegeskorte N, Golan T. 2019. Neural network models and deep learning. Curr Biol
551		29:R231–R236.

It is made available under a CC-BY-ND 4.0 International license .

552	31.	Gaurang P, Amit G, Y P K, Devyani Panchal. 2011. Behaviour analysis of multilayer
553		perceptrons with multiple hidden neurons and hidden layers. Int J Comput Theory
554		Eng 3:332–337.
555	32.	Duchi J, Hazan E, Singer Y. 2011. Adaptive subgradient methods for online learning
556		and stochastic optimization. J Mach Learn Res 12:2121–2159.
557	33.	Breiman L. 2001. Random forests. Mach Learn 45:5–32.
558	34.	Chen X, Ishwaran H. 2012. Random forests for genomic data analysis. Genomics
559		99:323–329.

It is made available under a CC-BY-ND 4.0 International license .

561 **Figure 1.** Flow of case selection in the study.

562

563

564	Figure 2. (A) Learning curves of the neural network through training and testing using
565	dataset from the intervention group. (B) Cumulative dose of teicoplanin before initial TDM
566	in TDM pharmacists and ML regimens. (Left) TDM pharmacists vs. ML trained with cases
567	with intervention (TDM pharmacists ML). (Right) TDM pharmacists vs. ML trained with
568	cases without intervention (non-TDM pharmacists ML). Line indicates reference line of y =
569	Х.
570	(C) Serum concentration at initial blood sampling with TDM pharmacists and ML regimens.
571	(Left) TDM pharmacists vs. ML trained with cases with intervention (TDM pharmacists
572	ML). (Right) TDM pharmacists vs. ML trained with cases without intervention (non-TDM
573	pharmacists ML). Gray area indicates therapeutic windows (15-30 mg/L).
574	
575	Figure 3. (A) Permutation feature importance for loading dose (top) and maintenance dose
576	(bottom) decision. (B) Serum concentration at initial blood sampling with non-TDM

577 pharmacists and ML regimens. Blue line and blue dashed lines indicate regression line and

- 578 95% confidence interval, respectively. (C) Cumulative dose of teicoplanin before initial
- 579 TDM with non-TDM pharmacists and ML regimens. Line indicates reference line of y = x.

Figure 1. Flow of case selection in the study.

Figure 2. (A) Learning curves of the neural network through training and testing using dataset from the intervention group. **(B)** Cumulative dose of teicoplanin before initial TDM in TDM pharmacists and ML regimens. (Left) TDM pharmacists vs. ML trained with cases with intervention (TDM pharmacists ML). (Right) TDM pharmacists vs. ML trained with cases without intervention (non-TDM pharmacists ML). Line indicates reference line of y = x.(C) Serum concentration at initial blood sampling with TDM pharmacists vs. ML trained with cases without intervention (TDM pharmacists vs. ML trained with cases with intervention (TDM pharmacists ML). (Right) TDM pharmacists ML). (Right) TDM pharmacists vs. ML trained with cases with intervention (TDM pharmacists ML). (Right) TDM pharmacists vs. ML trained with cases with intervention (TDM pharmacists ML). (Right) TDM pharmacists vs. ML trained with cases without intervention (non-TDM pharmacists ML). (TDM pharmacists ML). (Right) TDM pharmacists vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists Vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists Vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists Vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists Vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists Vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists Vs. ML trained with cases without intervention (non-TDM pharmacists ML). (Right) TDM pharmacists Vs. (ML trained With cases WL trained WITH cases WL

Figure 3. (A) Permutation feature importance for loading dose (top) and maintenance dose (bottom) decision. (B) Serum concentration at initial blood sampling with non-TDM pharmacists and ML regimens. Blue line and blue dashed lines indicate regression line and 95% confidence interval, respectively. (C) Cumulative dose of teicoplanin before initial TDM with non-TDM pharmacists and ML regimens. Line indicates reference line of y = x.

Table 1. Blood sampling time

Group Sampling time	Intervention (%)	Nonintervention (%)	p-value (Fisher's exact test)
Correct	115 (95.0%)	183 (83.6%)	0.0017
Incorrect	6 (5.0%)	36 (16.4%)	0.0017

medRxiv preprint doi: https://doi.org/10.1101/2023.12.14.23299934; this version posted December 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Table2. Target attainment

		Intervention	l	No	nintervention		
Trough (mg/L) Group	<15	15–30	>30	<15	15–30	>30	p-value (Chi-square test)
Whole (%)	17 (14.8)	86 (74.8)	12 (10.4)	68 (37.2)	106 (57.9)	9 (4.9)	0.004
ICU/HCU (%)	9 (32.1)	17 (60.7)	2 (7.1)	38 (37.3)	59 (57.8)	5 (4.9)	0.832
non-ICU/HCU (%)	8 (9.2)	69 (79.3)	10 (11.5)	30 (37.0)	47 (58.0)	4 (4.9)	0.004

Abbreviations: ICU, intensive care unit; HCU, high care unit.

medRxiv preprint doi: https://doi.org/10.1101/2023.12.14.23299934; this version posted December 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

		Intervention	Nonintervention	n velue	
		(n = 87)	(n = 81)	p-value	
Sex	Male	65	52	0 120 ⁸	
	Female	22	29	0.139	
Age (year) [median (IQR)]		73 (19.5)	71 (25)	0.106 ^b	
BW (kg) [mean± SD]		55.7±11.7	55.4±11.9	0.781 ^b	
BMI [mean±SD]		21.2±3.7	21.2±4.0	0.907 ^b	
CL _{CR} [mean±SD]		61.8±40.0	82.2±58.0	0.009 ^b	
Alb [mean±SD]		2.6±0.5	2.7±0.6	0.099 ^b	

Table 3. Demographic, clinical, and laboratory characteristics of eligible cases without ICU/HCU admission for TDM analysis

Abbreviations: ICU, intensive care unit; HCU, high care unit; TDM, therapeutic drug monitoring; IQR, interquartile range; BW, body weight; SD, standard deviation; BMI, body mass index; CL_{CR}, creatinine clearance; Alb, serum albumin.

^a Chi-square test.

^b Mann-Whitney U test.

medRxiv preprint doi: https://doi.org/10.1101/2023.12.14.23299934; this version posted December 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Group Trough (mg/L)	Intervention (%)	Nonintervention (%)	p-value (Chi-square test)
<15	5 (10.4)	16 (33.3)	
15–30	40 (83.3)	29 (60.4)	0.013
>30	3 (6.3)	3 (6.3)	

Table 4. Target attainment after propensity score matching (non-ICU/HCU)

Abbreviations: ICU, intensive care unit; HCU, high care unit.

medRxiv preprint doi: https://doi.org/10.1101/2023.12.14.23299934; this version posted December 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Table 5. Target attainment (internal validation)

Group Trough (mg/L)	TDM pharmacists (%)	ML by TDM pharmacists (%)	ML by non-TDM pharmacists (%)
<15	1 (4.8)	1 (4.8)	10 (47.6)
15–30	17 (81.0)	20 (95.3)	11 (52.4)
>30	3 (14.3)	0 (0.0)	0 (0.0)

Abbreviations: ML, machine learning.

medRxiv preprint doi: https://doi.org/10.1101/2023.12.14.23299934; this version posted December 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Table 6. Target attainment (external validation)

Group Trough (mg/L)	Nonintervention (%)	ML by TDM pharmacists (%)	p-value (Chi-square test)
<15	30 (37.0)	18 (22.2)	
15–30	47 (58.0)	59 (72.8)	0.047
>30	4 (4.9)	4 (4.9)	

Abbreviations: ML, machine learning.

medRxiv preprint doi: https://doi.org/10.1101/2023.12.14.23299934; this version posted December 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.